
Satori: Enlightened page sharing
Grzegorz Miłoś, Derek G. Murray, Steven Hand
University of Cambridge Computer Laboratory

Cambridge, United Kingdom
First.Last@cl.cam.ac.uk

Michael A. Fetterman
NVIDIA Corporation

Bedford, Massachusetts, USA
mafetter@nvidia.com

Abstract
We introduce Satori, an efficient and effective sys-

tem for sharing memory in virtualised systems. Satori
uses enlightenments in guest operating systems to detect
sharing opportunities and manage the surplus memory
that results from sharing. Our approach has three key
benefits over existing systems: it is better able to detect
short-lived sharing opportunities, it is efficient and in-
curs negligible overhead, and it maintains performance
isolation between virtual machines.

We present Satori in terms of hypervisor-agnostic
design decisions, and also discuss our implementation
for the Xen virtual machine monitor. In our evalua-
tion, we show that Satori quickly exploits up to 94%
of the maximum possible sharing with insignificant
performance overhead. Furthermore, we demonstrate
workloads where the additional memory improves mac-
robenchmark performance by a factor of two.

1 Introduction
An operating system can almost always put more mem-
ory to good use. By adding more memory, an OS can ac-
commodate the working set of more processes in physi-
cal memory, and can also cache the contents of recently-
loaded files. In both cases, cutting down on physical I/O
improves overall performance. We have implemented
Satori, a novel system that exploits opportunities for sav-
ing memory when running on a virtual machine monitor
(VMM). In this paper, we explain the policy and archi-
tectural decisions that make Satori efficient and effec-
tive, and evaluate its performance.

Previous work has shown that it is possible to save
memory in virtualised systems by sharing pages that
have identical [23] and/or similar [4] contents. These
systems were designed for unmodified operating sys-
tems, which impose restrictions on the sharing that can
be achieved. First, they detect sharing opportunities by
periodically scanning the memory of all guest VMs. The
scanning rate is a trade-off: scanning at a higher rate de-
tects more sharing opportunities, but uses more of the
CPU. Secondly, since it overcommits the physical mem-
ory available to guests, the VMM must be able to page
guest memory to and from disk, which can lead to poor
performance.

We introduce enlightened page sharing as a collec-
tion of techniques for making informed decisions when
sharing memory and distributing the benefits. Several
projects have shown that the performance of a guest OS
running on a VMM improves when the guest is modified
to exploit the virtualised environment [1, 25]. In Satori,
we add two main enlightenments to guests. We modify
the virtual disk subsystem, to implement sharing-aware
block devices: these detect sharing opportunities in the
page cache immediately as data is read into memory. We
also add a repayment FIFO, through which the guest
provides pages that the VMM can use when sharing is
broken. Through our modifications, we detect the ma-
jority of sharing opportunities much sooner than a mem-
ory scanner would, we obviate the run-time overhead of
scanning, and we avoid paging in the VMM.

We also introduce a novel approach for distributing
the benefits of page sharing. Each guest VM receives
a sharing entitlement that is proportional to the amount
of memory that it shares with other VMs. Therefore,
the guests which share most memory receive the great-
est benefit, and so guests have an incentive to share.
Moreover, this maintains strong isolation between VMs:
when a page is unshared, only the VMs originally in-
volved in sharing the page are affected.

When we developed Satori, we had two main goals:

Detect short-lived sharing: We show in the evaluation
that the majority of sharing opportunities are short-
lived and do not persist long enough for a mem-
ory scanner to detect them. Satori detects sharing
opportunities immediately when pages are loaded,
and quickly passes on the benefits to the guest VMs.

Detect sharing cheaply: We also show that Satori’s
impact on the performance of a macrobenchmark—
even without the benefits of sharing—is insignif-
icant. Furthermore, when sharing is exploited,
we achieve improved performance for some mac-
robenchmarks, because the guests can use the addi-
tional memory to cache more data.

