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Abstract

This paper studies mechanisms and policies for sup-
porting HTTP/1.1 persistent connections in cluster-based
Web servers that employ content-based request distri-
bution. We present two mechanisms for the efficient,
content-based distribution of HTTP/1.1 requests among
the back-end nodes of a cluster server. A trace-driven
simulation shows that these mechanisms, combined with
an extension of the locality-aware request distribution
(LARD) policy, are effective in yielding scalable per-
formance for HTTP/1.1 requests. We implemented the
simpler of these two mechanisms, back-end forwarding.
Measurements of this mechanism in connection with ex-
tended LARD on a prototype cluster, driven with traces
from actual Web servers, confirm the simulation results.
The throughput of the prototype is up to four times better
than that achieved by conventional weighted round-robin
request distribution. In addition, throughput with persis-
tent connections is up to 26% better than without.

1 Introduction

Clusters of commodity workstations are becoming
an increasingly popular hardware platform for cost-
effective high performance network servers. Achieving
scalable server performance on these platforms is critical
to delivering high performance to users in a cost-effective
manner.

State-of-the-art cluster-based Web servers employ a
front-end node that is responsible for distributing incom-
ing requests to the back-end nodes in a manner that is
transparent to clients. Typically, the front-end distributes
the requests such that the load among the back-end nodes
is balanced. With content-based request distribution, the
front-end additionally takes into account the content or
type of service requested when deciding to which back-
end node a client request should be assigned.

Content-based request distribution allows the inte-
gration of server nodes that are specialized for certain
types of content or services (e.g., audio/video), it per-
mits the partitioning of the server’s database for scalabil-
ity, and it enables clever request distribution policies that
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improve performance. In previous work, we proposed
locality-aware request distribution (LARD), a content-
based policy that achieves good cache hit rates in ad-
dition to load balance by dynamically partitioning the
server’s working set among the back-end nodes [23].

In this paper, we investigate mechanisms and policies
for content-based request distribution in the presence of
HTTP/1.1 [11] persistent (keep-alive) client connections
(P-HTTP). Persistent connections allow HTTP clients to
submit multiple requests to a given server using a sin-
gle TCP connection, thereby reducing client latency and
server overhead [19]. Unfortunately, persistent connec-
tions pose problems for clusters that use content-based
request distribution, since requests in a single connec-
tion may have to be assigned to different back-end nodes
to satisfy the distribution policy.

This paper describes efficient mechanisms for
content-based request distribution and an extension of
the LARD policy in the presence of HTTP/1.1 connec-
tions. It presents a simulation study of these mecha-
nisms, and it reports experimental results from a pro-
totype cluster implementation. The results show that
persistent connections can be supported efficiently on
cluster-based Web servers with content-based request
distribution. In particular, we demonstrate that us-
ing back-end forwarding, an extended LARD policy
achieves up to 26% better performance with persistent
connections than without.

The rest of the paper is organized as follows.
Section 2 provides some background information on
HTTP/1.1 and LARD, and states the problems posed by
HTTP/1.1 for clusters with content-based request dis-
tribution. Section 3 considers mechanisms for achiev-
ing content-based request distribution in the presence of
HTTP/1.1 persistent connections. The extended LARD
policy is presented in Section 4. Section 5 presents a
performance analysis of our request distribution mech-
anisms. A simulation study of the various mechanisms
and the extended LARD policy is described in Sec-
tion 6. Section 7 discusses a prototype implementation,
and Section 8 reports measurement results obtained us-
ing that prototype. We discuss related work in Section 9,
and conclude in Section 10.
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Figure 1: Locality-Aware Request Distribution

2 Background

This section provides background information on
persistent connections in HTTP/1.1, content-based re-
quest distribution, and the LARD strategy. Finally, we
state the problem that persistent connections pose to
content-based request distribution.

2.1 HTTP/1.1 persistent connections

Obtaining an HTML document typically involves
several HTTP requests to the Web server, to fetch em-
bedded images, etc. Browsers using HTTP/1.0 [5] send
each request on a separate TCP connection. This in-
creases the latency perceived by the client, the number
of network packets, and the resource requirements on the
server [19, 22].

HTTP/1.1 enables browsers to send several HTTP re-
quests to the server on a single TCP connection. In an-
ticipation of receiving further requests, the server keeps
the connection open for a configurable interval (typi-
cally 15 seconds) after receiving a request . This method
amortizes the overhead of establishing a TCP connection
(CPU, network packets) over multiple HTTP requests,
and it allows for pipelining of requests [19]. Moreover,
sending multiple server responses on a single TCP con-
nection in short succession avoids multiple TCP slow-
starts [29], thus increasing network utilization and effec-
tive bandwidth perceived by the client.

RFC 2068 [11] specifies that for the purpose of back-
ward compatibility, clients and servers using HTTP/1.0
can use persistent connections through an explicit HTTP
header. However, for the rest of this paper, HTTP/1.0
connections are assumed not to support persistence.
Moreover, this paper does not consider any new features
in HTTP/1.1 over HTTP/1.0 other than support for per-
sistent connections and request pipelining.

2.2 Content-based Request Distribution

Content-based request distribution is a technique em-
ployed in cluster-based network servers, where the front-
end takes into account the service/content requested
when deciding which back-end node should serve a given
request. In contrast, the purely load-based schemes like
weighted round-robin (WRR) used in commercial high

performance cluster servers [15, 8] distribute incoming
requests in a round-robin fashion, weighted by some
measure of load on the different back-end nodes.

