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Abstract

The performance of large applications tends to be poor
due to the high overhead added by the swapping mecha-
nism. The same problem may be found in highly-loaded
multi-programmed systems where many of the running
applications have to use the swap space in order to be
able to execute at the same time. Furthermore, those
large applications might not be able to run on laptop or
home computers as their resources are usually smaller
than the ones found in an office system. In this paper,
we present a solution to both problems that we have
implemented in the Linux kernel. The idea consists of
compressing the swapped pages and keeping them in a
swap cache whenever possible. We have tested this new
mechanism with a set of real applications obtaining a
significant performance improvement.

1 Introduction

There are many applications that use large amounts of
memory. These large applications take advantage of
the swapping mechanism to run on the system as the
available physical memory is not enough for them to
run [12, 10]. The same problem appears when we try
to run, on a laptop, the same applications we run on a
desktop computer. These applications will relay on the
swapping mechanism as laptop computers usually have
less physical memory than desktop ones. Finally, multi-
user environments tend to be very loaded and their appli-
cations have to swap out part of their memory so that all
applications can run concurrently [16]. In all these cases,
the performance of the applications is much lower than
the one they would achieve if no swapping was needed.

*This work has been supported by the Spanish Ministry of Educa-
tion (CICYT) under the TIC-95-0429 and the TIC-94-0439 contracts.

This happens because the swapping mechanism has to
access the disk to keep the pages that do not fit in mem-
ory. It is clear that these applications, and the whole
system, would benefit from a faster swapping system.

If we examine the same problem from a different point
of view, we observe that increasing the number of pages
that fit in the swap space without increasing the number
of blocks in the swap partition would also be quite ben-
eficial. We could run the same applications on a laptop
than on a desktop system. Remember that laptops also
have smaller disks if compared to desktop ones. This
increase in swap space would also help multi-user sys-
tems to avoid getting out of memory. Finally, out-of-
core applications could be programmed more easily as
the global-memory restriction would not be so impor-
tant.

Now a days it is quite normal to continue the office work
at home. This usually means the use of large applica-
tions on a Linux box. These large applications fit well
in the office machines but are too large to run efficiently
on a smaller Linux box. In these cases, a fast swapping
mechanism would be very beneficial as those applica-
tions would run faster and working at home would be
less ”painful”. Furthermore, increasing the swap space
at no cost would allow these kind of users to run applica-
tions that would normally not fit in their home machines.

These performance and space problems have motivated
this work and its objectives. The first, and most impor-
tant, objective is to speedup the swap mechanism. This
will increase the performance of the applications that,
for whatever reason, have to keep part of their memory
in the swap space. It is also an objective of this paper
to increase the size of the memory offered to the appli-
cations without increasing the number of disk blocks in
the swap partition. It is important to notice that should
these two objectives be in conflict, we will favor perfor-
mance over capacity. Finally, we want to achieve both



improvements with the minimum number of changes in
the original Linux kernel.

The main idea used to accomplish both objectives con-
sists of compressing the pages that have to be swapped
out. This will increase the number of pages that can be
placed in the swap partition. Furthermore, it will also
allow us to build a cache of compressed pages that will
decrease the number of times the system has to access
the swap device. It is important to notice that previ-
ous studies show that good compression ratios can be
achieved when compressing memory pages [7]. The
idea we present in this paper is similar, in essence, to the
one proposed by Douglis [4], but some improvements
and modifications have been done (see Section 5). We
believe that now is a good time to reevaluate the results
obtained in this previous work as the technology has im-
proved significantly which means that compressing and
decompressing pages can be done much more efficiently.

This paper is divided into 6 sections. In Section 2, we
describe the concepts and ideas in which this work has
been based. In this section, we also present some pre-
liminary results that will lead the final design. Section 3
gives a detailed overview of the way the mechanism
works. Section 4 presents the benchmarks used and the
results obtained while running them on our system. In
Section 5, we present the most significant work already
done in the area. Finally, Section 6 presents the main
conclusions that can be extracted from this paper.