The rest of this paper is organised as follows. We be-
gin by discussing the issues of memory management in
both operating systems and virtualised platforms (Sec-
tion 2). We then survey related systems (Section 3).

We present Satori in two parts: first, we justify the ma-
jor design decisions that differentiate Satori from other
systems (Section 4), then we describe how we imple-
mented a prototype of Satori for the Xen VMM (Sec-
tion 5). Finally, we perform a thorough evaluation of
Satori’s performance, including its effectiveness at find-
ing sharing opportunities and its impact on overall per-
formance (Section 6).

2 Background
The problem of memory management has a long history
in operating systems and virtual machine monitors. In
this section, we review common techniques for manag-
ing memory as a shared resource (§ 2.1). We then de-
scribe the relevant issues for page sharing in virtual ma-
chine monitors (§ 2.2). Finally, we describe how paravir-
tualisation is used to improve performance in virtualised
systems (§ 2.3).

2.1 Virtual memory management
Physical memory is a scarce resource in an operating
system. If more memory is available, it can be put to
good use, for example by obviating the need to swap
pages to disk, or by caching recently-accessed data from
secondary storage. Since memory access is several or-
ders of magnitude faster than disk access, storing as
much data as possible in memory has a dramatic effect
on system performance.

Memory resource management was first formalised
for operating systems by Denning in 1968, with the in-
troduction of the working set model [3]. The working set
of a process at time t is the set of pages that it has refer-
enced in the interval (t − τ, t). This is a good predictor
of what pages should be maintained in memory. Pages
can then be allocated to each process so that its working
set can fit in memory.

Since it is challenging to calculate the working set and
τ parameter exactly, an alternative approach is to mon-
itor the page fault frequency for each process [16]. If
a process causes too many page faults, its allocation of
pages is increased; and vice versa. This ensures accept-
able progress for all processes.

OS-level approaches are inappropriate for a virtu-
alised system. One of the key benefits of virtualisation
is that it provides resource isolation between VMs. If
the size of a VM’s working set or its page fault rate is
allowed to determine its memory allocation, a malicious
VM can receive more than its fair share by artificially
inflating either measure. Instead, in our approach, we
give a static allocation of physical memory to each VM,
which provides strong performance isolation [1]. As we
describe in § 4.2, our system provides surplus memory
to VMs that participate in sharing. Our approach fol-
lows previous work on self-paging, which required each

application to use its own resources (disk, memory and
CPU) to deal with its own memory faults [5].

2.2 Memory virtualisation and sharing
A conventional operating system expects to own and
manage a range of contiguously-addressed physical
memory. Page tables in these systems translate vir-
tual addresses into physical addresses. Since virtuali-
sation can multiplex several guest operating systems on
a single host, not all guests will receive such a range
of physical memory. Furthermore, to ensure isolation,
the VMM’s and guests’ memory must be protected from
each other, so the VMM must ensure that all updates to
the hardware page tables are valid.

Therefore, a virtualised system typically has three
classes of address. Virtual addresses are the same as
in a conventional OS. Each VM has a pseudo-physical
address space, which is contiguous and starts at address
zero. Finally, machine addresses refer to the physical lo-
cation of memory in hardware. A common arrangement
is for guests to maintain page tables that translate from
virtual to pseudo-physical addresses, and the VMM to
maintain separate shadow page tables that translate di-
rectly from virtual addresses to machine addresses [23].
A more recent approach is to use additional hardware to
perform the translation from pseudo-physical addresses
to machine addresses [10, 19]. Finally, it is also possible
to modify the OS to use machine addresses and commu-
nicate with the VMM to update the hardware page tables
explicitly [1].

Pseudo-physical addresses provide an additional layer
of indirection that makes it possible to share memory
between virtual machines. Since, for each VM, there
is a pseudo-physical-to-machine (P2M) mapping, it is
possible to make several pseudo-physical frame num-
bers (PFNs) map onto a single machine frame number
(MFN). Therefore, if two VMs each have a page with
the same contents, the VMM can update the P2M map-
ping and the shadow page tables to make those pages use
the same machine frame. We discuss how other systems
detect duplicates in Section 3, and the Satori approach
in Section 4.