The potential advantages of content-based request
distribution are: (1) increased performance due to im-
proved hit rates in the back-end’s main memory caches,
(2) increased secondary storage scalability due to the
ability to partition the server’s database over the different
back-end nodes, and (3) the ability to employ back-end
nodes that are specialized for certain types of requests
(e.g., audio and video).

With content-based request distribution, the front-
end must establish the TCP connection with the client
prior to assigning the connection to a back-end node,
since the nature and the target1 of the client’s request in-
fluences the assignment. Thus, a mechanism is required
that allows a chosen back-end node to serve a request
on the TCP connection established by the front-end. For
reasons of performance, security, and interoperability, it
is desirable that this mechanism be transparent to the
client. We will discuss mechanisms for this purpose in
Section 3.

2.3 Locality-aware request distribution

Locality-aware request distribution (LARD) is a spe-
cific strategy for content-based request distribution that
focuses on the first of the advantages cited above, namely
improved cache hit rates in the back-ends [23]. LARD
strives to improve cluster performance by simultaneously
achieving load balancing and high cache hit rates at the
back-ends.

Figure 1 illustrates the principle of LARD in a cluster
with two back-ends and a working set of three targets (A,
B, and C) in the incoming request stream. The front-end
directs all requests for A to back-end 1, and all requests
for B and C to back-end 2. By doing so, there is an
increased likelihood that the request finds the requested
target in the cache at the back-end.

In contrast, with a round-robin distribution of incom-
ing requests, requests for all three targets will arrive at

1In the following discussion, the term target is used to refer to a
Web document, specified by a URL and any applicable arguments to
the HTTP GET command.



both back-ends. This increases the likelihood of a cache
miss, if the sum of the sizes of the three targets, or, more
generally, if the size of the working set exceeds the size
of the main memory cache at an individual back-end
node. Thus, with a round-robin distribution, the clus-
ter does not scale well to larger working sets, as each
node’s main memory cache has to fit the entire working
set. With LARD, the effective cache size approaches the
sum of the individual node cache sizes. Thus, adding
nodes to a cluster can accommodate both increased traf-
fic (due to additional CPU power) and larger working
sets (due to the increased effective cache size).

2.4 The problem with HTTP/1.1

HTTP/1.1 persistent connections pose a problem for
clusters that employ content-based request distribution,
including LARD. The problem is that existing, scalable
mechanisms for content-based distribution operate at the
granularity of TCP connections. With HTTP/1.1, multi-
ple HTTP requests may arrive on a single TCP connec-
tion. Therefore, a mechanism that distributes load at the
granularity of a TCP connection constrains the feasible
distribution policies, because all requests arriving on a
given connection must be served by a single back-end
node.

This constraint is most serious in clusters where cer-
tain requests can only be served by a subset of the back-
end nodes. Here, the problem is one of correctness,
since a back-end node may receive requests that it cannot
serve.

In clusters where each node is capable of serving
any valid request, but the LARD policy is used to par-
tition the working set, performance loss may result since
a back-end node may receive requests not in its cur-
rent share of the working set. As we will show in Sec-
tion 6, this performance loss can more than offset the
performance advantages of using persistent connections
in cluster servers.

3 Mechanisms for content-based request
distribution

A front-end that performs content-based request dis-
tribution must establish a client HTTP connection before
it can decide which back-end node should serve the re-
quest. Therefore, it needs a mechanism that allows it to
have the chosen back-end node serve request(s) on the
established client connection. In this section, we discuss
such mechanisms.

The simplest mechanisms work by having the front-
end “redirect” the client browser to the chosen back-end
node, by sending an HTTP redirect response, or by re-
turning a Java applet that contacts the appropriate back-
end when executed in the browser [1].

These mechanisms work also for persistent connec-
tions, but they have serious drawbacks. The redirec-
tion introduces additional delay; the address of individ-
ual back-end nodes is exposed to clients, which increases
security risks; and, simple or outdated browsers may not
support redirection. For these reasons, we only consider
client-transparent mechanisms in the remainder of this
paper.

3.1 Relaying front-end

A simple client-transparent mechanism is a relaying
front-end. Figure 2 depicts this mechanism and the other
mechanisms discussed in the rest of this section. Here,
the front-end maintains persistent connections (back-end
connections) with all of the back-end nodes. When a re-
quest arrives on a client connection, the front-end assigns
the request, and forwards the client’s HTTP request mes-
sage on the appropriate back-end connection. When the
response arrives from the back-end node, the front-end
forwards the data on the client connection, buffering the
data if necessary.

The principal advantage of this approach is its sim-
plicity, its transparency to both clients and back-end
nodes, and the fact that it allows content-based distribu-
tion at the granularity of individual requests, even in the
presence of HTTP/1.1 persistent connections.

A serious disadvantage, however, is the fact that all
response data must be forwarded by the front-end. This
may render the front-end a bottleneck, unless the front-
end uses substantially more powerful hardware than the
back-ends. It is conceivable that small clusters could be
built using as a front-end a specialized layer 4 switch
with the ability to relay transport connections. We are,
however, not aware of any actual implementations of this
approach. Furthermore, results presented in Section 6.1
indicate that, even when the front-end is not a bottle-
neck, a relaying front-end does not offer significant per-
formance advantages over more scalable mechanisms.

