
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

Design and Implementation of
Firewire Device Driver on FreeBSD

Katsushi Kobayashi
Communication Research Laboratory

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Design and Implementation of Firewire device driver

on FreeBSD

Katsushi Kobayashi

Communication Research Laboratory, JAPAN

ikob@koganei.wide.ad.jp

Abstract

A Firewire device driver has been implemented on
FreeBSD system. The driver provides IP network
stack, native socket system interface, and stream de-
vice interface such as a DV video. The device driver
shows enough performance on the IP over Firewire
environment at 30Mbps. Also, DV video communi-
cation application using IP has been developed with
the device driver and it enebles DV quality communi-
cation between US and Japan only with the consumer
market products.

1 INTRODUCTION

Firewire, known as IEEE 1394 standard high-
performance serial bus or iLink, has been designed as
a packet based computer bus in the new age[1]. The
market of the Firewire system is just breaking espe-
cially in audio visual area. To use a new kind of media
not only Firewire, we have to designe and implement
the device driver system and its associated environ-
ment including API. The Firewire speci�cation con-
siders that it is used for too many purposes, e.g.,
interface to storage devices, to audio visual equip-
ments, to preripharal devices and between other com-
puters. So it is diÆcult to categolize Firewire into
legacy UNIX device types as either a network or a pe-
ripheral. In this paper, we present a Firewire driver
development e�ort and discuss its way.1

1The device driver we mentioned here can obtained from

following URL:

ftp://ftp.uec.ac.jp/pub/firewire

2 Overview of Firewire System

2.1 Firewire System

IEEE 1394 standard high-performance serial bus, of-
ten called \Firewire" or \iLink", is a standard inter-
face designed to meet a lot of requirements of the
new generation. The standard covers the whole sys-
tem of Firewire from its physical layer to the layer
of network management function. Firewire is capa-
ble of high network bandwidth; 100, 200, 400, 800,
1600 and 3200Mbps, permits connecting their hetero-
geneous bandwidth equipment on the same system,
supports hot plug-in and -out on its working environ-
ment, and also provides both best e�ort and band-
width guaranteed communicationwithin one network
media. From these advanced features, Firewire has
the potential to integrate into only one bus system
every peripheral interface of computers as SCSI, ev-
ery network interface as Ethernet, every processor
bus system as VME, and processor interconnect on
multi processor systems.

In the IEEE 1394 standard, two types of media
are de�ned as physical layer devices, i.e., backplane
environment and cable environment. Today's mar-
ket supplies only cable environment, while the prod-
ucts of backplane environment have not appeared
yet. So, hereafter we only mention cable environment
IEEE 1394 system.

Typical Firewire system consists of device nodes
and cables, and its network topology is a tree struc-
ture. 248 memory space, including the Firewire spe-
ci�c control registers, is assigned to each device and

all the devices connected are mapped into uni�ed
memory space. One Firewire network can be con-
nected up to (26 - 1 = 63) device nodes. When
using a Firewire network bridge device, up to (210 -
1 = 1023) network can be interconnected. Therefore,
in the speci�cation, almost 216 device nodes are al-
lowed on a single system and every device is mapped
into 264 memory space. Every communication ac-
tion is brought with 125 � second (8kHz) time slice
whose value corresponds to the fairness unit in the
Firewire system. The time slice unit is also divided
into 6144 time slot. By allocating the number of the
slot to each application, the network resource on the
bandwidth guaranteed communication is managed.
Three data transfer modes are de�ned i.e., Asyn-
chronous request, Isochronous stream, and Asyn-
chronous stream. Asynchronous request provides the
function to communicate between the devices specify-
ing the address in the packet with the memory access-
ing action, e.g., read, write, and transaction update
same as memory devices. Isochronous stream mode
provides the bandwidth guaranteed communication
way using broadcast-like transmission not sent to spe-
ci�c devices. The stream has a feature of 6 bits chan-
nel identi�er in the packet header. Asynchronous
stream mode is de�ned in IEEE 1394.a standard,
a supplemental speci�cation of the original. This
mode provides the best e�ort basis communication
in a broadcast style. Due to so many requirements
from today's media as bandwidth resource control,
hot plug in/out, lower jitter transmission, and a large
number of devices on one system, the whole speci�ca-
tion of the Firewire became a large and complicated
one. To support every function de�ned, a lot of e�ort
is required compared with other network media.
IEEE 1394 standard series just de�ned a raw