If two VMs share a page, an attempt to write to it must
cause a page fault. This is achieved by marking the page
read-only in the shadow page table. Such a page fault
is called a copy-on-write fault. When this occurs, the
VMM handles the fault by allocating a new frame and
making a private copy of the page for the faulting guest.
It also updates the P2M mapping and shadow page tables
to ensure that the guest now uses the private copy.

A consequence of page sharing is that the mem-
ory used by a VM can both dynamically decrease
(when a sharing opportunity is exploited) and dynami-
cally increase (when sharing is broken). This presents

a resource allocation problem for the VMM. A con-
ventional operating system does not have fine-grained,
high-frequency mechanisms to deal with memory being
added or removed at run time (Memory hotplug inter-
faces are unsuitable for frequent, page-granularity ad-
dition and removal [13]). Therefore, one option is to
use a balloon driver in each guest, which pins physi-
cal memory within a guest and donates it back to the
VMM [1, 23]. The “balloon” can inflate and deflate,
which respectively decreases and increases the amount
of physical memory available to a given VM.

However, a balloon driver requires cooperation from
the guest: an alternative is host paging, whereby the
VMM performs page replacement on guests’ pseudo-
physical memory [4, 23]. Host paging is expensive,
because a VM must be paused while evicted pages are
faulted in, and even if the VMM-level and OS-level page
replacement policies are perfectly aligned, double pag-
ing (where an unused page must be paged in by the
VMM when the OS decides to page it out) negatively
affects performance. We deliberately avoid using host
paging, and use a combination of the balloon driver (see
§ 4.2) and volatile pages (see § 4.3) to vary the memory
in each guest dynamically.

Collaborative memory management (CMM) attempts
to address the issue of double paging [14]. This system
was implemented for Linux running on IBM’s z/VM hy-
pervisor for the zSeries architecture. In CMM, the guest
VM provides hints to the VMM that suggest what pages
are being used, and what pages may be evicted with little
penalty. In Satori, we use part of this work for a different
purpose: instead of using hints to improve a host pager,
we use them to specify pages which may be reclaimed
when sharing is broken (see § 5.3).

2.3 Enlightenment
Our approach to memory sharing is based on enlighten-
ments, which involve making modifications to operating
systems in order to achieve the best performance in a vir-
tualised environment; in this paper we use the terms “en-
lightenment” and “paravirtualisation” interchangeably.
Operating systems have been modified to run on VMMs
for almost as long as VMMs have existed: the semi-
nal VM/370 operating system employs handshaking to
allow guests to communicate with the VMM for effi-
ciency reasons [15]. “Paravirtualisation” was coined for
the Denali VMM [25], and Xen was the first VMM to
run paravirtualised commodity operating systems, such
as Linux, BSD and Windows [1]. Xen showed that by
paravirtualising the network and block devices, rather
than relying on emulated physical hardware, it was pos-
sible to achieve near-native I/O speeds.

More extreme paravirtualisation has also been pro-
posed. For example, Pfaff et al. designed Ventana

as a virtualisation-aware file system, to replace virtual
block devices as the storage primitive for one or more
VMs [12]. This design concentrates on adding function-
ality to the file system—for example versioning, isola-
tion and encapsulation—and considers sharing from the
point of view of files shared between users. It does
not specifically address resource management or aim to
improve performance. Our approach is orthogonal to
Ventana, and similar memory sharing benefits could be
achieved with a virtualisation-aware file system. Indeed,
using a system like Ventana would probably make it eas-
ier to identify candidates for sharing, and improve the
overall efficiency of our approach.