3.2 Multiple TCP connection handoff

A more complex mechanism involves the use of a
TCP handoff protocol among front-end and back-end
nodes. The handoff protocol allows the front-end to
transfer its end of an established client connection to a
back-end node. Once the state is transferred, the back-
end transmits response data directly to the client, bypass-
ing the front-end. Data from the client (primarily TCP
ACK packets) are forwarded by the front-end to the ap-
propriate back-end node in an efficient manner.

In previous work, we have designed, implemented,
and evaluated a handoff protocol for HTTP/1.0 [23].
This single handoff protocol can support persistent con-
nections, but all requests must be served by the back-end
node to which the connection was originally handed off.
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Figure 2: Mechanisms for request distribution

The design of this handoff protocol can be extended
to support HTTP/1.1 by allowing the front-end to migrate
a connection between back-end nodes. The advantage of
this multiple handoff protocol is that it allows content-
based request distribution at the granularity of individual
requests in the presence of persistent connections. Un-
like front-end relaying, the handoff approach is efficient
and scalable since response network traffic bypasses the
front-end.

The handoff approach requires the operating systems
on front-end and back-end nodes to be customized with
a vendor-specific loadable kernel module. The design of
such a module is relatively complex, especially if mul-
tiple handoff is to be supported. To preserve the advan-
tages of persistent connections – reduced server overhead
and reduced client latency – the overhead of migrating
connections between back-end nodes must be kept low,
and the TCP pipeline must be kept from draining during
migration.

3.3 Back-end request forwarding

A third mechanism, back-end request forwarding,
combines the TCP single handoff protocol with forward-
ing of requests and responses among back-end nodes. In
this approach, the front-end hands off client connections
to an appropriate back-end node using the TCP single
handoff protocol. When a request arrives on a persis-
tent connection that cannot (or should not) be served by
the back-end node that is currently handling the connec-
tion, the connection is not handed off to another back-end
node.

Instead, the front-end informs the connection han-
dling back-end node A which other back-end node B

should serve the offending request. Back-end node A

then requests the content or service in question directly
from node B, and forwards the response to the client

on its client connection. Depending on the implementa-
tion, these “lateral” requests are forwarded through per-
sistent HTTP connections among the back-end nodes, or
through a network file system.

The advantages of back-end request forwarding lie
in the fact that the complexity and overhead of multi-
ple TCP handoff can be avoided. The disadvantage is
the overhead of forwarding responses on the connection
handling back-end node. This observation suggests that
the back-end request forwarding mechanism is appropri-
ate for requests that result in relatively small amounts of
response data. Results presented in Section 6 show that
due to the relatively small average content size in today’s
Web traffic [19, 3], the back-end request forwarding ap-
proach is very competitive.

4 Policies

This section presents an extension of the LARD pol-
icy that works efficiently in the presence of HTTP/1.1
persistent connections, when used with the back-end re-
quest forwarding mechanisms presented in the previous
section.

Both the front-end relaying mechanism and the TCP
multiple handoff mechanism allow requests to be dis-
tributed at the granularity of individual requests. As
such, they do not place any restriction on the request
distribution policies that can be used. In particular, the
LARD policy can be used in combination with these
mechanisms without loss of locality.

The back-end forwarding mechanism, on the other
hand, does place restrictions on the distribution policy, as
it mandates that a connection can be handed off to a back-
end node only once. If requests arrive on a persistent
connection that cannot or should not be served by that
back-end node, the policy must instruct that back-end
node to forward the request to another back-end node.
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We have developed an extension of the LARD pol-
icy that can efficiently distribute HTTP/1.1 requests in
a cluster that uses the back-end forwarding mechanism.
The following subsection briefly presents the standard
LARD strategy. Then, we proceed to present our exten-
sion.

4.1 The LARD strategy

The LARD strategy yields scalable performance by
achieving both load balancing and cache locality at the
back-end servers. For the purpose of achieving cache lo-
cality, LARD maintains mappings between targets and
back-end nodes, such that a target is considered to be
cached on its associated back-end nodes. To achieve a
balance between load distribution and locality, LARD
uses three cost metrics: cost balancing, cost locality and
cost replacement. The intuition for the definition of
these metrics can be explained using Figure 3, which
shows the throughput and delay characteristics of a typ-
ical back-end server as a function of load (measured in
number of active connections).

The load point Lidle defines a value below which a
back-end node is potentially underutilized. Loverload is
defined such that the difference in delay between a back-
end node operating at or above this load, compared to
a back-end node operating at the point Lidle, becomes
unacceptable.

The metric cost balancing captures the delay in the
servicing of a request because of other queued requests.
Cost locality, on the other hand, reflects the delay aris-
ing due to the presence or absence of the target in the

cache. Cost replacement is a cost that reflects the po-
tential future overhead caused by the replacement of a
target in the cache. The three cost metrics are then de-
fined as shown in Figure 4.

The unit of cost (and also of load) is defined to be the
delay experienced by a request for a cached target at an
otherwise unloaded server. The aggregate cost for send-
ing the request to a particular server is defined as the sum
of the values returned by the above three cost metrics.
When a request arrives at the front-end, the LARD policy
assigns the request to the back-end node that yields the
minimum aggregate cost among all nodes, and updates
the mappings to reflect that the requested target will be
cached at that back-end node2.