2 General Ideas & Frist Results

2.1 Caching

It has already been proved that caching is a good way
to increase the performance of disk operations [13]. In
our scenario, a cache for swapped pages should also in-
crease the swapping performance if a few problems can
be solved. One such cache would decrease the number
of disk reads as some of the requested pages might be
found in the cache. Swapping out pages could also take
advantage of the cache as a swapped-out page might be
freed before reaching the disk. Furthermore, if the pages
have to go to the disk, the system could write many of
these pages together in a single request. If we can write
all of them sequentially in the disk, we will only have
to pay the seek/search latency once per write instead of
once per page.

Before we continue, it is a good time to go though some
terminology that will be helpful throughput the rest of
the paper.

Page: The virtual memory of applications is divided
into portions of 4Kbytes. Each of these portions
is know as a page.

Buffer: A buffer or cache buffer is a portion of 4Kbytes
of memory where pages are stored before they are
sent to the disk.

Disk block: This term refers the disk portion where the
information of a buffer is stored. This means that
disk blocks will also be 4Kbytes in size. We should
take in mind that this term does not refer to sectors
nor file-system blocks.

2.2 Compressing Cached Pages

Adding a cache to the swapping mechanism means that
some memory available for processes is now taken away
for the cache. This means that the applications will have
less memory to work with. If nothing else is done, we
have only taken some fast memory from the applica-
tions to offer the same amount of memory but somewhat
slower. This does not seem to be the solution to increase
the performance of the applications. The ideal solution
would be to take some fast memory from the users to of-
fer them a somewhat slower but 2 or 3 times larger one.
Of course, this new memory has to be faster than the
disk. This would reduce the number of times the system
has to access the disk for paging reasons. This can be
achieved by compressing the swapped pages. In a com-
pressed cache, the system can keep more pages than the
ones taken from the applications.

Whenever a page is swapped out, the system compresses
it before storing it in the cache. On the other hand, when
the swap module requests a page, the system gets it ei-
ther from the cache or the disk and decompresses it be-
fore handling it to the swap module. Figure 1 shows the
first version of the path proposed for swapping in/out

pages.

2.3 Batching Multiple Pages Together

A second advantage offered by the cache is the possi-
bility of batching multiple pages together to write them
contiguously to disk. This idea was first proposed in
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Figure 1: Conceptual vision of the compression and
cache mechanism.

the VAX/VMS operating system [9]. This can be easily
implemented as the system does not need to decide the
physical location of a set of pages until they are really
sent to the disk. Furthermore, as the pages are com-
pressed, many more pages are written in a single disk
write, thus decreasing the time spent on disk accesses.

2.4 Read/Write Path

Using all the proposed ideas, we built a preliminary pro-
totype and we performed some measures and statistics.
One of the most interesting results we obtained was the
distribution of the two possible read-hit types: read hit
due write and read hits due write.

Read hit due write: this kind of hits appear when the
page is in the cache because it has recently been
swapped out but has not yet been discarded. This
means that the page is requested short after it was
swapped out.

Read hits due read: this occurs when the page just re-
quested is in a buffer that has recently been fetched
from the disk. This means that another page, in the
same disk block, has also been recently requested.

While examining both kind of hits, we detected that most
of them were hits due write. This happens because the

order in which pages are swapped out is not the same as
the order in which they are swapped in. This led us to
study the idea of not placing read buffers into the cache.
This would allow recently written buffers to stay longer
in the cache which might increase the hit ratio. Further-
more, this will also increase the write performance as
less blocks will have to be sent to the disk.

In order to examine the effect of not placing read buffers
in the cache, we implemented two versions of the pre-
liminary prototype. A first one where the read buffers
were placed in the cache and a second one where they
were not. After running a set of benchmarks in both pro-
totypes, we observed that the difference in the number of
hits obtained by both systems was quite similar in most
cases [3]. Furthermore, we also observed that the num-
ber of disk writes performed when reads do not interfere
the cache is much lower than when reads are placed in
the cache. This should increase the performance of the
system as less writes are done and a similar number of
reads are needed (similar read hit ratio).

Not placing read buffers in the cache has another inter-
esting side effect. As reads do not need to make room in
the cache, they will never have to perform a write oper-
ation to clean a dirty buffer. This will avoid many disk
accesses while swapping in pages.

