
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

pk: A POSIX Threads Kernel

Frank W. Miller
Cornfed Systems, Inc.

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



pk: A POSIX Threads Kernel

Frank W. Miller

Cornfed Systems, Inc.

www.cornfed.com

Introduction

pk is a new operating system kernel targeted for use
in real-time and embedded applications. There are
two novel aspects to the pk design:

� Documentation: The kernel is documented us-
ing literate programming techniques and the
noweb [4] tool in particular.

� POSIX Threads with Memory Protection: The
concurrency model is based on the POSIX
Threads (aka Pthreads [2, 3]) standard, how-
ever, the kernel also provides page-based mem-
ory protection using Memory Management
Unit (MMU) hardware.

This short paper discusses these facets of the pk ker-
nel project. The use of literate programming is pre-
sented �rst, followed by a brief description of some
of the pk design issues.

Literate Programming

Documentation is as important as the software it
documents. This belief led me to contemplate how
to document the pk kernel design as a primary goal.
In my experience, the biggest problem with gener-
ating documentation is that it often seems to be
a secondary activity, performed after the code is
written. I became interested in the potential for
the documentation discipline associated with liter-
ate programming techniques and decided to make
use of these techniques with pk.

By discipline, I refer to a structure within which a
project is performed that provides an incentive to
generate documentation as the code is being writ-
ten. Literate programming tools provide a mecha-
nism that fosters such structure.

pk makes use of a literate programming tool called
noweb. The basic concept is simple. Both docu-
mentation and code are contained in a single noweb
�le that uses several special formatting conventions.
Two tools are provided. noweave extracts the doc-
umentation portion of the noweb �le and gener-
ates a documentation �le, in this case a LATEX �le.
notangle extracts the source code portion of the
noweb �le and generates a source code �le, in this
case C source code.

The main consequence of using literate program-
ming, and noweb in this case, is that changes to the
system after initial development are performed on
the noweb source �les. Since the code is intermixed
with its associated documentation, it is more likely
that the documentation will be updated at the same
time.

This is the �rst non-trivial project I have under-
taken using literate programming, and I have seen
an evolution in my use of the tools as I have pro-
gressed with it. As with many projects, it was be-
gun drawing on code from another project. In this
case, I drew on some elements of the Roadrunner

operating system [1]. These were basic elements,
like initialization, interrupt processing, and memory
management, that were needed to get a new ker-
nel up and running quickly. These reused elements
were not documented with noweb initially and some
remain undocumented still although my goal is to
document the entire system using noweb over time.

The �rst new element to be written was the set of
basic Pthread routines. I �rst wrote the code and
only after it was completed and tested to some de-
gree, did I go back and overlay the documentation
and formatting to turn the C source code �les into
noweb �les. This pattern repeated itself during the
implementation of mutexes and condition variables.
noweb documentation was added only after the fact.

It happened that once I had completed the Pthreads
routines, I decided to investigate the addition of pro-



tected memory to the kernel. Design issues associ-
ated with this decision are discussed in the next sec-
tion. Continuing here, I want to discuss the implica-
tions on documentation that presented themselves.
It was this decision that resulted in the �rst signi�-
cant changes to existing source code that had been
documented using noweb. Speci�cally, the mem-
ory management code, which maintains the heap
of available physical pages, and various parts of the
Pthreads code needed to be updated.

My �rst thought when I went to make changes to
the �rst source code �le was, \don't worry about
the documentation, you can come back a �x that up
later." I had no sooner opened my second source �le
when I realized I would forget what I had done if I
didn't take care of the documentation. This would
result in a document whose prose didn't match the
code associated with it. I had to go back and
change it. This was the discipline I had hoped would
present itself. I went back and made the documen-
tation changes.

At �rst this felt cumbersome, it added time to code
maintenance. However, two unexpected e�ects be-
gan to emerge. First, I found that my design was
cleaner. When I modi�ed the code and changed
the documentation, I thought about the problem
twice. This led in several instances to a more concise
change. Second, I found that I could make changes
more quickly in code that I had not visited in a
while. It may seem obvious, but the documentation
was right there next to the code, and this allowed me
to refamiliarize myself with it more quickly. I have
now begun to implement pieces of code in the noweb
source format as they are written for the �rst time.
The power of the conciseness e�ect I discovered dur-
ing maintenance is also present when writing code
and documentation together during an initial imple-
mentation.

The granularity of the documentation varies over
di�erent parts of the code. There are several reasons
for this. Foremost, di�erent areas of the code have
been documented at di�erent times, and the doc-
umentation for a particular segment of code might
not be performed all at one sitting. This results
in sections of code that are \complete", i.e. they
are documented in great enough detail to under-
stand all aspects of their semantics. Other portions
are coarser, perhaps only setup to �t into the over-
all structure of the piece of documentation, but not
yet completed. There are also portions of code that
do not require heavy documentation. They may be

small routines or the code itself may be so intuitive
that only high-level prose is required to get across
their function.