Our experimental results with the Apache 1.3.3 web-
server running on FreeBSD-2.2.6 indicate settings of
Loverload to 130, Lidle to 30 and Miss Cost to 50. We
have used these settings both for our simulator as well as
for our prototype results in this paper.

4.2 The extended HTTP/1.1 LARD strategy

The basic LARD strategy bases its choice of a back-
end node to serve a given request only on the current
load and the current assignment of content to back-end
nodes (i.e., the current partitioning of the working set.)
An extended policy that works for HTTP/1.1 connec-
tions with the back-end forwarding mechanisms has to
consider additional factors, because the choice of a back-
end node to serve a request arriving on a persistent con-
nection may already be constrained by the choice of the
back-end node to which the connection was handed off.
In particular, the policy must make the following consid-
erations:

1. The best choice of a back-end node to handle a
persistent connection depends on all the requests
expected on the connection.

2. Assigning a request to a back-end node other than
the connection handling node causes additional
forwarding overhead. This overhead must be
weighed against the cost of reading the requested
content from the connection handling node’s local
disk.

3. Given that a requested content has to be fetched
from the local disk or requested from another
back-end node, should that content be cached on
the connection handling node? Caching the con-
tent reduces the cost of future requests for the con-
tent on the node handling the connection, but it
also causes potential replication of the content on

2Although we present LARD differently than in Pai et al. [23], it
can be proven that the strategies are equivalent when Lidle � Tlow

and Miss Cost � Thigh � Tlow .



cost balancing(target; server) =

8<
:

0 Load(server) < Lidle

Infinity Load(server) > Loverload

Load(server) � Lidle otherwise

cost locality(target; server) =

�
1 target is mapped to server

Miss Cost otherwise

cost replacement(target; server) =

8<
:

0 Load(server) < Lidle

0 target is mapped to server

Miss Cost otherwise

Figure 4: LARD Cost Metrics

multiple back-end nodes, thus reducing the aggre-
gate size of the server cache.

The intuition behind the extended LARD policy is as
follows. Regarding (1), due to the structure of typical
Web documents, additional requests on a persistent con-
nection normally do not arrive until after the response to
the first request is delivered to the client. For this reason,
the front-end has to base its choice of a back-end node
to handle the connection on knowledge of only the first
request.

With respect to (2), our extended LARD policy adds
two additional considerations when choosing a node to
handle a request arriving on an already handed off per-
sistent connection. First, as long as the utilization on the
connection handling node’s local disk is low, the content
is read from that disk, avoiding the forwarding overhead.
Second, in choosing a back-end to forward the request
to, the policy only considers those nodes as candidates
that currently cache the requested target.

Regarding (3), the extended LARD policy uses a sim-
ple heuristic to decide whether content should be cached
on the connection handling node. When the disk uti-
lization on the connection handling node is high, it is
assumed that the node’s main memory cache is already
thrashing. Therefore, the requested content is not cached
locally. If the disk utilization is low, then the requested
content is added to the node’s cache.

We now present the extended LARD policy. When
the first request arrives on a persistent connection, the
connection handling node is chosen using the basic
LARD policy described in Section 4.1. For each sub-
sequent request on the persistent connection:

� If the target is cached at the connection handling
node or if the disk utilization on the connection
handling node is low (less than 5 queued disk
events), then the request is assigned to the same.

� Else, the three cost metrics presented in Sec-
tion 4.1 are computed over the connection han-

dling node and any other back-end nodes that have
the target cached. The request is then assigned to
the node that yields the minimum aggregate cost.

For the purpose of computing the LARD cost met-
rics, a single load unit is assigned to the connection han-
dling node for each active connection that it handles.
When the back-end forwarding mechanism is used to
fetch documents from other nodes, every such node is ad-
ditionally assigned a load of 1/N units—where N is the
number of outstanding requests in a batch of pipelined
HTTP/1.1 requests—for the duration of the request han-
dling of all N requests.

Ideally, the front-end should assign a load of 1 to a re-
mote node during the service time of a request. However,
the front-end cannot determine when exactly a HTTP/1.1
request is being served; it can, however, estimate the ser-
vice time for a batch of N pipelined HTTP/1.1 requests.
Therefore, it assigns a load of 1/N to each remote node
for the entire batch service time.

The front-end estimates N as the number of requests
in the last batch of closely spaced requests that arrived
on the connection and it estimates the batch service time
as the time it takes until the next batch arrives or the con-
nection goes idle3. That is, the front-end assumes that
all previous requests have finished once a new batch of
requests arrives on the same connection.

As in LARD, mappings between targets and back-
end nodes are updated each time a target is fetched from a
back-end node. It is to be noted that the extended LARD
policy is equivalent to LARD for HTTP/1.0 requests.

5 Performance Analysis of Distribution
Mechanisms

This section presents a simple analysis of the fun-
damental performance tradeoff in the use of the mul-
tiple handoff mechanism versus the back-end forward-

3An idle connection can be detected at the front-end by the absence
of ACKs from the client.
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ing mechanism for request distribution in the presence of
persistent connections.

When compared to the multiple handoff mechanism,
the back-end forwarding mechanism trades off a per-byte
response forwarding cost for a per-request handoff over-
head. This would suggest that back-end request forward-
ing might be most appropriate for requests that result in
small amounts of response data, while the multiple hand-
off approach should win in case of large responses, as-
suming that all other factors that affect performance are
equal.