After this modification, the read disk blocks will not
be placed into the cache. This does not mean that
swapping-in operations will not take advantage of the
cache. They will first try to find the page in the cache as
it might have recently been written (read hit due write).
If it is not in the cache, then the system will read the
page, decompress it and forget about the rest of pages
stored in the same disk block. Figure 2 shows the new
path for swapping pages in and out.

Finally, another important side effect of not caching read
requests is a simplification on the code. We will not get
into many details now, but it is clear that a sapping-in
operation will only have to search the page in the cache
or to read it from the disk. It will not have to worry
about cleaning buffers from the cache and it will also
avoid most of the locking problems.

3 Prototype Description

In this section, we will describe the most important op-
erations, policies and algorithm used in the final proto-
type. We will start describing the data structures used
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Figure 2: New swapping path where swapped-in pages
are not kept in the cache.

and then, the four main operations will be explained
with some detail. We have to keep in mind that only the
main ideas are described and that technical issues such
as locking or very infrequent situations are not presented
in the paper.

Regarding some implementation details, the prototype
has been built in the Linux operating system (kernel ver-
sion 2.0.34) [2]. The compression algorithm chosen has
been Izo [11] which is based on the Ziv-Lempel data
compressor [17]. This algorithm was chosen as it ob-
tained a good ratio between speed and compression. On
one hand, it achieved compression ratios better than 50%
in most of the experiments (Table 1). On the other hand,
the average time needed to compress a 4Kbyte page is
about 300 microseconds while the one needed to decom-
press a buffer is only about 50 microseconds *.

3.1 Data Structures

In order to implement this mechanism we have added
some data structures to the original Linux kernel. In this
section, we will describe each of these structures in some
detail. A general picture with all the structures and most
of the fields is presented in Figure 3.

e virtual_swap-info: this structure keeps the
information of all the compressed pages. The size
of this array is MAX_VPAGES, which is the maxi-
mum number of compressed pages that our system
will be able to handle. The size of this array can
be modified to suit the needs of each system as ex-
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Figure 3: Data structures needed for the compressed
swap.

plained in Section 3.6. In each entry of this array
we have the following information:

physical_offset: it indicates the disk
block where the compressed page is stored.

buffer_offset: itis the field used to mark
the position where this compressed page is
kept. As we store more than one compressed
pages per disk block, we need to know at
which byte does the page start.

compressed_size: as can be guessed
from its name, this field is used to keep the
size of the swapped page once it has been
compressed.

rw_remaining: it is a counter of the num-
ber of pending read or write operations for
this page. We need this information not to free
a page while still being used.

e swap_map: this structure was already used in the
original Linux kernel. We have only modified
its size as we need an entry for each one in the
virtual_swap-info array. Its function is to
keep the number of processes that have this page
mapped in their address space.

e physical_swap: for each disk block, we need
to know the number of compressed pages kept in it.




This table is responsible for maintaining this infor-
mation.

e swap_lockmap: there are situation where we
need to perform atomic operations on the disk
block. To ensure that no other process will work
with a given block, we use this data structure al-
ready implemented in the original Linux kernel. It
is a bitmap where each bit tells whether the given
disk block is being used in exclusive mode or not.

e swap_cache_info: this structure is used to keep
all the information needed to maintain the com-
pressed cache. It has as many entries as buffers in
the cache (CACHE_BUFFERS).

physical offset: it indicates the disk
block assigned to this buffer.

buffer_addr: it points to the cache buffer
where the compressed pages are really stored.
We need this pointer as all buffers are not nec-
essarily contiguous. This is because we can-
not allocate as many buffers as needed in a
single call (Linux implementation issues).

next_free byte: it keeps the first free
byte. This is the position where the next com-
pressed page inserted in this buffer will be
placed.

flags: cache buffers need some flags such
as the dirty bit.

e swap_cache: this structure is just a set of buffers
(not necessarily contiguous) that are used to keep
the compressed pages before they are sent to the
disk.

e Swap device: finally, this is the disk partition
where the compressed pages are finally stored.

3.2 Getting Free Space (get_swap _page)

In the original kernel, this function returned the disk off-
set where the page would be stored but this offset was
used as an identifier for the swapped page. Only the
swap code used it to access the disk. As we need to
know the size of the compressed page before assigning
it to a disk block (it has to fit in it), we will return an
index to the virtual_swap_info table. To the rest
of the kernel, this function behaves as always and the
system believes that the swap partition is a larger one.