Other systems, such as VMware ESX Server [23] and
the Difference Engine [4] have a design goal of sup-
porting unmodified guest OSs. In contrast, we have
concentrated on paravirtualised guests for two reasons.
First, there is an increasing trend towards enlighten-
ments in both Linux and Microsoft Windows operating
systems [18, 20]. Secondly, we believe that where there
is a compelling performance benefit in using enlighten-
ments, the necessary modifications will filter down into
the vanilla releases of these OSs.

3 Related Work
Waldspurger described a broad range of memory man-
agement techniques employed in the VMware ESX
Server hypervisor, including page sharing [23]. In
VMware ESX Server, page sharing opportunities are
discovered by periodically scanning the physical mem-
ory of each guest VM, and recording fingerprints of
each page. When the scanner observes a repeated fin-
gerprint, it compares the contents of the relevant two
pages, and shares them if they are identical. In the
same work, Waldspurger introduced the balloon driver
that is used to alter guest memory allocations. How-
ever, since VMware ESX Server is designed to run un-
modified guest operating systems, it must also support
host paging. In Satori, we avoid host paging because of
its negative performance impact (see § 2.2), and avoid
memory scanning because it does not detect short-lived
sharing opportunities (see § 4.1).

A contemporary research project has added page shar-
ing to the Xen Virtual Machine Monitor. Vrable et al.
began this effort with Potemkin [22], which uses flash
cloning and delta virtualization to enable a large number
of mostly-identical VMs on the same host. Flash cloning
creates a new VM by copying an existing reference VM
image, while delta virtualization provides copy-on-write
sharing of memory between the original image and the
new VM. Kloster et al. later extended this work with a
memory scanner, similar to that found in VMware ESX
Server [7]. Finally, Gupta et al. implemented the Differ-
ence Engine, which uses patching and compression to

Figure 1: Sharing cycle

achieve greater memory savings than sharing alone. We
have implemented Satori on Xen in a parallel effort, but
we use guest OS enlightenments to reduce the cost of
duplicate detection and memory balancing.

The Disco VMM includes some work on transpar-
ent page sharing [2]. In Disco, reading from a special
copy-on-write disk involves checking to see if the same
block is already present in main memory and, if so, cre-
ating a shared mapping to the existing page. We apply
a similar policy for duplicate detection, as described in
§ 4.1. However, we also implement content-based shar-
ing for disk I/O (§ 5.2), so it is not necessary to use copy-
on-write disks, and furthermore we can exploit identical
blocks within the same disk.

4 Design decisions
In this section, we present the major design decisions
that differentiate Satori from previous work on page
sharing [23, 4]. Figure 1 shows the life-cycle of a page
that participates in sharing. This diagram raises three
key questions, which we address in this section:

How are duplicates detected? We use sharing-aware
block devices as a low-overhead mechanism for de-
tecting duplicate pages. Since a large amount of
sharing originates within the page cache, we moni-
tor data as it enters the cache (§ 4.1).

How are memory savings distributed? When n iden-
tical pages are discovered, these can be represented
by a single physical page, and n−1 pages are saved.
We distribute these savings to guest VMs in propor-
tion with their contribution towards sharing (§ 4.2).

What if sharing is broken? Shared pages are neces-
sarily read-only. When a guest VM attempts to
write to a shared page, the hypervisor makes a
writable private copy of the page for the guest. We
require that the guest itself provides a list of volatile
pages that may be used to provide the necessary
memory for private copies. In addition, we obvi-
ate the need for copying in certain cases (§ 4.3).

We have taken care to ensure that our answers to the
above questions are hypervisor-agnostic and may be im-
plemented together or individually. Although our pro-
totype uses the Xen VMM (see Section 5), these tech-
niques should also be useful for developers of other hy-
pervisors. In particular, our duplicate detection and sav-
ings distribution policies could be implemented with-
out modifying core OS components in the guest VMs.
However, by enlightening the guest OS, it is possible
to achieve better performance, and we contend that our
techniques are best implemented as a whole.