Figures 5 and 6 show the results of a simple analysis
that confirms and quantifies this intuition. The analysis
predicts the server bandwidth, as a function of average
response size, that can be obtained from a cluster with
four nodes, using either the multiple handoff or the back-
end forwarding mechanism. The analysis is based on
the values for handoff overhead, per-request overhead,
and per-byte forwarding overhead reported above for the
Apache and Flash Web servers, respectively.

To expose the full impact of the mechanisms, pes-
simal assumptions are made with respect to the request
distribution policy. It is assumed that all requests after
the first one arriving on a persistent connection have to
be served by a back-end node other than the connection
handling node. Since most practical policies can do bet-
ter than this, the results indicate an upper bound on the
impact of the choice of the request distribution mecha-
nism on the actual cluster performance.

The results confirm that for small response sizes, the
back-end forwarding mechanism yields higher perfor-
mance, while the multiple handoff mechanism is supe-
rior for large responses. The crossover point depends on
the relative cost of handoff versus data forwarding, and
lies at 12 KB for Apache and 6 KB for Flash. These
results are nearly independent of the average number of
requests received on a persistent connection. Since the
average response size in today’s HTTP/1.0 Web traffic

is less than 13 KB [19, 3], these results indicate that the
back-end forwarding mechanism is indeed competitive
with the TCP multiple handoff mechanism on Web work-
loads.

6 Simulation

To study various request distribution policies for a
range of cluster sizes using different request distribution
mechanisms and policies, we extended the configurable
Web server cluster simulator used in Pai et al. [23] to deal
with HTTP/1.1 requests. This section gives an overview
of the simulator. A more detailed description of the sim-
ulator can be found in Pai et al. [23].

The costs for the basic request processing steps used
in our simulations were derived by performing mea-
surements on a 300 MHz Pentium II machine running
FreeBSD 2.2.6 and either the widely used Apache 1.3.3
Web server, or an aggressively optimized research Web
server called Flash [24, 25]. Connection establishment
and teardown costs are set at 278/129 �s of CPU time
each, per-request overheads at 527/159 �s, and trans-
mit processing incurs 24/24 �s per 512 bytes to simulate
Apache/Flash, respectively.

Using these numbers, an 8 KByte document can be
served from the main memory cache at a rate of ap-
proximately 682/1248 requests/sec with Apache/Flash,
respectively, using HTTP/1.0 connections. The rate is
higher for HTTP/1.1 connections and depends upon the
average number of requests per connection. The back-
end machines used in our prototype implementation have
a main memory size of 128 MB. However, the main
memory is shared between the OS kernel, server appli-
cations and file cache. To account for this, we set the
back-end cache size in our simulations to 85 MB.

The simulator does not model TCP behavior for the
data transmission. For example, the data transmission
is assumed to be continuous rather than limited by the
TCP slow-start [29]. This does not affect the through-



put results as networks are assumed to be infinitely fast
and thus throughput is limited only by the disk and CPU
overheads.

The workload used by the simulator was derived
from logs of actual Web servers. The logs contain the
name and the size of requested targets as well as the
client host and the timestamp of the access. Unfortu-
nately, most Web servers do not record whether two re-
quests arrived on the same connection. To construct a
simulator working with HTTP/1.1 requests, we used the
following heuristic. Any set of requests sent by the same
client with a period of less than 15s (the default time
used by Web servers to close idle HTTP/1.1 connections)
between any two successive requests were considered
to have arrived on a single HTTP/1.1 connection. To
model HTTP pipelining, all requests other than the first
that are in the same HTTP/1.1 connection and are within
5s of each other are considered a batch of pipelined re-
quests. Clients can pipeline all requests in a batch but
have to wait for data from the server before requests in
the next batch can be sent. To the best of our knowl-
edge, synthetic workload generators like SURGE [4] and
SPECweb96 [28] do not generate workloads representa-
tive of HTTP/1.1 connections.

The workload was generated by combining logs from
multiple departmental Web servers at Rice University.
This trace spans a two-month period. The same logs
were used for generating the workload used in Pai et
al. [23]. The data set for our trace consists of 31,000 tar-
gets covering 1.015 GB of space. Our results show that
this trace needs 526/619/745 MB of memory to cover
97/98/99% of all requests, respectively.

The simulator calculates overall throughput, cache
hit rate, average CPU and disk idle times at the back-end
nodes, and other statistics. Throughput is the number of
requests in the trace that were served per second by the
entire cluster, calculated as the number of requests in the
trace divided by the simulated time it took to finish serv-
ing all the requests in the trace. The request arrival rate
was matched to the aggregate throughput of the server.

6.1 Simulation Results

In this section we present simulation results compar-
ing the following mechanisms/policy combinations.

1. TCP single handoff with LARD on HTTP/1.0
workload [simple-LARD]

2. TCP single handoff with LARD on HTTP/1.1
workload [simple-LARD-PHTTP]

3. TCP multiple handoff with extended LARD
on HTTP/1.1 workload [multiHandoff-extLARD-
PHTTP]

4. Back-end forwarding with extended LARD on
HTTP/1.1 workload [BEforward-extLARD-
PHTTP]

5. Ideal handoff with extended LARD on HTTP/1.1
workload [zeroCost-extLARD-PHTTP]

Most of these mechanisms have already been described
in Section 3. The “ideal handoff” is an idealized mecha-
nism that incurs no overhead for reassigning a persistent
connection to another back-end node. It is useful as a
benchmark, as performance results with this mechanism
provide a ceiling for results that can be obtained with any
practical request distribution mechanism.