To return this index, the system searches for a free en-
try in the virtual_swap-info array. A given en-
try is free when no process is using it (swap_-map [1i]

== 0) and when there are no operations remaining to
be done on this page
(virtual_swap_info[i] .rw.remaining ==
0).

Another important issues is that the system cannot return
an index unless it is sure that there will be enough disk
space to keep the page. For this reason, the system will
always assume the worst case. Until it knows the real
compressed size, the system will assume that the page
needs a full disk block to be stored. As soon as the sys-
tem knows its real size, it will update this information.

3.3 Freeing a Page (swap_free)

Freeing a page consists of decrementing the number of
processes that are using the page (swap-map [1] --).
Whenever this becomes zero, the system has to free
this space from the cache buffer or the disk block.
This is done by decrementing the number of com-
pressed pages in its disk block or cache buffer
(physical_swap[i] --). Should this page be the
last one in the buffer, the whole buffer should also be
freed to be used by other pages in the future.

The above scenario is the best possible case. For mutual
exclusion reasons, the order in which the operations are
done can be broken and a page might be freed while a
write operation is still pending. In this case, the page is
marked to be freed as soon as the pending operations are
finished. We will see this while describing the swapping
in and out operations.

Another important issue related to freeing a page is the
recompactation of blocks and buffers. If the page that
is being freed was stored in the middle of a block or
buffer, we could think of reallocating all pages together
to merge this new space with the free space already re-
maining in the block or buffer. Doing this on disk blocks
is completely out of the question as it would mean read-
ing the disk (too much overhead). Recompacting cache
buffers is a feasible task but we have seen that it does
not increase the performance of the system and makes
the code more complex [3]. For these reasons, we will
never reuse the space of a freed page until all the com-
pressed pages in a block or buffer have been freed.

3.4 Swapping Out (rw_swap_page)

Once the system wants to swap out a page, it compresses
the page and tries to write it into the cache. Performing



this operation, we might find that there is not enough
free space to cache this new page. This means that all
buffers are dirty (and have not been sent to the disk)
and that all of them have less free space than the size
of the compressed page. It is important to notice that the
system will never split a compressed page among sev-
eral buffers. When the system runs out of free space in
the compressed cache, it performs a cleaning operation.
Once it is done, at least one buffer will not be dirty and
the system will be able to use it to put the new com-
pressed page.

As we mentioned when describing the free operation,
there are cases where a page could not be freed because
there was a write operation still pending. If this is the
last pending write operation and the page is marked as
to be freed, the system will free the page after the write
has been finished. The same steps as in the original free
operation are taken.

Cleaning Mechanism

To clean the cache we need to send one or more buffers
to the disk. This will allow the system to reuse them as
an up-to-date copy of the data will be kept in the swap
device. The intuitive idea of cleaning the cache consists
of sending to the disk all buffers when no free space is
left. As buffers do not usually get completely filled with
compressed pages, we have modified the concept of full
buffer as follows:

Full buffers are those ones that have less free space
than the average size of the last 100 compressed

pages.

Using this new concept, whenever a page does not fit in
the cache, all full buffers will be sent to the disk in a sin-
gle operation where all of them are written contiguously
on the disk. This will increase the performance of the
write operations significantly.

Should the system need to perform a clean operation
when there are no full buffers, the buffer with more data
will be sent to disk.

As we do not want to wait until no free space is left on
the cache to clean it, whenever it has a given percent-
age of its buffers full, the system writes them to the disk.
This percentage can be adjusted to the needs of the sys-
tem as will be seen in a later section. This operation is

currently done in a synchronous way but we are working
to make it asynchronous.

An important detail is the addition of a flag that tells
whether there is a cleaning operation already running. If
this flag is on, a second concurrent cleaning will not be
done as only one is really needed.

3.5 Swapping In (rw_swap_page)

This is the simplest operation. Whenever a pages is re-
quested, the system searches for it in the cache. If the
page is found in the cache, the system decompresses it
and places the result on the user address space. Other-
wise, if the page is in the disk, the disk block is read and
the page is decompressed as in the previous case. As
read disk blocks are not placed in the cache, if another
page from the same buffer is requested, a new disk read
will be needed (remember that hits_do_read are not very
frequent).

