
Proceedings of FREENIX Track:
2000 USENIX Annual Technical Conference

San Diego, California, USA, June 18–23, 2000

T H E AT & T A S T
O P E N S O U R C E S O F T WA R E C O L L E C T I O N

Glenn S. Fowler, David G. Korn, Stephen S. North, and Kiem-Phong Vo

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The AT&T AST OpenSource Software
Collection

Glenn S. Fowler, David G. Korn, Stephen S. North and Kiem-Phong Vo
AT&T Laboratories { Research

180 Park Avenue, Florham Park, NJ 07932, U.S.A.
gsf,dgk,north,kpv@research.att.com

Abstract

This paper introduces a large collection of reusable software components that AT&T is making

available in an OpenSource form. This software has been widely used around the world and includes

well-known components such as KornShell, Nmake, Graphviz, S�o, Vmalloc and Cdt.

1 Introduction

AT&T is not a newcomer to the UNIX market. In
fact, it is where UNIX was born. However, AT&T is
a newcomer to the world of OpenSource. This paper
highlights our entrance into that domain.

UNIX was �rst invented when AT&T comprised
the entire Bell Telephone System including Bell Tele-
phone Laboratories, Western Electric and 23 Re-
gional Operating Companies. This early AT&T
company was a regulated monopoly restricted to the
telecommunications business and prohibited from
entering other businesses. As such, all inventions
from Bell Telephone Laboratories unrelated to the
telecommunications business could only be licensed
externally. The UNIX system fell into this category
and was licensed early on for academic use.

In the late '70s and early '80s, AT&T wanted to
expand its business into new markets including the
computer market. In exchange for this right, AT&T
agreed to the now famous consent decree that split
o� the various Regional Bell Operating Companies
or RBOCs. Bell Telephone Laboratories was divided
into two parts, AT&T Bell Laboratories and Bell-
core (subsequently renamed Telcordia) which per-
formed research and development for the RBOCs.
The UNIX system remained with AT&T Bell Lab-
oratories and was commercialized for the �rst time.
With the entry into the computer market, AT&T
also became more restrictive in the release of poten-
tially commercializable software.

In the early '90s, AT&T realized that it could not
compete e�ectively in the computer business and be-
gan to refocus exclusively into its core strengths, the
communications business. As a result, the UNIX

division was sold to Novell. In the subsequent
\trivestiture," the company split o� the computer
division, NCR, and further separated the communi-
cation business two independent companies, Lucent
Technologies for equipment and the current AT&T
for services. AT&T Bell Laboratories was divided
into two parts, Lucent Bell Laboratories and AT&T
Laboratories. All copyrighted software at trivesti-
ture time remained available to both Lucent Bell
Laboratories and AT&T Laboratories after the split.

Our software research department, the Ad-
vanced Software Technologies department (AST),
was formed in the late '70s in the original Bell
Telephone Laboratories. It was separate from both
UNIX research and development organizations. Our
charter was to improve the productivity of AT&T
software development. We achieved this by invent-
ing new algorithms and techniques for existing APIs,
creating new powerful APIs in the forms of libraries,
languages and tools, and developing techniques for
accurate build and con�guration of software. The
audience for our software was the myriad develop-
ment organizations in AT&T. Since these organi-
zations used diverse equipments and operating sys-
tems, a key part of our work was to develop tech-
niques to enhance portability.

Our tools and libraries spread quickly among the
AT&T development organizations. To help with in-
ternal technology transfer, a separate organization
from research was set up to handle support and
distribution. Unfortunately, external release of our
software was not as smooth. The UNIX develop-
ment group was responsible for outside release and
they were often reluctant to adopt software that they

did not develop. There were, however, notable ex-
ceptions such as KornShell, Curses, and Malloc. The
latter two libraries eventually became standard parts
of Solaris, Irix and Unixware, UNIX variants derived
from the System V Release 4.0 UNIX version.

Events turned worse for internal technology trans-
fer after the sale of UNIX to Novell. To reduce the
cost for software support and to ensure compliance
with development methodologies such as ISO 9000,
AT&T development organizations were pushed to
buy vendor supported software. In this environment,
the most e�ective avenue to transfer technology from
research to development was to license the software
to external vendors who, in turn, resold to AT&T.

The recent advance of the OpenSource movement,
with the inception of the Open Source Initiative
(OSI), opened a new venue for making research soft-
ware widely accessible. From our point of view, the
primary advantages to OpenSource are:

� Increased inuence on national and interna-
tional standardization e�orts,

� Creating and supporting alternatives to closed
systems,

� The ability to attract vendors to distribute and
support the software,

� Improved software quality due to widespread
use, and

� Increased visibility of AT&T Laboratories in
the research community.

These bene�ts �t well with the current business
directions of AT&T which emphasize on building the
communication services business, not selling soft-
ware. Thus, AT&T intellectual property managers
became more open to arguments in favor of an Open-
Source software release based on the set of principles
called the Open Source De�nition as speci�ed by the
OSI on the website:

http://www.opensource.org/osd.html

In early 1999, we started an e�ort to release much of
the software developed in research under an Open-
Source license. After several months of discussions
and many rounds of negotiation, AT&T has suc-
cessfully produced a license that we believe meets
the conditions for OpenSource certi�cation and have
submitted the license to OSI for o�cial certi�cation.

The AT&T AST OpenSource software represents
many years of e�ort and covers a broad set of li-
braries and applications. Much of the early work
was described in the book Practical Reusable UNIX

Software[2]. The software includes a large subset
of the POSIX utilities including the latest version
of KornShell. In addition, there are many libraries
and utilities not available elsewhere. The software is
portable across virtually all UNIX environments, in-
cluding OpenEdition on MVS (which uses EBCDIC)
and Windows systems given a suitable UNIX layer
such as UWIN[13].