Figures 7 and 8 show the throughput results with
the Apache and Flash Web servers, respectively, running
on the back-end nodes. For comparison, results for the
widely used Weighted Round-Robin (WRR) policy are
also included, on HTTP/1.0 and HTTP/1.1 workloads.

When driving simple LARD with a HTTP/1.1 work-
load (simple-LARD-PHTTP), results show that the
throughput suffers considerably (up to 39% with Apache
and up to 54% with Flash), particularly at small to
medium cluster sizes. The loss of locality more than
offsets the reduced server overhead of persistent connec-
tions.

The key result, however, is that the extended LARD
policy both with the multiple handoff mechanism and
the back-end forwarding mechanism (multiHandoff-
extLARD-PHTTP and BEforward-extLARD-PHTTP)
are within 8% of the ideal mechanism and afford
throughput gains of up to 20% when compared to simple-
LARD. Moreover, the throughput achieved with each
mechanism is within 6%, confirming that both mecha-
nisms are competitive on today’s Web workloads.

The performance of LARD with HTTP/1.1 (simple-
LARD-PHTTP) catches up with that of the extended
LARD schemes for larger clusters. The reason is as fol-
lows. With a sufficient number of back-end nodes, the
aggregate cache size of the cluster becomes much larger
than the working set, allowing each back-end to cache
not only the targets assigned to it by the LARD policy,
but also additional targets requested in HTTP/1.1 con-
nections. Eventually, enough targets are cached in each
back-end node to yield high cache hit rates not only for
the first request in a HTTP/1.1 connection, but also for
subsequent requests. As a result, the performance ap-
proaches (but cannot exceed) that of the extended LARD
strategies for large cluster sizes.

WRR cannot obtain throughput advantages from the
use of persistent connections on our workload, as it re-
mains disk bound for all cluster sizes and is therefore
unable to capitalize on the reduced CPU overhead of per-
sistent connections. As previously reported [23], simple-
LARD outperforms WRR by a large margin as the cluster



1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000 zeroCost−extLARD−PHTTP

multiHandoff−extLARD−PHTTP

BEforward−extLARD−PHTTP

simple−LARD

simple−LARD−PHTTP

WRR−PHTTP

WRR

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

# nodes in cluster

Figure 7: Apache Throughput
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Figure 8: Flash Throughput

size increases, because it can aggregate the node caches.
With one server node, the performance with HTTP/1.1 is
identical to HTTP/1.0, because the back-end servers are
disk bound with all policies.

The results obtained with the Flash Web server,
which are likely to predict future trends in Web server
software performance, differ mainly in that the perfor-
mance loss of simple-LARD-PHTTP is more significant
than with Apache. This underscores the importance of an
efficient mechanism for handling persistent connections
in cluster servers with content-based request distribution.

The throughput gains afforded by the hypothetical
ideal handoff mechanism might also be achievable by a
powerful relaying front-end (see Section 3.1) as long as
it is not a bottleneck. However, as shown in Figures 7
and 8, such a front-end achieves only 8% better through-
put than the back-end forwarding mechanism used with
the extended LARD policy.

7 Prototype Cluster Design

This section describes the design of our prototype
cluster. Given the complexity of the TCP multiple hand-
off mechanism, and the fact that simulation results indi-
cate no substantial performance advantages of multiple
handoff over back-end request forwarding, we decided
to implement the back-end forwarding mechanism in the
prototype.

Section 7.1 gives an overview of the various com-
ponents of the cluster. Section 7.2 describes the TCP
single handoff protocol. Section 7.3 describes tagging,
a technique by which the front-end instructs the con-
nection handling node to forward a given request to an-
other back-end node. In Section 7.4, we describe how
the back-end nodes fetch requests remotely from other
nodes in a manner that keeps the server applications un-
changed.
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Figure 9: TCP connection handoff

7.1 Overview

The cluster consists of a front-end node connected
to the back-end nodes with a high-speed LAN. HTTP
clients are not aware of the existence of the back-end
nodes, and the cluster effectively provides the illusion of
a single Web server machine to the clients.

Figure 9 shows the user-level processes and proto-
col stacks at the client, the front-end and the back-ends.
The client application (e.g., Web browser) is unchanged
and runs on an unmodified standard operating system.
The server process at the back-end machines is also un-
changed, and can be any off-the-shelf Web server appli-
cation (e.g., Apache [2], Zeus [31]). The front-end and
back-end protocol stacks, however, employ some addi-
tional components, which are added via a loadable kernel
module.

The front-end and back-end nodes use the TCP single
handoff protocol, which runs over the standard TCP/IP
to provide a control session between the front-end and
the back-end machine. The LARD and extended LARD
policies are implemented in a dispatcher module at the
front-end. In addition, the front-end also contains a for-
warding module, which will be described in Section 7.2.
The front-end and back-end nodes also have a user-level
startup process (not shown in Figure 9) that is used to



initialize the dispatcher and setup the control sessions
between the front-end and the back-end handoff proto-
cols. After initializing the cluster, these processes remain
kernel resident and provide a process context for the dis-
patcher and the handoff protocols. Disk queue lengths at
the back-end nodes are conveyed to the front-end using
the control sessions mentioned above.