One interesting point about the use of literate pro-
gramming seems to be that the licensing associated
with the source code must also apply to the doc-
umentation, since the two are linked in the source
�les. pk is available under a BSD-style copyright,
which places essentially no restrictions on redistri-
bution. A similar project released under the Gnu
Public License (GPL) would require the changes to
the documentation to be redistributed in addition
to changes source code.

There are a variety of literate programming tools
available. I evaluated cweb, written by Donald
Knuth, and noweb written by Norman Ramsey.
Knuth's cweb generates documentation of code frag-
ments that are \pretty-printed", i.e. they have an
algorithmic style reminiscent of textbooks on com-
puter science theory. The noweb tools utilize a small
set of simple formatting rules and generate code
fragments that look cosmetically like they were ex-
tracted from a source code �le. This style seemed
more in tune with a systems programming project,
like an operating system kernel, and so I decided to
use noweb over cweb.

Pthreads and Memory Protection

pk is based on the POSIX Threads concurrency
model. Pthreads were originally designed under the
assumption that all of the threads would execute
in the same address space. In fact, this address
space was intended to be within a UNIX process.
However, the Pthreads API is also used in real-
time kernels that provide their applications a single,
physical address space. pk is also targeted at real-
time and embedded applications, but it augments
the Pthreads design to include page-based memory
protection using the MMU. Such a design falls some-
where in between the basic Pthreads model and the
more substantial process concurrency model.

Since pk is targeted at time-critical applications,
paging and/or swapping to secondary storage can-
not be utilized. This is because of the signi�cant
lack of determinism introduced by moving memory
pages back and forth to secondary storage.



If neither paging or swapping is used, applications
are limited to the amount of physical memory on
a given machine. This fact raised the question of
whether providing separate address spaces for each
thread, in a manner akin to a process, was desir-
able. In my experience in embedded systems de-
velopment, having direct access to speci�c physical
addresses can be useful. For this reason, I decided
to map virtual to physical addresses one-to-one.

The MMU is used simply to restrict access to
memory locations, not to provide separate address
spaces. Three types of memory protection are pro-
vided:

Inter-thread: Threads may not access memory
belonging to another thread.

Kernel-thread: Threads may not access kernel
memory except through well-de�ned system
call entry points.

Intra-thread: Code segments associated with a
thread can be marked read-only.

Restricting access to parts of memory violates the
assumption of a single unprotected address space
present in the Pthreads API design. There are a
variety of parameters in the API where pointers
capable of referencing arbitrary memory locations
are utilized. Allowing arbitrary values to be passed
through these parameters invites the generation of
copius page and general protection faults.

Several areas of the API have been scrutinized to
address potential problems. The following list il-
lustrates some of the attention required for the
Pthreads API in pk. The list is not exhaustive, but
gives a 
avor of the kinds of issues in the API that
cause di�culty in the pk design.

Data Structures: Several data types have been
further speci�ed. Reference types for pthreads
(pthread t), mutexes (pthread mutex t), and
condition variables (pthread cond t) cannot
be typed as arbitrary pointers. In pk, they are
de�ned as integer indices into kernel tables.

pthread create(): The values for the start func-
tion pointer and arg argument pointer repre-
sent potentially arbitrary pointer accesses. In
pk, semantic restrictions are placed on these

pointer values. They must each point to the be-
ginning of a valid region and the ownership and
mappings for each region will be transferred to
the new thread if the creation succeeds.

pthread exit() The retval return value can be
an arbitrary pointer value. The return value
type is changed to int in pk.

pthread join() The retval parameter is used to
collect the return value from an exiting thread.
This parameters type is changed to int in pk.

Several of these changes represent further speci�ca-
tion of parts of the Pthreads standard that are not
explicit. Changing the type of the return value rep-
resents a deviation from the standard. It is hoped
that the impact of this change is minimal in code
that might be ported to the pk system.

Conclusion

pk is available under BSD-style copyright terms.
More information on the kernel is available on the
web at www.cornfed.com/pk. Downloads of source
code and bootable 
oppy disk images are available
at ftp.cornfed.com/pub. At the time of this short
paper submission, late April 1999, there have been
approximately 650 downloads of the pk source code
distribution in the four months since its initial re-
lease was December 21, 1998. The interest in the
system is quite gratifying and I look forward to con-
tinued and expanded development.

References

[1] Cornfed Systems, Inc., Roadrunner Operating

System Reference, www.cornfed.com.

[2] IEEE, POSIX Std 1003.1c, www.ieee.org.

[3] Pthreads,
www.mit.edu/people/proven/pthreads.html.

[4] Ramsey, N., Noweb | A Sim-

ple, Extensible Tool for Literate Programming,
http://www.cs.virginia.edu/ nr/noweb.