It is neither possible nor appropriate to describe
all the software components here, so the remainder
of the paper will focus on our approach to build-
ing and packaging software and the terms of our
OpenSource license. Interested readers can check
the given references for details on particular soft-
ware components.

2 Libraries

The AT&T AST OpenSource software collection
consists of is upward of 3/4 million LOCs. Despite
this large size, most of the software was created by
a small group of researchers, about 6 at its peak.
The software embodies some of the most powerful
algorithms and data structures known. For exam-
ple, the Graphviz package implements our patented
graph drawing algorithms that automatically gener-
ate pictures of directed and undirected graphs with
thousands of nodes and edges in seconds. A focus
in our work is to make such algorithms and data
structures widely reusable, not just in the tools that
we create but also in applications that others would
write. Another focus for our software is portability.
We wish to make it easy to build applications that
transparently compile and execute on at least all dif-
ferent UNIX platforms and certain selected others.
The limited human resource and the desire for wide
software reuse led us to conclude that:

A major part of our software development e�ort
should be directed toward the creation of pow-
erful reusable libraries that would enable other
tools and applications to be built by simply as-
sembling such libraries.

Thus, we embarked on a program to write soft-
ware libraries that encompass core computing func-
tions such as I/O and memory allocation and other
new algorithms and data structures such as data
compression and di�erencing and graph drawing.
Below is a partial list of libraries available in the
collection:

� Libast: This is the porting base library[8] for
our software tools. It includes a common header

that provides common data types such as size t

and others that may be missing on a particular
platform. Similarly, functions are provided to
�ll in missing ones (e.g., bcopy() on non-BSD
systems) and to replace existing ones that are
ine�cient. Libast also provides new convenient
functions such as strperm() to convert a chmod
�le mode expression into a mode t value.

� S�o: This I/O library[9] provides a robust inter-
face and implements new bu�ering and data for-
matting algorithms that are more e�cient than
those in the standard I/O library, Stdio. For
backward compatibility, S�o also provides em-
ulation code for Stdio that is suitable for both
recompiling and relinking Stdio applications.

� Vmalloc: This memory allocation library[22] al-
lows creation of di�erent memory regions based
on application-de�ned memory types (heap,
shared, memory mapped, etc.) and some
library-provided memory management strate-
gies. A backward-compatible Malloc interface
is provided that additionally allows an applica-
tion to selectively perform memory debugging
or pro�ling by setting environment variables.

� Cdt: This container data type library[23]
provides under a uni�ed interface a compre-
hensive set of containers: ordered/unordered
sets/multisets, lists, stacks and queues. These
container data types are based on e�cient data
structures such as hash tables and splay trees.

� Libexpr: This library provides run-time evalu-
ation for simple C-styled expressions. It forms
the basis for commands such as tw[7], a �le tree
walker and cql[4], a at �le database language.

� Libgraph: This graph library[18, 11] sup-
ports attributed graphs, generalized nested sub-
graphs, and stream �le I/O in a exible graph
data language. It is built on top of the Cdt li-
brary and employs disciplines for I/O, memory
management, graph object namespace manage-
ment and object update callbacks. This library
is the base of the Graphviz package to be dis-
cussed later.

2.1 Design considerations

Desirable qualities of a reusable library include ap-
plicability, e�ciency, ease of use and ease of mainte-
nance. However, there is no simple set of rules that
can guarantee the simultaneous achievement of these

qualities. The design considerations below serve as
guiding principles in our work:

� Necessity: This is at the heart of the idea of fo-
cusing on writing libraries before applications.
In developing tools and applications, we �rst
look into how they can be structured as one or
more library functions. In this way, any result-
ing new APIs would be guaranteed to �ll some
speci�c needs and not just arise out of some aca-
demic exercise. For example, our versions of the
POSIX commands were written �rst as library
functions with the �nal commands being just
simple drivers to parse command line options
and make the appropriate function calls. Many
of these functions are then reusable as built-ins
in other applications such as the shell.

� Generality: Each library attempts to encompass
as much functionality as possible without sac-
ri�cing e�ciency. This sometimes means unify-
ing separate but related concepts under a sin-
gle uniform interface. A good example of this
is the memory allocation library, Vmalloc, that
uni�es under a single interface various memory
allocation policies including methods to debug
memory errors and to pro�le memory usage.

� Consistency: We make sure that our libraries
and functions follow the same interface struc-
tures. For example, many libraries provide
functions to create structures to store states and
return handles referring to such structures. In
turn, these handles are used in future function
calls to access stored resources. For consistency,
we insist that the handle is always the �rst argu-
ment in such calls. This should be contrasted,
for example, with Stdio where a FILE* handle
can be either the �rst or the last argument.

� E�ciency: A reusable library is intended to
be used in many applications so performance
is a key to its success. This means that its im-
plementation should use the best available al-
gorithms and data structures. However, this
is not enough since di�erent applications may
have di�erent needs that require speci�c adap-
tations. We developed a discipline and method
library architecture[24] to unify di�erent algo-
rithms and techniques under a single interface
while still allowing applications to tune for e�-
ciency.

� Modularity: Modularity is the key in easing
maintenance e�ort as it reduces the interdepen-
dency among di�erent libraries as well as among

functions within the same library. To the ex-
tent possible, di�erent libraries are kept inde-
pendent from one another. However, there are
exceptions such as memory allocation or I/O
that must be negotiated by Vmalloc or S�o.

� Irredundancy: Along the same line of easing
maintenance e�ort, most algorithms and tech-
niques are implemented once in one component,
and all other components refer to this one im-
plementation. In this way, we never need to
make changes in multiple places for a single al-
gorithmic modi�cation.