4.1 How are duplicates detected?
In order to exploit page sharing, it is necessary to detect
duplicate pages. As described in § 2.2, the most common
approach to this problem is to scan the memory of all
guest VMs periodically, and build up a list of page fin-
gerprints that can be used to compare page contents. In
this subsection, we propose sharing-aware block devices
as a more efficient alternative. We discuss the problems
with the scanning-based approach, and explain why the
block interface is an appropriate point at which to detect
potential sharing.

As we show in § 6.1, many sharing opportunities are
short-lived, and yet these provide a large amount of over-
all sharing when taken as a whole. In principle, the
memory scanning algorithm is exhaustive and all du-
plicates will eventually be found. However, in practise
the rate of scanning has to be capped: in the extreme
case, each memory write would trigger fingerprint re-
computation. For example in VMware ESX Server the
default memory scan frequency is set to once an hour,
with a maximum of six times per hour [21]. Therefore,
the theoretical mean duplicate discovery time for the de-
fault setting is 40min, which means that short-lived shar-
ing opportunities will be missed. (We note that there
are at least three relevant configuration options: the scan
period, scan throughput (in MB per second per GHz of
CPU), and maximum scan rate (in pages per second).
In our evaluation (§ 6.1), the “aggressive” settings for
VMware use the maximum for all three of these param-
eters.)

When an operating system loads data from disk, it
is stored in the page cache, and other researchers have
noted that between 63.8% and 93.0% of shareable pages
between VMs are part of the page cache [8]. For ex-
ample, VMs based on the same operating system will
load identical program binaries, configuration files and
data files. (In these systems, the kernel text will also be
identical, but this is loaded by Xen domain builder (boot-
loader), and does not appear in the page cache. Though
we do not implement it here, we could modify the Xen
domain builder to provide sharing hints.)

The efficacy of sharing-aware block devices relies

on the observation that, for the purpose of detecting
duplicates, a good image of the page cache contents
can be built up by observing the content of disk reads.
While this approach does not capture any subsequent in-
memory writes, we do not expect the sharing potential
of dirty pages to be high. Since a VMM uses virtual de-
vices to represent block devices, we have a convenient
place to intercept block reads. We describe our imple-
mentation of sharing-aware block devices in § 5.2.

The situation improves further if several guests share
a common base image for their block device. When
deploying a virtualised system, it is common to use a
single substrate disk for several VMs, and store VM-
private modifications in a copy-on-write overlay file. If
a guest reads a block from the read-only substrate disk,
the block number is sufficient to identify it uniquely, and
there is no need to inspect its contents. This scheme has
the additional advantage that some reads can be satisfied
without accessing the underlying physical device.

Previous work on page sharing emphasises zero pages
as a large source of page duplicates. Clearly, these pages
would not be found by block-device interposition. How-
ever, we take a critical view of zero-page sharing. An
abundance of zero pages is often indicative of low mem-
ory utilisation, especially in operating systems which
implement a scrubber. We believe that free page shar-
ing is usually counterproductive, because it gives a false
sense of memory availability. Consider the example of
a lightly loaded VM, in which 50% of pages are zero
pages. If these pages are reclaimed and used to run an-
other VM, the original VM will effectively run with 50%
of its initial allocation. If this is insufficient to handle
subsequent memory demands, the second VM will have
to relinquish its resources. We believe that free mem-
ory balancing should be explicit: a guest with low mem-
ory utilisation should have its allocation decreased. Sev-
eral systems that perform this resource management au-
tomatically have been proposed [26].

4.2 How are memory savings distributed?
The objective of any memory sharing mechanism is to
reuse the reclaimed pages in order to pay for the cost
of running the sharing machinery. A common approach
is to add the extra memory to a global pool, which can
be used to create additional VMs [4]. However, we be-
lieve that only the VMs that participate in sharing should
reap the benefits of additional memory. This creates an
incentive for VMs to share memory, and prevents ma-
licious VMs from negatively affecting the performance
of other VMs on the same host. Therefore, Satori dis-
tributes reclaimed memory in proportion to the amount
of memory that each VM shares.