packet level communication protocol. When appli-
cation uses Firewire, higher level protocols are also
required such as IP over 1394, IEC61883 for real-
time communication protocol, or SBP-2 for applying
SCSI function[2, 3]. The standardization processes
for their protocols have been accelerated in recent
years.
The Firewire device driver has been developed for

the major operating systems, such as Window 98,
Windows NT and Linux, by distributing the Firewire

equipments.

2.2 IP networking

IP over Firewire standardization e�ort has been pro-
ceeded in IP1394 working group in IETF[4]. Al-
though the fundamental architecture such as the se-
lection of the transfer mode in each occasion has been
reached consensus, the status of its standard is still
on a draft stage and details of architecture will pos-
sibly be changed.
Two transmission modes, asynchronous request

and asynchronous stream, are adopted by IP1394.
In the case of IP unicist and ARP response, asyn-
chronous request packet will be sent to the speci�c
node. In other communicationmodes such as IP mul-
ticast, broadcast, and ARP request, asynchronous
stream mode will be used. The stream channel as-
signment protocol are also de�ned.
1500 bytes value is adopted for the MTU size for

IP packet on the IP over Firewire standard. On the
lower speed communication modes such as 100 and
200Mbps, this 1500 bytes MTU is large compared
with the link level MTU size in the Firewire network.
Moreover, a Firewire device must ensure communica-
tion, even when the device only has poor input bu�er
compared with the link level MTU. The size of link
level MTU on the Firewire may be more restricted
and changed in some condition. If the smaller MTU
issue in the intermediate link prove with the IP frag-
mentation, it leads the end-to-end network throuput
to a poor one. Because a loss of fragmented packet
causes unused packet sent. IP1394 group solved this
issue by the link fragment mechanism; i.e., the frag-
mentation and assembly of the packet larger than
MTU is done within the local media.

2.3 A/V device

Firewire is adopted as the standard of digital inter-
face for audio visual device, since it provides lower
jitter, bandwidth guaranteed transmission within the
network level, and also provides lower equipping cost.
Today, Firewire applications are one of the most pop-
ular concerns for the audio visual products such as
various types of video camcorders and VCRs. The

protocol structure of the audio visual interface con-
sists of 2 layers. The lower layer corresponds to a
generic communication protocol for real-time stream
media using isochronous stream. The higher one is
designed as an adaptation protocol to each media
type as NTSC, PAL, HDTV, MPEG and MIDI[5].
Some of these protocols are well known as DV video
and the protocol set is approved as an IEC standard,
IEC61883. In the real-time media system connected
with the packet based network, the jitter of pack-
ets is the most important factor. If a larger jitter
of packet is accepted, the system becomes more ex-
pensive because of the necessity of larger input bu�er
for absorbing the
uctuation. To avoid the problem,
the speci�cation requires strict timing in the order
of � second. To support such strict real-time media
packet timing, the computer system is recommended
to take account of the hardware level not only the
software.

2.4 Peripherals

SBP (Serial Bus Protocol) is designed as a SCSI
adaptation protocol to Firewire and its standardiza-
tion process is ongoing in ANSI. SBP is expected as
the most major protocol for a storage device inter-
face. However, the standards for computer periph-
eral are already established, e.g., SCSI and IDE apart
from audio visual world. The Firewire application in
computer peripherals has not been popular yet, even
if Firewire has some advantages.
AV/C protocol is an audio visual device control

protocol supposing the cooperation with auch as DV
video mentioned above, and provides audio visual
equipment speci�c protocol set as \Play", \Rewind",
and \Record". AV/C protocol only uses the raw
Firewire functions in a simple way without any legacy
protocol adaptation such as SCSI.