� Extensibility: Extensibility means the ability
to add or change features without breaking
existing application code. Most of our li-
braries are based on the discipline and method
architecture[24]. Where applicable, a user-
de�ned discipline structure provides a version
�eld that must be initialized by its caller. Thus,
a new library implementation can then use the
version �eld to detect the caller's vintage and
act appropriately. The S�o extended print
discipline[10] uses this technique so that a new
version can support an obsolete feature for at
least one generation before discarding it. In
turn, this gives application developers time to
adapt their code.

� Robustness: Robustness means (1) thoroughly
testing functionality, (2) keeping the code free
from arti�cial constraints such as �xed size ar-
rays or integer sizes, and (3) avoiding unsafe
interfaces. Dynamic memory allocation is ju-
diciously used to construct any required data
structures. An example of the last point is our
S�o function sfgetr() that replaces the infa-
mous Stdio gets() function and removes any
concern about bu�er boundary violation. Each
of our libraries comes with a comprehensive
regression test suite that was built over time
based partially on bug reports.

� Portability: A basic goal for us is to be able
to run our code on all platforms that we have
access to. This includes all UNIX/Linux plat-
forms and others such as Windows and MVS.
However, portability means more than just
that. Our software is con�gured using the
i�e[6] approach to target local platform fea-
tures and maximize performance. For example,
the S�o library selects between memory map-
ping and other I/O system calls by running a
performance test at build time.

3 Tools

Aiming at an e�cient, easy to use, and portable
computing platform, we have reimplemented nearly
all POSIX command tools. We also invented a num-
ber of new tools some of which exerted inuence on
the standards. For example, our KornShell language
helped to de�ne the POSIX 1003.2 speci�cation for
shell language and our Pax tool for �le packaging
has been included in POSIX 1003.2. Our tools pro-
vide a wide range of functionality. Below are a few
examples:

� nmake[3]: A far more powerful make language
that supports dynamic dependency generation
and a higher level speci�cation language.

� i�e[6]: We use i�e to handle architecture-
speci�c features so that such information can
be speci�ed in the library source code instead of
the make�les. i�e detects architecture-speci�c
features similar autocon�g, but at a much
more localized level. For example, most GNU
packages have a single config.h, whereas the
Libast library has 25 i�e �les. By localizing the
con�guration tests we can limit the amount of
code that must be recompiled when individual
i�e con�guration scripts change. Unlike auto-
con�g and old-make, nmake handles all i�e
�le generation and dependencies automatically
as part of the build process.

� tw[7]: This command replaces �nd and xargs
and provides more general searching.

� cql[4]: This command provides a C database
query language that works on both at �le and
binary databases. It performs better than awk
or perl.

� 3d[5]: This command is a combination of a shell
script and a shared library. It modi�es the �le
system semantics to enable viewpathing. That
is, di�erent �le trees can be virtually overlaid
on top of one another with a copy-on-write se-
mantic to the higher layer.

� warp: This command is implemented similarly
to 3d. It can be used to run a process as if
the time were set to some speci�ed time and
the clock speed was set to some speci�c rate. It
was useful for Y2K testing.

The tool development follows a few principles that
help to keep the tools uniform, portable, and robust.
We discuss these principles next.

� Conformance to standards: Our tools conform
to the 1992 IEEE POSIX 1003.2 standard[20]
and provide additional extensions where appro-
priate. Thus, at the least, strictly conforming
POSIX applications can use our code without
change. We have rewritten most of the tools in
the base standard and User Portability sections
except for a few such as awk, di�, mailx. We
imported the GNU version of di� and the BSD
version ofmailx and enhanced the latter to add
features such as MIME enclosures and IMAP.

� Conformance to common conventions: On vari-
ous platforms, many common utilities provide
extensions that are beyond the standard but
well liked by users. Whenever possible, our
versions of the utilities provide the same exten-
sions. For example, most of the utilities accept
the long name options that GNU supports. To
handle conicts between extensions done in dif-
ferent universes such as BSD or System V, we
added a con�guration option UNIVERSE to
control the behavior of such utilities. In ad-
dition, the getconf utility is extended so that
users can set con�guration parameters such as
UNIVERSE.

� Avoiding absolute pathnames: One of the banes
of binary distributions is embedded path names.
For example, the �le command may consult
/etc/magic for �le descriptions. Its not ap-
propriate for the our �le command to look in
the same place. Instead of adding a new envi-
ronment variable for each candidate �xed path,
we use the $PATH environment variable, which
must be set properly to use any package, to lo-
cate command related �les. The convention is:
the �les for command foo are found by doing
a $PATH search for the ../lib/foo directory. A
binary directory tree can be installed anywhere
without recompilation; the only requirement is
that the binary bin directory is added to $PATH.

� Avoiding size restrictions: Our tools are freed
arti�cial constraints such as �xed size arrays or
small �le sizes. For example, even though the
POSIX standard only requires handling of text
�les with line lengths 2K or less, our tools do
not have such line length limits. Instead, they
use the record-reading function sfgetr() in the
S�o library which allocates dynamic memory as
necessary to bu�er lines with arbitrary lengths.
Via the use of S�o, our tools also transparently
work on systems that support �les with o�sets
larger than 32 bits.

� Combining related utilities into one: Whenever
multiple related utilities can be combined into
one, we do so. For example, our pax com-
mand combines the functionality of cpio and
tar. In addition, it supports multiple formats
such as ANSI and EBCDIC standard labelled
tape, VMS backup and Microsoft cabinet �les
and also compression methods such as com-
press, gzip, and our own Vdelta[12] method
for compression and di�erencing. Other no-
table examples include the uni�cation of grep,
fgrep, and egrep in a single command, the sup-
port of MIME Base64 and Binhex encodings in
uuencode and uudecode, and the support of
MD5 hashing in cksum.

� Self-documenting tools: Our tools use a com-
mon library function optget() to parse com-
mand line arguments. We extended this op-
tion parser so that it can generate the man
page in one or more formats. For example, pax
--man, pax --nroff, and pax --html would gen-
erate the documentation on the screen, in Tro�,
or in HTML format.