7.2 TCP Connection Handoff

Figure 9 illustrates a typical handoff: (1) the client
process (e.g., Netscape) uses the TCP/IP protocol to con-
nect to the front-end, (2) the dispatcher module at the
front-end accepts the connection, and hands it off to a
back-end using the TCP handoff protocol, (3) the back-
end takes over the connection using its handoff protocol,
(4) the server at the back-end accepts the created con-
nection, and (5) the server at the back-end sends replies
directly to the client.

The handoff remains transparent to the client in that
all packets from the connection handling node appear to
be coming from the front-end. All TCP packets from
the client are forwarded by the front-end’s forwarding
module to the connection handling back-end. A copy of
any packets containing requests from the client is sent
up to the dispatcher to enable it to assign the requests to
back-end nodes. HTTP/1.1 request pipelining [19, 21]
is fully supported by the handoff protocol, and allows
the clients to send multiple requests without waiting for
responses from previous requests.

The TCP multiple handoff mechanism discussed in
Section 3.2 can be implemented by extending the above
design in the following manner. As soon as the back-end
server at the connection-handling node indicates that it
has sent all requisite data to the client, the handoff pro-
tocol at the back-end can hand-back the connection to
the front-end that can further hand it to another back-
end. Alternatively, the connection can be handed directly
to another back-end after informing the front-end to for-
ward future packets from the client appropriately. One of
the main challenges in this design is to prevent the TCP
pipeline from draining during the process of a handoff.

7.3 Tagging requests

As mentioned in the previous subsection, the for-
warding module sends a copy of all request packets to
the dispatcher once the connection has been handed off.
Assignment of subsequent requests on the connection to
back-end nodes other than the connection handling node
is accomplished by tagging the request content. The dis-
patcher sends these requests reliably to the connection
handling back-end using the control session between the
handoff protocol modules. The handoff protocol at the
back-end receives the requests, and places them directly
into the Web server’s socket buffer. The tags enable the
Web server to fetch the target using back-end forwarding
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Figure 10: Tagging P-HTTP requests

(see Section 7.4). It remains, however, unaware of the
presence of the handoff protocol.

After the handoff, all packets from the client are sent
by the forwarding module to the connection handling
node where they undergo TCP processing. Thus, after
the handoff, data packets from the client are acknowl-
edged by the connection handling node. The contents
of these request packets, once received, are however dis-
carded by the connection handling node (see Figure 10).
Instead, the tagged requests received from the front-end
via the control connection are delivered to the server pro-
cess.

7.4 Fetching remote requests
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Figure 11: Transparent remote request fetching

Web server applications typically serve documents
from a user-configurable directory which we will refer to
as document root. To implement remote fetching trans-
parently to the Web server application, each back-end
node NFS mounts the document root from other back-
end nodes on a subdirectory in its own document root
directory. Tagging is accomplished by the front-end
dispatcher changing the URL in the client requests by
prepending the name of the directory corresponding to
the remote back-end node. Figure 11 depicts the situ-
ation where the dispatcher tags an HTTP GET request
by prepending back-end2 to the URL in order to make
back-end1 fetch file foo using NFS.

An issue concerning the fetching of remote files is
NFS client caching, which would result in caching of



targets at multiple back-end nodes and interfere with
LARD’s ability to control cache replication. To avoid
this problem, we made a small modification in FreeBSD
to disable client side caching of NFS files.

8 Prototype Cluster Performance

In this section, we present performance results ob-
tained with a prototype cluster.

8.1 Experimental Environment
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Figure 12: Experimental Testbed

Our testbed consists of a number of client machines
connected to a cluster server. The configuration is shown
in Figure 12. Traffic from the clients flows to the front-
end (1) and is forwarded to the back-ends (2). Data pack-
ets transmitted from the back-ends to the clients bypass
the front-end (3).

The front-end of the server cluster is a 300MHz In-
tel Pentium II based PC with 128MB of memory. The
cluster back-end consists of six PCs of the same type
and configuration as the front-end. All machines run
FreeBSD 2.2.6. A loadable kernel module was added to
the OS of the front-end and back-end nodes that imple-
ments the TCP single handoff protocol, and, in the case
of the front-end, the forwarding module. The clients are
seven 166MHz Intel Pentium Pro PCs, each with 64MB
of memory.

The clients and back-end nodes in the cluster are con-
nected using switched Fast Ethernet (100Mbps). The
front-end and the back-end nodes are equipped with
two network interfaces, one for communication with the
clients, one for internal communication. Clients, front-
end, and back-ends are connected through a single 24-
port switch. All network interfaces are Intel EtherEx-
press Pro/100B running in full-duplex mode.

The Apache-1.3.3 [2] server was used on the back-
end nodes. Our client software is an event-driven pro-
gram that simulates multiple HTTP clients. Each sim-

ulated HTTP client makes HTTP requests as fast as the
server cluster can handle them.

8.2 Cluster Performance Results
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Figure 13: HTTP Throughput (Apache)

We used a segment of the Rice University trace al-
luded to in Section 6 to drive our prototype cluster. A
single back-end node running Apache 1.3.3 can deliver
about 151 req/s on this trace.