3 Integrating BSD system

The goal of our e�ort is to provide the Firewire envi-
ronment on BSD system independent of the Firewire
hardware. The device driver we developed is divided
into two parts, i.e., the common part of the Firewire

system and the device dependent part. We describe
both of them in this section. We implement some
feature of the Firewire into the kernel level due to
the indispensable to use it. The new kernel imple-
mented feature concerning native Firewire are Bus
Manager, Isochronous Resource Manager, and CSR
register includes related functions,

3.1 Native Firewire socket

The driver supports native mode Firewire socket, or
N1394. The most part of N1394 is written refer-
ring to NATM code that is ATM native mode socket
system included from FreeBSD 3.0 release[6]. Both
Asynchronous request and Isochronous communica-
tion modes can be used. The N1394 socket structure
is shown in Fig. 1.
Unused �elds in Fig 1, sn1394_lch, sn1394_ltag,

and sn1394_mode remain due to backward compati-
bility previously released.

Isochronous stream

This mode provides the function for sending and
recieving isochronous packet at a little programing
cost. In this mode, user creates communication end
point of socket, connects it to the isochronous chan-
nel speci�ed by the N1394 socket structure, and com-
municates in the conventional datagram manner as
UDP(Fig. 2).
Our Pentium MMX 233Mhz computer can recieve

the stream of consumer DV video, whose bandwidth
is about 28Mbps using the isochronous interface. Al-
though it also has a enough performance to send
the video stream, the video device connected with
Firewire cannot display due to the the reason of de-
scribed later.

Asynchronous request

This mode provides asynchronous request function.
In this mode, user creates communication end point
of socket, connects it, sends the asynch packet user
prepared, and waits for the responce from the target
device(Fig. 3). When using this mode, user must
ensure the data structure of the asynchronous request

struct sockaddr_n1394 {

u_int8_t sn1394_len; /* length */

u_int8_t sn1394_family; /* AF_N1394 */

char sn1394_if[IFNAMSIZ]; /* interface name */

u_int8_t sn1394_fch; /* isochronous channel */

u_int8_t sn1394_lch; /* parameter unuse */

u_int8_t sn1394_ftag; /* tag of ishchronous */

u_int8_t sn1394_ltag; /* parameter unuse */

u_int8_t sn1394_mode; /* parameter unuse */

u_int8_t sn1394_flags; /* specify socket status */

u_int8_t sn1394_sped; /* transmission speed. */

};

Figure 1: N1394 socket structure

....

#include <net1394/netfw.h>

...

main(){

int s;

char ifname[] = "lynx0";

struct sockaddr_n1394 sfw;

u_long recvbuf[512/4];

int i, len;

if((s = socket(AF_N1394, SOCK_DGRAM, PROTO_N1394ISO)) < 0){

perror("socket");

exit(1);

}

sfw.sn1394_family = AF_N1394;

sfw.sn1394_lch = 63;

sfw.sn1394_ltag = 0x1;

bcopy(ifname, sfw.sn1394_if, IFNAMSIZ);

if(connect(s, (struct sockaddr *)&sfw, sizeof(sfw)) < 0){

perror("connect");

exit(1);

}

while(1){

len = recv(s, recvbuf, 512, 0);

......

}

}

Figure 2: Code example to use Isochronous stream with socket

packet oneself in a di�erent way from the isochronous
case.

3.2 Firewire BSD and IP

Our implementation of IP over Firewire is par-
tially compliance to the speci�cation described in
draft-ietf-ip1394-08.txt. The part of di�erence
from the original are:

� Isochronous stream mode is used insted of Asyn-
chronous stream in ARP and IP broadcast

� MCAP function is not implemented.

Firewire is a broadcast capable media and IP over
Firewire adopts broadcast based ARP function same
as Ethernet. So, the usage of the IP adaptation of
Firewire does not require special mechanism. User
can use IP network with following familier operation:

ifconfig lynx0 10.0.0.1 netmask 255.255.255.0

The improvement of the IP implementation is now
stopping. So, our implementation does not accord
with the latest IP1394 draft. However, since the basis
of the speci�cation has not been changed, the mod-
i�cation to accord with the latest one may not be a
diÆcult.