� Building and using powerful reusable libraries:

It is worth emphasizing again here that our
main focus is on building powerful reusable li-
braries that can be easily assembled into com-
mands. This helps to maximize the reusability
of the code. For example, even the KornShell
itself was implemented as a library. In turn, this
enabled the creation of tksh[14], a combination
of shell and the Tk graphics library[19].

4 Graph visualization

A large part of our work is in software reegineer-
ing and data visualization. To help with this e�ort,
we developed Graphviz[11], a collection of portable
tools for rendering and interacting with abstract
graph (network) drawings.

The main Graphviz layout programs, dot and
neato, read text speci�cations of the nodes and
edges of a graph, and emit drawings in a graph-
ics language such as Postscript, pic, GIF, Metapost,
VRML or PNG. We have combined these rendering
engines with the graphics editor lefty[15] to build
an interactive diagram manipulator dotty[16]. To
provide support for a more popular scripting envi-
ronment, Graphviz can be compiled as a Tcl/Tk ex-
tension.

Graphviz was also made into a web server by
adding GIF and PNG drivers and a wrapper script

to run dot or neato as a remote cgi-bin service.
This service is now employed within AT&T and by
outside projects (for example, mozilla.org) and rep-
resents a simple experiment in how programs provid-
ing lightweight services can be reused more easily as
web services than as packages that must be manually
downloaded, installed and kept up-to-date. Also,
for more sophisticated user interface customization
we created Grappa, a Java graph library that com-
municates with dot as a server in the same way as
lefty/dotty. Grappa can run standalone or as an
applet.

Recent work on Graphviz addressed dynamic lay-
out, where diagrams are maintained on-line with sta-
ble incremental updates. This work required de-
vising event-based APIs and modifying the front
ends to handle layout event streams instead of batch
layout. The OpenSource code release includes a
component addressing the Microsoft Windows plat-
form. Our goal here was to create a fully OLE-
aware network diagram editor. The editor is embed-
dable, may contain foreign objects as content and
can be controlled via C++ or scripting languages
such as Visual Basic. To achieve this, we factored
the diagram editor into a generic OLE client-server,
Montage[25], that provides UI management, persis-
tence for non-hierarchical collections of objects, and
domain-speci�c components to interpret user inter-
face events or manage layouts. This facet of the
Graphviz project diverged a great deal from our
UNIX roots. However, Montage is a valuable con-
tribution to the OpenSource community. To our
knowledge it is the only fully OLE-aware software
component available in an OpenSource form, and
perhaps the only one outside of Microsoft, Visio, and
Borland/Inprise. Moreover, the container library is
a separate, clean design well suited to reuse, not
laden with application-speci�c semantics.

5 Packaging

We employ a packging process designed to ease
the reproduction of our environment on multiple
platforms. This process provides a mechanism for
bundling a set of source components, transporting
them to another platform, making binaries from
source using the native compilation system, and
bundling binaries for use on other equivalent plat-
forms.

5.1 Packages

The smallest distribution unit is a package, i.e., a
collection of source or binary components. A source

component is a group of source �les controlled by a
make�le; the make�le and all related source reside
in a directory named by the component. Making a
component generates binaries from the source and
makes them available for use. A binary component

contains all of the generated binaries corresponding
to a source component. Most components generate
commands or libraries and interface �les, but some
may provide only documentation or data.

A component may depend on other components.
These dependencies de�ne a make order. That is,
a component may require that other components be
made before it is made. Packages might also have
dependencies. For example, the Graphviz package
requires the Libast package.

The traditional method to handle component
make order to hard-wire the order in package make-
�les or build scripts, with the restriction that each
package reside in its own directory hierarchy. This
method defeats any attempts at sharing code be-
tween packages. For example, the GNU �leutils,
�ndutils, and textutils packages each have a lib
source directory. Out of a combined 152 �les, 53
are unique to one package, 30 are shared between
two, and 13 are shared between all three. This is an
unacceptable situation and inevitably leads to du-
plication and splintering { maintenance nightmares
for a small group like ours.

nmake solves the component make order prob-
lem. Given a collection of component make�les,
nmake constructs a component dependency graph,
and makes the components in order, using a separate
nmake invocation for each component. Indepen-
dent components are detected to facilitate concur-
rent makes. It is important to note that when com-
ponents are added to a package hierarchy the new
components are automatically detected and made in
the proper order. This means that, barring gener-
ated binary name clashes, packages and components
can be freely and safely combined.

5.2 Versioning

As mentioned, there are two types of packages:
source and binary. These come in two avors: base
and delta. A base package contains a complete copy
of all the package components. A delta package is
similar to a patch: it contains only the di�erences
from its base package. Unlike a patch, delta di�er-
ences are maintained at a byte level instead of a text
line-by-line level. This allows binary deltas as well
as source deltas. Delta packages also contain delete

information, so that �les may be deleted from a com-
ponent as it ages. Packages are simply compressed

archive �les maintained by our pax command which
computes deltas using our vdelta algorithm. Sup-
port �les are simply added to the archive of compo-
nent source as the packages are generated.

Delta packages form the basis of a simple but
complete version management strategy. With a little
discipline we are able to record and document soft-
ware updates and bug �xes. Each component has
a RELEASE, CHANGES, or CHANGELOG
�le that contains a dated comment line for each no-
table change, in reverse chronological order (newest
entries at the top.) After component source is mod-
i�ed and tested (including RELEASE �le edits),
a delta source package is made to record all of the
changes. Delta source packages are quite e�cient in
space and typically take up less than 1 percent of
the corresponding base source packages.

