USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

Multilingual vi Clones:
Past, Now and the Future

Jun-ichiro itojun Hagino
KAME Project

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

Multilingual vi clones:
past, now and the future

Jun-ichiro itojun Hagino/KAME Project
itojun@{iijlab, kame}.net

Yoshitaka Tokugawa/WIDE Project

Outline

Olnternal structures and issues in:
OdJapanized elvis
OMultilingual nvi

OExperiences gained in asian multibyte characters support

ONote: Unicode is not a solution here
Oto be discussed later

Assumptions in normal vi/vi clones

OASCII (7bit) only, 8bit chars just go through

OThe terminal software defines interpretation
OOne byte occupies 1 column on screen (except tabs)
OAssumes western languages - space between words

Architecture of normal vi

Otty input, filesystem, tty output (curses), vi internal buffer use the
same encoding

|
i |
| ol Vi buffer _>C!U.I‘SGS
i "| management |
| :
|
i |
|

Western character encodings

OCharacter encoding and the language => assumptions

OSingle byte encodings

O"ASCII" encoding

OASCII character set: 94 characters
OLatin 1 encoding:

OASCII character set

0is0-8859-1 character set, shifted 0x80

00 80

FO

x0

x8

ar 7a

ascii

ISO-2022 system

OExtensible character encoding system

OBy switching multiple character sets by escape sequences

OCharacter set contains 94, 96, 94x94, 96x96, 94x94x94 chars
O1SO-2022 subset encodings are everywhere

OLatin 1: fixed mapping with ASCII and iso-8859-1

OX11 ctext

o7

GL

0 U
73

GR

designate

Gl G2 G3 G4
\\ \ / invoke

character sets

94, 96, 94x94, 96x96, 94x94x94

Japanese encodings

ABIC|4n | :|z |1

OJIS X0208 character set: 94x94 characters
Ois0-2022-jp: Internet emails/netnews, UNIX
0414243 1B 24 42 34 41 3B 7A 1B 28 42 31
Oeuc-jp: UNIX and other places
041 42 43 B4 C1 BB FA 31
Osjis: MS-DOS and Macintosh community
041 42 43 8A BF 8E 9A 31
ONot an ISO-2022 variant

OSame character sets, different encoding method
OSingle encoding is not sufficient - they all are used in various
places!

Asian people needs multibyte/multilingual

support

OMultibyte character sets support
02 or more byte/letter

UByte width != character width on screen

Olnput methods: ondemand conversion from ASCII to multibytes
OUse third-party libraries, like Canna or Wnn

OSwitching various external encoding methods
OFor file and terminal I/O

OSeamless multilingual support

O=> Clarify/remove the assumptions made in vi implmentation

OEuropean people benefits from this as well
OHandle is0-8859-x, koi8-r, and others in proper way
OMultilingual is more desirable than monolingual (Japanize)
OMaintenance issues

architecture of multilingual vi

OCan’t assume single encoding
ONeed input method (inside or outside vi)

OMust be able to switch encodings
Otty input, input method, filesystem, tty output can use different encoding
Olnternal encoding is the key issue

vi buffer
management

Design goals: What is "seamless"?

ONo "Chinese mode" nor "Japanese mode" in the editing session

OAny character set can be mixed in a text, without twist
OSome of character encodings can accomodate, say Chinese, Korean
and Japanese character sets at the same time
OMixed language texts - Chinese document annotated with Japanese

OPreserves information in the file
ONo implicit conversion/translation
Olmplicit conversion confuses user, and it does not match the vi design
Olf you need conversion, use : !

OBehaves just like normal vi, over multilingual characters
Oregex, cursor movement, whatever

"Jelvis" - Japanized elvis

OFirst generation of implementation
OBased on elvis by Steve Kirkendall

Olnternal encoding: euc-jp
OExternal encoding: iso-2022-jp, euc-jp, Sjis

Olinternal encoding: 41 42 43 B4 C1 BB FA 31
ABIC|4p | ;|z |1

Olnternal encoding bytewidth == screen width
02 bytes, 2 columns

OMaintenance/synchronization problem with kelvis/celvis
O=> Multilingual implementation is desirable

"nvi-m17n" - multilingualized nvi

OCurrent generation of implementation
OBased on nvi by Keith Bostic

Olnternal encoding: internal multibyte encoding
OASCIl is 1 byte
O0x80-0xff are "multibyte tag" character
OThis is similar to Mule (multilingual emacs)