3.3 Audio Visual device support

IEC61883 real-time media protocol requires strict
packet timing in the order of � second. This tim-
ing condition can be satis�ed with transmitting the
isochronous packets at every 125 � second time slice.
Almost all Firewire devices support such a transmis-
sion with its programmable DMA function. More-
over, the protocol requires to write 24.576 MHz clock
based time stamp into the speci�c packet header for
the clock synchronization between the sender and
the receivers. The generic BSD socket system can-
not send packets ao as to satisfy these strict timing
and cannot support the special treatment of the time
stamp.
We prepare another device system for play out real-

time stream media in addition to a network socket

interface, which is named \dv". The purpose of \dv"
device is mainly for play out use, since the packet
timing issue is not serious in the receiving. The \dv"
device system treats a bunch of isochronous packet
sequence as a minimum transmission unit. Every
transmission operation on the device must be done
with the bunch of packets. This treatment reduces
the interrupt occuring at the end of DMA operation
compared with the socket system if the number of
packets in a bunch is large. To avoid the
uctuation
in the system, the output queue is implemented and
the length of the queue can be changed up to 12.
The application and the kernel only copy the bunch
to the DMA data entry and kicks a DMA action af-
ter the previous queued data is sent out. When the
driver kicks a DMA action, only the �rst packet's
time stamp �eld in the bunch is overwritten by a cer-
tain value. Then, the application must arrange the
packet requiring the time stamp to become the �rst
in the packet group. On the DV video format, the
unit of bunch corresponds to the one video picture
frame.
The \dv" device system provides two methods for

stream packet play out. One is to use write() system
call and the other is mmap() system call. Since both
system calls do not kick the DMA operation itself,
the application must tell the start of the operation to
the kernel using LYNX_DV_TXSTART ioctl.

Use of write() system call

This mode is conventional use of \dv" device. This
mode provides isochronous stream transmission with
low program cost. In this mode, user open the device,
load the data into a bu�er and kick the DMA ac-
tion(See LYNX_DV_TXSTART). This system call does
not return the success code until the system comes by
an empty bu�er after sending out the previous data.
This function satis�es the strict packet transmitting
timing only at the kernel level. So, user will not care
about the strict timing issue and it provides easiest
way to make isochronous stream. When using this
mode, user must be ensured that each packet is stored
into 512 bytes boundaries in the output bu�er and the
�rst quadrat data of every packet corresponds to the
header of the isochronous packet including the packet

....

#include <net1394/netfw.h>

...

main(){

int s;

char ifname[] = "lynx0";

struct sockaddr_n1394 sfw;

u_long sendbuf[512/4], recvbuf[512/4];

unsigned long long addr;

int i, len;

sfw.sn1394_family = AF_N1394;

bcopy(ifname, sfw.sn1394_if, IFNAMSIZ);

if((s = socket(AF_N1394, SOCK_DGRAM, PROTO_N1394ASY)) < 0){

perror("socket");

exit(1);

}

if(connect(s, (struct sockaddr *)&sfw, sizeof(sfw)) < 0){

perror("connect");

exit(1);

}

/*

* Offset 0x0001fffff0000018 represents destination network/node/address

* network = 0x0,

* node = 0x1,

* address = 0xfffff0000018(SPLIT_TIME_OUT_HI register)

*/

addr = 0x0001fffff0000018ull;

/* To make a packet for Read request for data quadret */

sendbuf[0] = htonl(0x00000040 | ((addr >> 32) & 0xffff0000));

sendbuf[1] = htonl(((addr >> 32) & 0x0000ffff));

sendbuf[2] = htonl(addr & 0xffffffff);

send(s, sendbuf, 12, 0);

/* Wait for a response from destination */

len = recv(s, recvbuf, 512, 0);

.......