Each package is stamped with its creation date
and delta count (starting at 1). As a package archive
is written, its stamp and the stamps of packages it
depends on are recorded as �les in the archive. When
unpacking a package a simple sort on the stamp �les
tells if the proper dependent packages are present.
Since backwards compatibility is guaranteed, the
stamp checking rule is simple: any package stamp
equal to or newer than the requested stamp is ac-
ceptable.

5.3 Source vs. Binary

The package layout maintains source �les (readonly)
in a separate directory tree from binary �les (gen-
erated). This feature allows many binary packages
to be made from a single source copy, handy when
the package directory tree is cross-mounted on hosts
with di�erent architectures. Files in the binary di-
rectory tree take precedence over �les in the source
tree. So local modi�cations can be simply done by
copying source �les to the binary tree and modifying
them there. In this way, the original and modi�ed
�les can be compared, and changes made for one ar-
chitecture won't interfere with the others. A source
delta (patch) is simply made by recording the di�er-
ences between source �les in the binary and source
trees.

5.4 The package Command

The package command is the interface for all
package management. This command is part of
the INIT package that all other packages require.
The INIT package must �rst be downloaded into
an empty directory tree and installed (gunzip <

INIT-yyyy-mm-dd j tar xvf -). Then other packages

can then be downloaded, made, and/or installed by
the package command.

Each package has a description �le, package.pkg
(an nmake make�le), that lists its components and
package dependencies. Any component described by
an nmake make�le can be part of a package; no
other �les or auxiliary package information is re-
quired. The package is used for the following op-
erations:

� write [base|delta] [binary|source] pack-

age: This creates an archive for package,
including version stamp and binary checksum
support �les.

� read [�le.tgz|�le.nnn]: This reads the pack-
age base archive �le.tgz or package delta
archive �le.nnn.

� make [package]: This makes and installs the
binaries for package, or all packages if package
is omitted.

� verify [package]: This veri�es the installed
binaries for package, or all packages if package
is omitted, against the package checksum �les.

� test [package]: This runs the regression tests
for package, or all packages if package is omitted.

� use [uid|package]: This runs an interactive
shell with environment initialized for using
package or the package installed by the user
uid. An unfortunate side e�ect of using shared
libraries (DLLs) is that some systems require
speci�c (and di�erent for every system) envi-
ronment variable settings to properly locate the
DLLs at runtime.

6 License terms

The AT&T Source Code agreement was written both
to satisfy the Open Source De�nition, and to protect
AT&T's intellectual property and other rights. Be-
fore creating a new license, we carefully reviewed the
main licenses already in use, particularly, GPL, L-
GPL, QPL, Apple Public Source License, and the
IBM open source license. These were not satisfac-
tory to AT&T as, for example, they do not ade-
quately cover patent rights. Often such holes are
just as detrimental to licensees as they are to the
licensor.

The AT&T Source Code Agreement (ASCA
1.2D), listed in the Appendix, gives licensees the
right to:

� Read, study, display, compile, and execute bi-
naries made from the source code.

� Use AT&T patents in the original code to exe-
cute original or modi�ed software.

� Redistribute the original source package in any
format, as long the contents are preserved ex-
actly.

� Distribute patches that include the copyrighted
source code.

� Distribute binaries made from original or mod-
i�ed source code.

From a licensee's standpoint, the main conditions
are:

� Distribution can only be made to those that
agree to the license terms,

� If modi�cations to the source are made pub-
lic, then AT&T has the right to include these
changes in its package, and

� AT&T controls the contents of the o�cial
source distribution.

In many other ways the license terms are lib-
eral toward commercial OpenSource licensees. The
ASCA allows licensees to charge for redistribution.
It also grants the right to use AT&T patents involved
in the code, even when modi�ed.

Some of the concerns brought up in the Open-
Source review include those below. We felt that
these license terms were reasonable, and left them
in.

� A restriction against framing the AT&T web-
site, perhaps to suggest a relationship with
AT&T.

� Your rights under this agreement can be termi-
nated automatically if we receive a non-frivolous
claim of a patent infringement by a third party
related to the source code on our website. In
the event of an infringement claim, you would
have to replace any infringing portion of the
source code with non-infringing code or license
the patent from the third party. For this rea-
son, the agreement requires you to periodically
check the AT&T website for such infringement
notices.

� A \no strict construction" clause. This is an
agreement that the license should not somehow
be construed literally against what was really
intended, to the detriment of either party.

Some very signi�cant improvements were made
as part of the OpenSource negotiation, for example,
plugging holes in the license concerning the equiva-
lent of \fair use" (since the ASCA relies on granting
speci�c rights, instead of transferring ownership of
a copy of a copyrighted work) and avoiding cum-
bersome restrictions on charging for redistributed
copies, shrink-wrap licensing and repackaging of the
source, among others. The AT&T OpenSource li-
cense agreement can also be viewed at:

http://www.research.att.com/sw/license/

ast-open.html

7 Conclusion

This paper introduced the AT&T AST OpenSource
software collection. This software collection is nearly
twenty years in the making and includes tools such
as the KornShell language, the Nmake system, the
Graphviz package for graph drawing, and core com-
puting and algorithm libraries such as S�o, Cdt and
Vmalloc. Many of the components were previously
available for non-commercial use from the website:

http://www.research.att.com/sw/tools/

In just the past year and a half, more than 40,000
copies have been downloaded. Many large and
mission-critical projects both within AT&T as well
as around the world are dependent on these com-
ponents. A frequently asked question from external
users is \How do we license the software for pro-
duction use?" This OpenSource release provides an
answer.

Acknowledgments

The authors thank Ben Lee and Tom Restaino for le-
gal work, and Dave Belanger, Je� George and David
Nagel for backing the Open Source release.

References

[1] ANSI. American National Standard for Information
Systems { Programming Language { C. American
National Standards Institute, 1990.

[2] Edited by B. Krisnamurthy. Practical Reusable
Unix Software. John Wiley & Sons, Inc., 1995.