3.6 Driver to Modify the Parameters

To simplify the task of setting the parameters for the
compressed swap we have also implemented a diver that
allows the superuser to modify the following parameters
when the swap is off.

Virtual space size: maximum number of compressed
pages that the system will be able to handle
(MAX_VPAGES).

Cache size: the number of Kbytes used for caching.

Cleaning threshold: the percentage of full buffers the
system needs to find to perform a cleaning opera-
tion.

4 Experimental Evaluation

4.1 Methodology

All the results presented in this paper have been mea-
sured on a Pentium II running at 350MHz. The amount
of physical memory was 64 Mbytes, and the size of the



swap partition was 128Mbytes. This partition was lo-
cated on a Ultra-SCSI hard disk.

All the measures presented are the average of, at least,
10 executions, in single-user mode, where the best and
worst ones have been discarded.

4.2 Benchmark Description

To measure the performance of this proposal, we need to
see the effect it has on a set of benchmarks. Before get-
ting into a detailed description of the benchmarks, we
would like to describe the three characteristics a bench-
mark can have that may have a higher effect on the be-
havior of the proposed system.

Concurrency. It is important to see that the number of
processes in the benchmark will affect the behavior
of the system. If only one process is running in the
system, the application that is swapping out pages
will not have to wait for another application that
may have locked some of the resources it needs.
No other application will try to swap in/out pages.

I/O. Another benchmark parameter that will affect the
system is the amount of file-system I/O performed
by the benchmark. This I/O may conflict with the
one performed by the paging system because both
are done in the same disk (although in different par-
titions).

Compression ratio. 2> Finally, the compression ratio
may affect the system in two ways. First, the bet-
ter pages compress, the larger the final size of the
swap area will be. Second, if pages have a good
compression ratio, the number of pages that can be
kept in the cache will be higher. Thus the num-
ber of disk accesses should be lower than with bad
compression ratios.

Once described the most important characteristics, we
will describe the benchmarks used.

e fft. Itexecutes a fast Fourier transformation with
a 2048x2048 matrix. The values of the elements in
the matrix are set randomly.

e £fft x10. This benchmark is very similar to the
previous one but 10 ffts are executed concurrently

2compression_ratio = compressed_size/page_size. This

means that high percentages denote bad compression

and the size of the matrixes is decreased to 512x512
elements.

e sort. In this benchmark, we perform an in-
memory sort of a text file. The input file is build by
appending the /usr/dict/word file many times
and then unsorting it as much as possible.

e sort x6. Inthis benchmark 6 sorts are executed
concurrently. The file to be sorted is built as the
previous one but 5 times smaller to limit the execu-
tion time of the benchmark.

e simulator. A simulator of a network of disks
currently being used in our research group. It is
an event-based simulator that uses large amounts
of memory. This memory compresses very well
as many of the events in the queues have simi-
lar information. Furthermore, the memory library
used, does not free the allocated memory after a
free, the library keeps the memory block in a hash
queue for further use. This “freed” memory is also
easy to compress. Although the compression ra-
tio of this application seems to be unrealistic, there
are other applications in a typical Unix system that
achieve compression ratios better than 10% such as
awk [7].

e simulator x5. Five concurrent executions of
the simulator but with a smaller input.

e xanim. A visualization of a video file in avi
format. This video is dithered using the Floyd-
Steinberg algorithm. This means that the file has
to be decompressed in memory to do the dithering
before it is visualized. This benchmark has been
run under the X-Windows system as it needed to
perform graphic I/O.

e xanim x4. Four concurrent executions of the
previous xanim benchmark.

Table 1 summarizes the characteristics of each bench-
mark according to the parameters described in the first
part of this subsection.

4.3 Performance Results

As this paper just tries to show that this mechanism is
useful to increase the performance of large applications
we will only present a selection of all the possible exper-
iments. We will show the effect of the cache size given a
cleaning threshold and the effect of this threshold given



Concurrent File Compress
processes /0 ratio
fft 1 none 64.9%
fft x10 10 none 61.2%
sort 1 start/end 46.5%
sort X6 6 start/end 51.3%
simulator 1 start/end 6.7%
simulator x5 5 start/end 1.1%
xanim 1 first part 27.8%
xanim x4 4 first part 37.9%
Table 1: Benchmark characteristics.
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Figure 4: Effect of the compressed swap on several
workloads.

a cache size. Both parameters should be tuned for each
system depending on the hardware and expected load.
Anyway, even if the best configuration is not chosen,
most reasonable configurations will imply a significant
performance improvement.