The Apache Web server relies on the file caching
services of the underlying operating system. FreeBSD
uses a unified buffer cache, where cached files are com-
peting with user processes for physical memory pages.
All page replacement is controlled by FreeBSD’s page-
out daemon, which implements a variant of the clock al-
gorithm [18]. The cache size is variable, and depends
on main memory pressure from user applications. In
our 128MB back-ends, memory demands from kernel
and Apache server processes leave about 100MB of free
memory. In practice, we observed file cache sizes be-
tween 70 and 95 MB.

The mechanism used for the WRR policy is similar
to the simple TCP handoff in that the data from the back-
end servers is sent directly to the clients. However, the
assignment of connections to back-end nodes is purely
load-based.

Several observations can be made from the results
presented in Figure 13. The measurements largely con-
firm the simulation results presented in Section 6.1. Con-
trary to the simulation results, WRR realizes modest per-
formance improvements on HTTP/1.1 on this disk-bound
workload. We believe that HTTP/1.1 reduces the mem-
ory demands of the Apache server application, and there-
fore leaves more room for the file system cache, causing
better hit rates. This effect is not modeled by our simu-
lator.

The extended LARD policy with the back-end for-
warding mechanism affords four times as much through-
put as WRR both with or without persistent connections



and up to 26% better throughput with persistent connec-
tions than without. Without a mechanism for distributing
HTTP/1.1 requests among back-end nodes, the LARD
policies perform up to 35% worse in the presence of per-
sistent connections.

Running extended LARD with the back-end forward-
ing mechanism and with six back-end nodes results in a
CPU utilization of about 60% at the front-end. This in-
dicates that the front-end can support 10 back-ends of
equal CPU speed. Scalability to larger cluster sizes can
be achieved by employing an SMP based front-end ma-
chine.

9 Related Work

Padmanabhan and Mogul [22] have shown that
HTTP/1.0 connections can increase server resource re-
quirements, the number of network packets per request,
and effective latency perceived by the client. They pro-
posed persistent connections and pipelining of HTTP
requests, which have been adopted by the HTTP/1.1
standard [11]. The work in [19, 21] shows that these
techniques dramatically improve HTTP/1.0 inefficien-
cies. Our work provides efficient support for HTTP/1.1
on cluster based Web servers with content-based request
distribution.

Heidemann [13] describes performance problems
arising from the interactions between P-HTTP and TCP
in certain situations. The work also proposes some fixes
that improve performance. The proposed solutions are
complimentary to our work and can be applied in our
cluster environment. In fact, most of the proposed fixes
are already incorporated in Apache 1.3.3 [2].

Much current research addresses the scalability prob-
lems posed by the Web. The work includes cooperative
caching proxies inside the network, push-based docu-
ment distribution, and other innovative techniques [20,
7, 10, 16, 17, 27]. Our proposal addresses the comple-
mentary issue of providing support for HTTP/1.1 in cost-
effective, scalable network servers.

Network servers based on clusters of workstations
are starting to be widely used [12]. Several products are
available or have been announced for use as front-end
nodes in such cluster servers [8, 15]. To the best of our
knowledge, the request distribution strategies used in the
cluster front-ends are all variations of weighted round-
robin, and do not take into account a request’s target
content. An exception is the Dispatch product by Res-
onate, Inc., which supports content-based request distri-
bution [26]. The product does not appear to use any dy-
namic distribution policies based on content and no at-
tempt is made to achieve cache aggregation via content-
based request distribution.

Hunt et al. proposed a TCP option designed to enable
content-based load distribution in a cluster server [14].

The design is roughly comparable in functionality to our
TCP single handoff protocol, but has not been imple-
mented.

Fox et al. [12] report on the cluster server technology
used in the Inktomi search engine. The work focuses on
the reliability and scalability aspects of the system and
is complementary to our work. The request distribution
policy used in their systems is based on weighted round-
robin.

Loosely-coupled distributed servers are widely de-
ployed on the Internet. Such servers use vari-
ous techniques for load balancing including DNS
round-robin [6], HTTP client re-direction [1], Smart
clients [30], source-based forwarding [9] and hardware
translation of network addresses [8]. Some of these
schemes have problems related to the quality of the load
balance achieved and the increased request latency. A de-
tailed discussion of these issues is made in the work by
Goldszmidt and Hunt [15] and Damani et al. [9]. None
of these schemes support content-based request distribu-
tion.

10 Conclusions
Persistent connections pose problems for cluster

based Web servers that use content-based request distri-
bution, because requests that appear in a single connec-
tion may have to be served by different back-end nodes.
We describe two efficient mechanisms for distributing re-
quests arriving on persistent connections, TCP multiple
handoff and back-end request forwarding.

A simulation study shows that both mechanisms can
efficiently handle Web workloads on persistent connec-
tions. Moreover, we extend the locality aware request
distribution (LARD) strategy to work with back-end re-
quest forwarding and show that it yields performance
that is within 8% of results obtained with a simulated
idealized mechanism. The proposed policies and mech-
anisms are fully transparent to the HTTP clients.

Finally, we have implemented the extended LARD
policy and the back-end request forwarding mechanism
in a prototype cluster. Performance results indicate
that the extended LARD strategy affords up to 26%
improvement in throughput with persistent connections
over HTTP/1.0. Our results also indicate that a single
front-end CPU can support up to 10 back-end nodes of
equal speed.

In this paper, we have focused on studying HTTP
servers that serve static content. Further research is
needed for supporting request distribution mechanisms
and policies for dynamic content.
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