[3] Glenn S. Fowler. The Fourth Generation Make.
In Proc. of the USENIX 1985 Summer Conference,
pages 159{174, 1985.

[4] Glenn S. Fowler. cql { A Flat File Database Query
Language. In Proc. of the USENIX Winter 1994
Conference, pages 11{21, January 1994.

[5] Glenn S. Fowler, David G. Korn, and Herman C.
Rao. n-DFS: The Multiple Dimensional File Sys-
tem. Trends in Software: Con�guration Manage-
ment, 2, 1994.

[6] Glenn S. Fowler, David G. Korn, J.J. Snyder, and
Kiem-Phong Vo. Feature-Based Portability. In
Proc. of the Usenix VHLL Conference, pages 197{
207. USENIX, 1994.

[7] Glenn S. Fowler, David G. Korn, and Kiem-Phong
Vo. An E�cient File Hierarchy Walker. In Proc. of
the Summer '89 Usenix Conference, pages 173{188.
USENIX, 1989.

[8] Glenn S. Fowler, David G. Korn, and Kiem-Phong
Vo. Principles for Writing Reusable Library. In
Proc. of the ACM SIGSOFT Symposium on Soft-
ware Reusability, pages 150{160. ACM Press, 1995.

[9] Glenn S. Fowler, David G. Korn, and Kiem-Phong
Vo. S�o: A Bu�ered I/O Library. Software|
Practice and Experience, Accepted for publication,
1999.

[10] Glenn S. Fowler, David G. Korn, and Kiem-Phong
Vo. Extended Data Formatting Using S�o. In Proc.
of the 2000 Usenix Conference, USENIX, 2000.

[11] E. R. Gansner, E. Koutso�os, S. C. North, and
Kiem-Phong Vo. Graph Visualization in Software
Analysis. In Proc. of the Symp. on Assessment
of Quality Software Development Tools, pages 226{
237, 1992.

[12] James J. Hunt, Kiem-Phong Vo, and Walter F.
Tichy. An Empirical Study of Delta Algorithms.
In IEEE Software Con�guration and Maintenance
Workshop, 1996.

[13] David G. Korn. Porting UNIX to Windows NT.
In Proc. of the 1997 Usenix Conference. USENIX,
1997.

[14] Je�rey L. Korn. Tksh: A Tcl library for KornShell.
In Proc. of the USENIX Tcl/Tk Workshop, pages
149{159, Monterey, CA, July 1996.

[15] Eleftherios Koutso�os and David Dobkin. Lefty: A
two-view editor for technical pictures. In Proc. of
Graphics Interface '91, pages 68{76, 1991.

[16] Eleftherios Koutso�os and Stephen C. North. Ap-
plications of Graph Visualization. In Proc. of
Graphics Interface 1994 Conference, pages 235{245,
Ban�, Canada, May 1994.

[17] David R. Musser and Atul Saini. STL Tutorial and
Reference Guide. Addison-Wesley, 1995.

[18] Stephen C. North and Kiem-Phong Vo. Dictionary
and Graph Libraries. In Proc. of the Winter '93
Usenix Conference, pages 1{11. USENIX, 1993.

[19] John K. Ousterhout. Tcl and the Tk Toolkit. Read-
ing, MA, 1994.

[20] POSIX. IEEE Standard 1003.2{1992, ISO/IEC
9945-2:1992, POSIX { Part 2: Shell and Utilities.
Institute of Electrical and Electronics Engineers,
1993.

[21] Robert Sedgewick. Algorithms, 2nd Edition.
Addison-Wesley, 1988.

[22] Kiem-Phong Vo. Vmalloc: A General and E�cient
Memory Allocator. Software|Practice and Experi-
ence, 26:1{18, 1996.

[23] Kiem-Phong Vo. Cdt: A Container Data Type Li-
brary. Software|Practice and Experience, 27:1177{
1197, 1997.

[24] Kiem-Phong Vo. An Architecture for Reusable Li-
braries. In Proc. of the 5th International Conference
on Software Reuse. IEEE, 1998.

[25] Gordon Woodhull and Stephen C. North. Montage
{ an ActiveX Container for Dynamic Interfaces. In
Proc. of the 2nd USENIX Windows NT Symposium,
pages 109{116, Seattle, CA, August 1998.

AT&T AST OpenSource SOURCE CODE AGREEMENT

Version 1.2D

PLEASE READ THIS AGREEMENT CAREFULLY. By accessing and using the Source Code, you accept
this Agreement in its entirety and agree to only use the Source Code in accordance with the following
terms and conditions. If you do not wish to be bound by these terms and conditions, do not access or use
the Source Code.

1. YOUR REPRESENTATIONS

1. You represent and warrant that:

a. If you are an entity, or an individual other than the person accepting this Agreement, the
person accepting this Agreement on your behalf is your legally authorized representative, duly
authorized to accept agreements of this type on your behalf and obligate you to comply with
its provisions;

b. You have read and fully understand this Agreement in its entirety;

c. Your Build Materials are either original or do not include any Software obtained under a
license that conicts with the obligations contained in this Agreement;

d. To the best of your knowledge, your Build Materials do not infringe or misappropriate the
rights of any person or entity; and,

e. You will regularly monitor the Website for any notices.