When Satori identifies n duplicates of the same page,
it will reclaim n − 1 redundant copies. In the common

Figure 2: Sharing entitlement calculation

case of n = 2, our policy awards each of the contributing
VMs with an entitlement of 0.5 pages—or, more gener-
ally, n−1

n pages—for each shared page (Figure 2). For
each page of physical memory, p, we define n(p) ∈ N as
the sharing rank of that page. For VM i, which uses the
set of pages M(i), the total sharing entitlement, s(i), is
calculated as follows:

s(i) =
∑

p∈M(i)

n(p)− 1
n(p)

Satori interrogates the sharing entitlements for each
VM every second, and makes the appropriate amount of
memory available to the VMs.

The sharing rank of a particular page will not neces-
sarily remain constant through the lifetime of the shar-
ing, since additional duplicates may be found, and exist-
ing duplicates may be removed. Therefore, the sharing
entitlement arising from that page may change. Consider
what happens when a new duplicate is discovered for an
already n-way shared page. The VM that provided the
new duplicate will receive an entitlement of n

n+1 pages,
and the owners of the existing n duplicates will see their
entitlement increase by n

n+1 −
n−1

n = 1
n(n+1) for each

copy they own. Similarly, the entitlements must be ad-
justed when a shared page departs.

In Satori, guests claim their sharing entitlement using
memory balloons [23]. When the entitlement increases,
the balloon deflates and releases additional pages to the
guest kernel. In our implementation we set up the guests
to always claim memory as soon as it becomes avail-
able. However, guests can elect to use more complex
policies. For example a guest may refrain from using its
entitlement if it experiences low memory demand, or ex-
pects its shared pages to be short-lived. We have explic-
itly avoided using host paging to deal with fluctuating
memory allocations. As a result, our implementation is
simpler, and we have avoided the well-known problems
associated with host paging. However, without host pag-
ing, we have to guarantee that the hypervisor can recover
memory from the guests when it needs to create private
copies of previously-shared pages. In the next subsec-
tion, we introduce the repayment FIFO, which addresses
this issue.

4.3 What if sharing is broken?
If two or more VMs share the same copy of a page, and
one VM attempts to write to it, the VMM makes a private
copy of the page. Where does the VMM get memory for
this copy?

Satori obtains this memory from a guest-maintained
repayment FIFO, which contains a list of pages the guest
is willing to give up without prior notification. The size
of a VM’s repayment FIFO must be greater than or equal
to its sharing entitlement. Our approach has three major
advantages: (a) the hypervisor can obtain pages quickly,
as there is no synchronous involvement with the guest,
(b) there is no need for host paging, and (c) there is no
risk that guest will be unable to relinquish resources due
to double copy-on-write faults (i.e. a fault in the copy-
on-write fault handler).

Pages in the repayment FIFO must not contain any
irreplaceable information, because the guest will not
have a chance to save their contents before the hyper-
visor reclaims them. Memory management subsystems
already maintain book-keeping information about each
page, which makes it possible to nominate such volatile
pages without invasive changes.

In Satori the hypervisor uses sharing entitlements to
determine the VM from which to reclaim memory. It
does so by inspecting how much memory each VM drew
from the sharing mechanism, in comparison to its cur-
rent sharing entitlement. Since the sum of sharing enti-
tlements is guaranteed to be smaller or equal to the num-
ber of removed duplicate pages, there will always be at
least one VM with a negative memory balance (i.e. the
VM drew more than its entitlement). Note that only the
VMs which are involved in the broken sharing will be
affected. This is essential to maintain performance iso-
lation, as a malicious VM will be unable to affect any
VMs with which it does not share memory.