}

Figure 3: Code example to use Asynchronous request with socket

size, tag, channel number, tcode and sync informa-
tion(Fig. 4). The nbytes �eld of write() speci�es the
total size of the isochronous packets bunch.

Use of mmap() system call

This mode provides the accessing way of the \dv"
device bu�er both for sending and for receiving al-
located in the kernel space. In the mmaped area of
\dv" device, the control entry is placed before the
memory space of output/input bu�er. When using
this mode, user manupurates the control entry in the
\dv" speci�c manner additionally to the bu�er man-
agement on the write system call. The data struc-
ture of the mapped \dv" device is shown in Fig. 5.
In this mode, user open the device, map the \dv"
device into the application space, access the space as
conventional memory and kick the DMA actions(See
LYNX_DV_TXSTART/LYNX_DV_RXSTART)(Fig. 6).
The size of both output/input bu�ers above is cal-

culated as following:

size = sizeof(u int32 t) �Nq � Lp � Np

where Nq , Lp and Np represent the number of at-
tached queue, the size of the maximum packet, and
the number of packets included in the bu�er respec-
tively. In our driver, Nq , Lp and Np are set to per-
manent value as 16, 512 and 300 respectively.
Also, ioctl() supports the following functions.

� LYNX_DV_TXSTART, LYNX_DV_TXSTOP

Start and stop the DMA action for transmitting

� LYNX_DVRX_START, LYNX_DVRX_STOP
Start and stop the DMA action for recieving

� LYNX_SSIGNAL_WR, LYNX_GSIGNAL_WR
Set/get the process to raise signals, when transmit-
ting DMA action is �nished.

� LYNX_GSIGNAL_RD, LYNX_GSIGNAL_RD
Set/get the process to raise signal, when recieving
bu�er is �lled.

� LYNX_GFRAMESIZE

Get the amount of size of memory the device at-
tached

� LYNX_DV_SYNC

Set the queue length of transmission bu�er. If the

uctuation factor is large in transmitting, a large

value should be settled.

We have released an DV application software that
transmits DV video over IP using the function[8].
This application accomplishes DV quality commu-
nication only using the equipment on the consumer
market. In SC98, we have presented the DV quality
video communication between US and Japan with
Transpac, Startap, and vBNS links. The applica-
tion consumes over 30Mbps bandwidth including IP
packet header in NTSC and it is not feasible to use
such a bandwidth eater now. However, we believe
that such volumes of bandwidth will be obtained eas-
ily in the near future, because the improvement of the
high-speed link technology is too fast.

3.4 Suppoted Device

Our device driver supports two types of the Firewire
chipset, i.e., Texas Instrument's PCILynx and
Adaptec AIC5800[7, ?]. Since AIC5800 is derived
from Apple Fire�re chipset, the chipsets of the same
series, e.g, Sony's chipset may work with a bit mod-
i�cation of the device driver code. Both chipsets
only support the speed up to 200Mbps due to earlier
product and does not support Asynchronous stream
transmission de�ned in IEEE 1394.a itself. On PCI-
Lynx driver, our driver performes about 30Mbps
TCP transmission performance with 100Mbps mode
in netperf. This value shows that our driver has
good performance compared with theoretical limit as
32Mbps. In some cheap PC con�guration, the DMA
operation stops in failure probabily due to the poor
PCI bus performance.
We are planning to develop the driver code for sec-

ond generations's chipset as OHCI and PCILynx2
that supporting up to 400Mbps, asynchronous stream
mode.

4 Conclusion

We developed a Firewire device driver on the
FreeBSD system. Of cource, the API speci�cation
and the driver we presented in this paper is not com-
plete. It is still an open issue which type of UNIX

....