2. DEFINITIONS AND INTERPRETATION

1. For purposes of this Agreement, certain terms have been de�ned below and elsewhere in this Agree-
ment to encompass meanings that may di�er from, or be in addition to, the normal connotation
of the de�ned word.

a. \Additional Code" means Software in source code form which does not contain any

i. of the Source Code, or

ii. derivative work (such term having the same meaning in this Agreement as under U.S.
Copyright Law) of the Source Code.

b. \AT&T Patent Claims"means those claims of patents (i) owned by AT&T and (ii) licensable
without restriction or obligation, which, absent a license, are necessarily and unavoidably
infringed by the use of the functionality of the Source Code.

c. \Build Materials" means, with reference to a Derived Product, the Patch and Addi-
tional Code, if any, used in the preparation of suchDerived Product, together with written
instructions that describe, in reasonable detail, such preparation.

d. \Derived Product" means a Software Product which is a derivative work of the Source
Code.

e. \IPR" means all rights protectable under intellectual property law anywhere throughout the
world, including rights protectable under patent, copyright and trade secret laws, but not
trademark rights.

f. \Package" means a computer �le containing the exact same contents as the computer �le
from the Website which will be downloaded after accepting, or was opened to access, this
Agreement.

g. \Patch" means Software for changing all or any portion of the Source Code.

h. \Proprietary Notice" means the following statement:
This product contains certain software code or other information (\AT&T Software") propri-
etary to AT&T Corp. (\AT&T"). The AT&T Software is provided to you \AS IS". YOU
ASSUME TOTAL RESPONSIBILITY AND RISK FOR USE OF THE AT&T SOFTWARE.
AT&T DOES NOT MAKE, AND EXPRESSLY DISCLAIMS, ANY EXPRESS OR IMPLIED

WARRANTIES OF ANY KIND WHATSOEVER, INCLUDING, WITHOUT LIMITATION,
THE IMPLIEDWARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICU-
LAR PURPOSE, WARRANTIES OF TITLE OR NON-INFRINGEMENT OF ANY INTEL-
LECTUAL PROPERTY RIGHTS, ANY WARRANTIES ARISING BY USAGE OF TRADE,
COURSE OFDEALING OR COURSEOF PERFORMANCE, OR ANYWARRANTY THAT
THE AT&T SOFTWARE IS \ERROR FREE" OR WILL MEET YOUR REQUIREMENTS.
Unless you accept a license to use the AT&T Software, you shall not reverse compile, disas-
semble or otherwise reverse engineer this product to ascertain the source code for any AT&T
Software.
c AT&T Corp. All rights reserved. AT&T is a registered trademark of AT&T Corp.

i. \Software" means, as the context may require, source or object code instructions for control-
ling the operation of a central processing unit or computer, and computer �les containing data
or text.

j. \Software Product" means a collection of computer �les containing Software in object code
form only, which, taken together, reasonably comprise a product, regardless of whether such
product is intended for internal use or commercial exploitation. A single computer �le can
comprise a Software Product.

k. "Source Code" means the Software contained in compressed form in the Package.

l. \Website" means the Internet website having the URL http://www.research.att.com/sw/

download/ AT&T may change the content or URL of the Website, or remove it from the
Internet altogether.

2. By way of clari�cation only, the terms Package, Proprietary Notice and Source Code when
used in this Agreement shall mean the materials and information de�ned by such terms without
any change, enhancement, amendment, alteration or modi�cation (collectively, \changes").

3. GRANT OF RIGHTS

1. Subject to third party intellectual property claims, if any, and the terms and conditions of this
Agreement, AT&T grants to you under:

a. the AT&T Patent Claims and AT&T's copyright rights in the Source Code, a non-
exclusive, fully paid-up license to:

i. Reproduce and distribute the Package;

ii. Display, perform, use, and compile the Source Code and execute the resultant binary
Software on a computer;

iii. Prepare a Derived Product solely by compiling Additional Code, if any, together with
the code resulting from operating a Patch on the Source Code; and,

iv. Execute on a computer and distribute to others Derived Products,

except that, with respect to the AT&T Patent Claims, the license rights granted in clauses
(iii) and (iv) above shall only extend, and be limited, to that portion of a Derived Product
which is Software compiled from some portion of the Source Code; and,

b. AT&T's copyright rights in the Source Code, a non-exclusive, fully paid-up license to prepare
and distribute Patches for the Source Code.

2. Subject to the terms and conditions of this Agreement, you may create a hyperlink between an
Internet website owned and controlled by you and theWebsite, which hyperlink describes in a fair
and good faith manner where the Package and Source Codemay be obtained, provided that, you
do not frame theWebsite or otherwise give the false impression that AT&T is somehow associated
with, or otherwise endorses or sponsors your website. Any goodwill associated with such hyperlink
shall inure to the sole bene�t of AT&T. Other than the creation of such hyperlink, nothing in this
Agreement shall be construed as conferring upon you any right to use any reference to AT&T,
its trade names, trademarks, service marks or any other indicia of origin owned by AT&T, or to
indicate that your products or services are in any way sponsored, approved or endorsed by, or
a�liated with, AT&T.

3. Except as expressly set forth in Section 3.1 above, no other rights or licenses under any of AT&T's
IPR are granted or, by implication, estoppel or otherwise, conferred. By way of example only,
no rights or licenses under any of AT&T's patents are granted or, by implication, estoppel or
otherwise, conferred with respect to any portion of a Derived Product which is not Software
compiled from some portion, without change, of the Source Code.

4. YOUR OBLIGATIONS

1. If you distribute Build Materials (including if you are required to do so pursuant to this Agree-
ment), you shall ensure that the recipient enters into and duly accepts an agreement with you which
includes the minimum terms set forth in Appendix A, see the website for this Appendix, (completed
to indicate you as the LICENSOR) and no other provisions which, in AT&T's opinion, conict
with your obligations under, or the intent of, this Agreement. The agreement required under this
Section 4.1 may be in electronic form and may be distributed with the Build Materials in a form
such that the recipient accepts the agreement by using or installing the Build Materials. If any
Additional Code contained in your Build Materials includes Software you obtained under
license, the agreement shall also include complete details concerning the license and any restrictions
or obligations associated with such Software.