General Performance Results

In this first experiment, we have configured the com-
pressed cache using what we though would be nice pa-
rameters. We have used a 1Mbyte cache and a cleaning
threshold of 50% of the cache. Using these values, we
executed all the benchmarks and computed the speedup
obtained when compared to the original swapping mech-
anism. Figure 4 presents these results.

In this graph we can see that all benchmarks but one
observe a speedup between 1.2 and 2.1. This means
that these applications run, at least, a 20% faster than

with the original swapping mechanism and there are
even executions where the applications half their exe-
cution time. The two exceptions to this rule are £ £t and
simulator x5.

The first one (££t) achieves a speedup of 0.96, which
means that it runs slower than with the original system.
This slowdown is due to two basic factors. The first one
is that the compression ratio is not very good and most
pages cannot be compressed less than 2048 bytes. This
means that it is quite difficult to place more than one
page per buffer or disk block. The second reason is that
taking memory from the application for our data struc-
tures and cache buffers has a significant effect on the ap-
plication. Without this memory, the working set of some
parts does not fit in memory anymore and the application
pages much more than with the original system.

The second exception to a reasonable speedup is the ex-
ecution of 5 concurrent simulations (simulator x5).
This benchmark achieves a speedup of 6.5. Such an im-
pressive improvement is due to its incredible compres-
sion ratio. As pages compress so well, most swapped
pages fit in the cache and nearly no disk access are
needed.

These two exceptions will not be very frequent and we
should expect a performance improvement between 20%
to 100%, which is a significant gain.

Another unexpected result is the low speedup obtained
by the simulator benchmark. As this benchmark
compresses very well (6.7%), we expected to have a
much more important speedup. The reason behind this
behavior is the well behavior it has on the original sys-
tem. As it swaps out many pages in very small periods of
time, the original system can group them together before
sending them to the disk and performs something similar
to a batched write. For this reason, the gains we obtain
by batching write operations together is also gained by
the original system. This situation only happens in the
original kernel when many pages are swapped out while
writing the disk is busy. The kernel coalesces all these
requests in a single one if contiguous. Anyway, this does
not happen too often as we can see from the speedups
obtained by the other benchmarks.

Cache-size Influence

The second experiment tried to study the influence of the
cache size in the performance of the new mechanism. To
do this experiment we have run all the benchmarks vary-
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ing the cache size between 256Kbytes to 4Mbytes and
the cleaning threshold used in all these experiments was
50%. The obtained results are drawn in Figure 5. In this
graph, we will not present the results of simulator
x5 as a curve with speedups of 6 would difficult the
study of the graph.

The main observation is that there is nothing such as a
perfect cache size for all benchmarks. It is clear that
very large caches are no good as they take too many
pages from the applications and they have to swap far
too much.

Anyway, the important thing is that with reasonable
cache sizes (around 1Mbyte) the performance of the ap-
plications is greatly improved due to the compressed
cache.

Cleaning Threshold

The final parameter is the cleaning threshold. This value
defines the percentage of buffers that have to be full be-
fore a cleaning operation is started. To study the influ-
ence this parameter has, we have set the cache size to
256Mbytes and we have varied the threshold from 1%
to 70%. The results obtained by all the benchmarks are
presented in Figure 6. The performance of simulator
x5 is also not included in this graph for the same reason
as in the previous subsection.

We can observe that this parameter cannot be too small.
In this case, many small write operations are performed
and the seek and search actions become an important
overhead in these write operations. When the threshold
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Figure 6: Influence of the cleaning threshold on the ap-
plication performance.

grows, the performance of the applications tends to in-
crease as the disk latency becomes less important.

For very large values, the behavior of the system de-
pends on whether the benchmark is a mono or multi-
process one. In mono-process benchmarks, when the
cache is being cleaned (synchronous cleaning), no other
process accesses the disk and the benefits of large writes
continue to be the a good issue. On the other hand, in
multi-process benchmarks, while a process is cleaning
the cache, another may want to swap in or out a page. If
the cleaning operation is too long, the read/write opera-
tion has to wait for a long time and the performance of
this process is also affected in a negative way.