DExternal encoding: any of is0-2022 variants, and others

Ulnternal encoding: 41 42 43 88 34 41 88 3B 7A 31
0"88" is the tag for JIS X0208 Kaniji character set

AB|IC|4n | |z |1

Olnternal encoding bytewidth |= screen width

Additional features

OSwitching I/0 encoding:
O:set fileencoding=iso-2022-jp
O:set inputencoding=big5h
O:set displayencoding=euc-tw

Olnput method support: "Canna" library from NEC
O:set cannaserver=server.itojun.org

O:set cannakey="0

Word boundary issues

OAsian words are not separated by spaces!

ODefine word movement over Asian characters
OThe exact "word" movement requires syntactic analysis and dictionary
lookup (very hard)

ODefine character classes

OKaniji letters, hiragana letters, western, symbols
ODefine movement over word boundary
OSolves problem for most of the cases

GkLnsSOFreenix2g>13Kss”soll

ONeed for explicit language information

Regex library

OSome of regex library uses 27 as flag bit
OSeparate flag bit from the characters

OCharacter range ([a-z0-9]) as bitmap
Olmpossible for multibyte chars/multilingual internal code

OBitmap for ASCII, start-end for others

OMetacharacter (.) must match against single multibyte char

Curses library

OStore character set information into screen buffer

ORender accordingly on redraw
OChararcter set
OCharacter data (multibyte)
OOffset from the beginning of the glyph

OMulti-width characters support
ONeed to erase right half, when left half is overwritten

ABIC|l4n | :|z |1

OMultibyte with addeh () is cumbersome, use addstr ()
Olntermediate state is hard to manage

Unicode as internal encoding?

OUnicode characteristics:
OWell documented external multibyte encoding (UTF8/16)
016 or 32bit fixed wide char for internal encoding (UCS2/4)

OAsian characters are "unified"
O0Some of Chinese/Korean/Japanse characters are mapped into single
Unicode codepoint
OAs different characters are mapped into single codepoint, information
will be lost (inverse conversion is impossible)
OLanguage tagging -> "fixed-width wide char" is impossible

OUnicode is useful for "monolingual” asian processsing
OFor example, ASCII + Chinese only
OO0r, modal support like "Chinese mode" or "Korean mode"

OUnicode is not useful for multilingual processing
O Additional Unicode support would be good
OUnicode as a character set we support, not as the internal encoding

nvi-m17n: next generation

OUse wide char (wchar_t) for internal code
OISO/MJIS standards suggest wide char
OMemory is now cheap

OCan’t really rely upon vendor’s locale library
OToo little support for stateful multibyte encodings

ONeed massive modification to various places
OSupport for multiple encoding in locale library

OSupport for wide char in curses/regex/whatever

OFeedback modified locale library to the community

OAdd Unicode support
OSupply file converter as external tool

Wide character library: status

OWide char library is not really ready
Ocurses, regex
ONeed support for column width query (for curses)
OBugs in vendor-supplied locale library
ONot heavily tested?
OChanging from char to wchar_t is a big leap for the source code
tree

Oglibc
OAssumes Unicode (no support for stateful encodings), single encoding
in a program
Orunelocale library
OEncoding switchable by $LANG, no support for stateful encodings,
single encoding in a program

Observation

ONormal vi
O1byte/char
0Single encoding (= ASCII)
OJapanized vi (jelvis)
OMultibyte/char, bytewidth == width on screen
OMultiple encoding in a program
OMultilingual vi (nvi-m17n)
OMultibyte/char, bytewidth != width on screen
OMultiple encoding in a program
ONext multilingual vi
OWide char, bytewidth != width on screen
Omultiple encoding in a program

OMultilingualization = less assumptions!

Future work

OProvide modified runelocale library separately to *BSD
ORight-to-left languages

OSupport for other input method: cWnn (Chinese Wnn)

References

Omailing list: nvi-ml17n@foretune.co.jp
Odiscussions are (at this moment) mainly in Japanese language,
questions in English are welcome

Uftp://£ftp.foretune.co.jp/pub/tools/jelvis/
Uftp://£ftp.foretune.co.jp/pub/tools/nvi-ml7n/

OKen Lunde, "CJKV information processing", O’reilly