2. If you prepare a Patch which you distribute to anyone else you shall:

a. Contact AT&T, as may be provided on theWebsite or in a text �le included with the Source
Code, and describe for AT&T such Patch and provide AT&T with a copy of such Patch as
directed by AT&T; or,

b. Where you make your Patch generally available on your Internet website, you shall provide
AT&T with the URL of your website and hereby grant to AT&T a non-exclusive, fully-paid
up right to create a hyperlink between your website and a page associated with the Website.

3. If you prepare a Derived Product, such product shall conspicuously display to users, and any
corresponding documentation and license agreement shall include as a provision, the Proprietary
Notice.

5. YOUR GRANT OF RIGHTS TO AT&T

1. You grant to AT&T under any IPR owned or licensable by you which in any way relates to your
Patches, a non-exclusive, perpetual, worldwide, fully paid-up, unrestricted, irrevocable license,
along with the right to sublicense others, to (a) make, have made, use, o�er to sell, sell and import
any products, services or any combination of products or services, and (b) reproduce, distribute,
prepare derivative works based on, perform, display and transmit your Patches in any media
whether now known or in the future developed.

6. AS IS CLAUSE / LIMITATION OF LIABILITY

1. The Source Code and Package are provided to you \AS IS". YOU ASSUME TOTAL RESPON-
SIBILITY AND RISK FOR YOUR USE OF THEM INCLUDING THE RISK OF ANY DE-
FECTS OR INACCURACIES THEREIN. AT&T DOES NOT MAKE, AND EXPRESSLY DIS-
CLAIMS, ANY EXPRESS OR IMPLIED WARRANTIES OF ANY KIND WHATSOEVER, IN-
CLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE, WARRANTIES OF TITLE OR NON-
INFRINGEMENT OF ANY IPR OR TRADEMARK RIGHTS, ANY WARRANTIES ARISING
BY USAGE OF TRADE, COURSE OF DEALING OR COURSE OF PERFORMANCE, OR
ANY WARRANTY THAT THE SOURCE CODE OR PACKAGE ARE \ERROR FREE"
OR WILL MEET YOUR REQUIREMENTS.

2. IN NO EVENT SHALL AT&T BE LIABLE FOR (a) ANY INCIDENTAL, CONSEQUENTIAL,
OR INDIRECT DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS
OF PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMSOR INFORMATION, AND
THE LIKE) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOURCE CODE
OR PACKAGE, EVEN IF AT&T OR ANY OF ITS AUTHORIZED REPRESENTATIVES

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, (b) ANY CLAIM AT-
TRIBUTABLE TO ERRORS, OMISSIONS, OR OTHER INACCURACIES IN THE SOURCE
CODE OR PACKAGE, OR (c) ANY CLAIM BY ANY THIRD PARTY.

3. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIA-
BILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATIONS
MAY NOT APPLY TO YOU. IN THE EVENT THAT APPLICABLE LAW DOES NOT ALLOW
THE COMPLETE EXCLUSION OR LIMITATION OF LIABILITY OF CLAIMS AND DAM-
AGES AS SET FORTH IN THIS AGREEMENT, AT&T'S LIABILITY IS LIMITED TO THE
GREATEST EXTENT PERMITTED BY LAW.

7. INDEMNIFICATION

1. You shall indemnify and hold harmless AT&T, its a�liates and authorized representatives against
any claims, suits or proceedings asserted or commenced by any third party and arising out of, or
relating to, your use of the Source Code. This obligation shall include indemnifying against all
damages, losses, costs and expenses (including attorneys' fees) incurred by AT&T, its a�liates and
authorized representatives as a result of any such claims, suits or proceedings, including any costs
or expenses incurred in defending against any such claims, suits, or proceedings.

8. GENERAL

1. You shall not assert against AT&T, its a�liates or authorized representatives any claim for in-
fringement or misappropriation of any IPR or trademark rights in any way relating to the Source
Code, including any such claims relating to any Patches.

2. In the event that any provision of this Agreement is deemed illegal or unenforceable, AT&T may,
but is not obligated to, post on the Website a new version of this Agreement which, in AT&T's
opinion, reasonably preserves the intent of this Agreement.

3. Your rights and license (but not any of your obligations) under this Agreement shall terminate
automatically in the event that (a) notice of a non-frivolous claim by a third party relating to the
Source Code or Package is posted on the Website, (b) you have knowledge of any such claim,
(c) any of your representations or warranties in Article 1.0 or Section 8.4 are false or inaccurate, (d)
you exceed the rights and license granted to you or (e) you fail to fully comply with any provision
of this Agreement. Nothing in this provision shall be construed to restrict you, at your option and
subject to applicable law, from replacing the portion of the Source Code that is the subject of
a claim by a third party with non-infringing code or from independently negotiating for necessary
rights from the third party.

4. You acknowledge that the Source Code and Package may be subject to U.S. export laws and
regulations, and, accordingly, you hereby assure AT&T that you will not, directly or indirectly,
violate any applicable U.S. laws and regulations.

5. Without limiting any of AT&T's rights under this Agreement or at law or in equity, or otherwise
expanding the scope of the license and rights granted hereunder, if you fail to perform any of your
obligations under this Agreement with respect to any of your Patches orDerived Products, or if
you do any act which exceeds the scope of the license and rights granted herein, then such Patches,
Derived Products and acts are not licensed or otherwise authorized under this Agreement and
such failure shall also be deemed a breach of this Agreement. In addition to all other relief
available to it for any breach of your obligations under this Agreement, AT&T shall be entitled to
an injunction requiring you to perform such obligations.

6. This Agreement shall be governed by and construed in accordance with the laws of the State
of New York, USA, without regard to its conicts of law rules. This Agreement shall be fairly
interpreted in accordance with its terms and without any strict construction in favor of or against
either AT&T or you. Any suit or proceeding you bring relating to this Agreement shall be brought
and prosecuted only in New York, New York, USA.