The benchmark sort x6 has a very unpredictable be-
havior. It does not follow any clear pattern. The reason
behind this behavior is the large amount of I/O it per-
forms. If it tries to write while the system is cleaning
the cache, the performance is greatly affected. There is
no way to avoid these collisions, but still the results are
good enough.

It seems that the best value for this threshold is between
10% and 20%.

4.4 Increase of the Swap Space

So far, we have only seen the performance benefits of
compressing the swap area. As we mentioned in the in-
troduction, this was the main objective of the project.
Anyway, we also had a second objective that consisted
on increasing the number of pages that could be placed
in the swap area. A study of this objective is presented
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Figure 7: Size of the swap area that would be needed
to have the same capacity as our 128Mbytes compressed
swap.

in this subsection.

Although the number of pages that fit in the swap parti-
tion depends on the compression ratio, it is not the only
important factor. The fragmentation found inside the
buffers will also be an important parameter in the final
size of the swapping space. A system that leaves large
unused portions in the buffers will not be able to place
many more pages than the original system in the swap
partition.

Figure 7 presents the size of the swap area that we would
obtain if we could fill it with pages following the same
compression ratio and the same fragmentation as the
ones obtained in the benchmarks. In the figure, we can
see that in most cases the system increases the size of
the swap partition more than a 50%.

We have limited the gain to 256 Mbytes as we have
configured the size of the virtual_swap_-info table
to double the physical swap space. If a greater array
were used, a larger swap space would have obtained with
benchmarks such as simulator and xanim.

5 Related Work

Not much research has been done in the area of com-
pressing the swap space. The compression cache pro-
posed by Fred Douglis [4] is very similar, in essence, to

our work, but some important differences can be found.
In that work, the swap pages are also compressed and
kept in a cache to increase both the size of the virtual
memory and the performance of the applications that
have to swap. One big difference between our work and
the one done by Douglis is that the results we present
are not so dependent on the compression ratio as they
were. In the previous work, no performance gains were
obtained with compression ratios worse than 30% while
we obtain nice performance improvements with even a
compression ratio of 62%. This might be either due to
design issues or due to the improvements in the technol-
ogy (compressing is much faster now). It is also impor-
tant that the previous work lacked a study on the kinds of
read hits obtained in the cache. This study has led us to
significant design modifications such as having two dif-
ferent paths: one for swapping in and one for swapping
out. As we have shown in this paper, this distinction has
obtained significant performance benefits. Finally, all
their benchmarks were single process while we believe
that multi-process benchmarks have also to be studied.

If we examine our work in a more general way we can
divide it in two basic issues: increasing the size of the
memory and reducing the average time needed to swap
in/out a page. Let’s discus what has been done in both
fields.

Following the idea of increasing the size of the memory,
there are some commercial products that compress the
physical memory. With these software mechanisms the
applications believe that the system has a larger amount
of physical memory. Anyway, the achievements ob-
tained by such systems are not clear [8, 14]. The same
idea has also been done in hardware with much better
performance gains [6].

There have also been many proposals to decrease the
number of disk accesses for swapping issues. For in-
stance, some work has been devoted to minimize the
number of pages that have to be swapped out. If the con-
tents of a page is irrelevant to the application execution,
this page does not need to be kept in the swap [15, 5]. In
the same line, software has been developed to study the
utilization of the pages and thus improve the programs
and reduce the number of pages swapped in/out [12].
There has also been some work that tried to group pages
when swapped out so that larger writes were done [1].

Finally, the approach of compressing information before
sending it to the disk is widely used in database environ-
ments and in some file systems.



6 Conclusions

In this paper, we have presented a way to implement a
compressed-swap mechanism that achieves significant
improvement in the performance of lager applications.
Most of them achieve speedups between 1.2 and 2.1 and
there are some special cases where this speedup is even
much higher.

We have also shown that, although the configuration af-
fects the performance, it is not difficult to find a reason-
able set of values that work well with all applications.

Finally, this mechanism has been installed in some
Linux boxes in our department and the users are quite
happy with this new feature.
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