#include <machine/lynx.h>

...

main(){

int d, qlen, dummy, frame;

#define MAXFRAME 12

u_long sendbuf[MAXFRAME][512/4*300];

u_long datalen[MAXFRAME];

d = open("/dev/dv0", O_RDWR);

/* change queue size */

if(ioctl(d, LYNX_DV_SYNC, &qlen) < 0) {

err(1, "LYNX_DV_SYNC");

}

/* kick playout */

if(ioctl(d, LYNX_DV_TXSTART, &dummy) < 0) {

err(1, "LYNX_DV_TXSTART");

}

......

frame = 0;

while(1){

frame++; if(frame == MAXFRAME) frame = 0;

.....

if(write(d, sendbuf[frame], datalen[frame] * 512) < 0){

perror("write");

}

}

......

}

Figure 4: Code example to use write() on \dv"

struct dv_data{

/* Maximum size of output queue */

u_int32_t n_write;

/* Buffer now user locking, device does not send this data */

u_int32_t a_write;

/* Buffer now kernel locking, user must not access this data */

u_int32_t k_write;

u_int32_t write_done;

/* Number of valid packet data in the buffer */

u_int32_t write_len[16];

/* Offset of buffer for writing */

u_int32_t write_off[16];

/* Maximum size of input queue */

u_int32_t n_read;

/* Buffer now user locking, device does not write this data */

u_int32_t a_read;

/* Buffer now kernel locking, this entry is not stable */

u_int32_t k_read;

u_int32_t read_done;

/* Number of valid packet data in the buffer */

u_int32_t read_len[16];

/* Offset of buffer for reading */

u_int32_t read_off[16];

};

...

isochronous data buffers for output

...

isochronous data buffers for input

...

Figure 5: Control entry on \dv"

....

#include <machine/lynx.h>

...

main(){

int d, size;

u_int32_t *dvdata;

d = open("/dev/dv0", O_RDWR);

/* obtain the amount of maximum buffer size incl. control, output and input */

if(ioctl(d, LYNX_GFRAMESIZE, &size)){

exit(1);

}

if((dvdata = (u_int32_t *)mmap((caddr_t) 0, size,

PROT_WRITE|PROT_READ, 0, d, (off_t)0)) < 0){

err(1, "mmap");

}

.....

/* Manipulate output/input buffer */

}

Figure 6: Code example to use mmap() on \dv"

system call accords with Firewire programing. Es-
pecially, the socket implementation of asynchronous
request must be reconsidered. Because it is not a
light programming e�ort to satisfy various mode of
the asynchronous requests function. Many DV video
equipment cannot display complete picture probably
due to packet timing, even if using our \dv" imple-
mentation. A complete video picture appeares in the
limited con�guration only. We are trying to solve
the problem investigating the packet behaviour. The
device having a Firewire interface will be more dis-
tributed and a variety of devices will increase. How-
ever, our developing capacity is limited. So, we want
to cooporate with other UNIX development e�ort,
e.g, implementing SBP with SCSI experts.

There is also other device driver development ef-
forts on LINUX system. And, some UNIX vender
announces the Firewire support on its OS as SGI
IRIX. We are planning to make compatibility with
other implementations, to reduce porting e�ort be-
tween UNIX systems.

References

[1] IEEE Computer Society, \IEEE Stan-
dard for a High Performance Serial
Bus",IEEE Std. 1394(1996)

[2] International Electrotechnical Commission,
"Consumer audio/video equipement Digital
interface",IEC 61883(1998)

[3] American National Standard for Informa-
tion systems, "Serial Bus Protocol 2",ANSI
NCITS 325(1998)

[4] P. Johanson, \IPv4 over IEEE1394", Internet
Draft draft-ietf-ip1394-ipv4-8.txt(1998)

[5] HD Digital Video Conference, \Speci�cations of
Consumer-Use Digital VCRs using 6.3mmmag-
netic tape"(1995)

[6] C. D. Cranor, \Integratig ATM
Networking into BSD", See
http://www.ccrc.wustl.edu/pub/chuck/

[7] Texas Instruments, \1394 to PCI Bus In-
terface/TSB12LV21APGF Functional Speci�ca-
tion" (1998)

[8] Akimichi Ogawa et al., \Design and implemnen-
tation of DV Stream over Internet", Proc. of In-
ternet Work Shop 99(IWS99) (1999)