A special case of broken sharing is when a page is re-
allocated for another purpose. For example, a guest may
decide to evict a shared page from the page cache, scrub
its content and reallocate it. In a copy-on-write system,
the scrubber would cause a page fault when it begins to
scrub the page, and the VMM would wastefully copy the
old contents to produce a private version of the page. We
use a scheme called no-copy-on-write, which informs
the VMM that a page is being reallocated, and instead
allocates a zero page (from a pre-scrubbed pool) for the
private version.

To the best of our knowledge, Satori is the first system
to address a covert channel created by memory sharing.
An attacker can infer the contents of a page in another
guest, by inducing sharing with that page and measuring
the amount of time it takes to complete a write. (If a
page has been shared, the processing of a copy-on-write
fault will measurably increase the write latency.) For

example, we might want to protect the identity of server
processes running in a guest, because security vulnera-
bilities might later be found in them. We allow guests to
protect sensitive data by specifying which pages should
never be shared. Any attempts to share with these pages
will be ignored by the hypervisor.

5 Implementation
We implemented Satori for Xen version 3.1 and Linux
version 2.6.18 in 11551 lines of code (5351 in the Xen
hypervisor, 3894 in the Xen tools and 2306 in Linux).
We chose Xen because it has extensive support for par-
avirtualised guests [1]. In this section, we describe how
we implemented the design decisions from Section 4.

Our changes can be broken down into three main cat-
egories. We first modified the Xen hypervisor, in order
to add support for sharing pages between VMs (§ 5.1).
Next, we added support for sharing-aware block devices
to the Xen control tools (§ 5.2). Finally, we enlightened
the guest operating system, so that it can take advantage
of additional memory and repay that memory when nec-
essary (§ 5.3).

5.1 Hypervisor modifications
The majority of our changes were contained in the hy-
pervisor. First of all, the upstream version of Xen does
not support transparent page sharing between VMs, so it
was necessary to modify the memory management sub-
system. Once this support was in place, we added a hy-
percall interface that the control tools use to inform the
hypervisor that pages may potentially be shared. Finally,
we modified the page fault handler to deal with instances
of broken sharing.

In § 2.2, we explained that each VM has a contigu-
ous, zero-based pseudo-physical address space, and a
P2M mapping for converting pseudo-physical addresses
to machine addresses. To support transparent page shar-
ing, it is necessary to allow multiple pseudo-physical
pages to map to a single frame of machine memory. Fur-
thermore, the machine frame that backs a given pseudo-
physical page may change due to sharing. Therefore, it
is simplest to use shadow page tables in the guest VMs.
However, regular paravirtualised guests in Xen do not
use shadow page tables, so we ported this feature from
the code which supports fully-virtualised guests. In ad-
dition, we had to modify the reference counting mecha-
nism used in Xen to keep track of page owners. In Xen
each page has a single owner, so we added a synthetic
“sharing domain” which owns all shared pages.

As described in § 5.3, we maintain information about
the state of each (pseudo-)physical page in each guest.
Both the guest and the hypervisor may update this infor-
mation, so it is held in a structure that is shared between
the hypervisor and the guest. The hypervisor uses this

structure to select which page should be used to satisfy
a copy-on-write fault (either a page from the repayment
FIFO, or, in the no-copy-on-write case, a zero-page).

We export the sharing functionality to the guest
through the hypercall interface. We add three
new hypercalls, named share mfns, mark ro and
get ro ref.

The share mfns hypercall takes two machine
frame numbers (MFNs)—a source MFN and a client
MFN—and informs the hypervisor that all pseudo-
physical pages backed by the client frame should now
use the source frame. The hypercall works as follows:

1. Mark the source and client frame as read-only, if
they are not already.

2. Compare the contents of the source and client
frame. If they are not equal, return an error.

3. Remove all mappings to the client MFN from the
shadow page tables.

4. Update the relevant P2M mappings to indicate that
the source frame should be used in place of the
client frame.

5. Free the client frame for use by the guest VMs.

Note that this hypercall is not guaranteed to succeed.
For example, after the duplicate detector notices that two
pages are the same, but before they are marked read only,
a guest might change the contents of one of the pages.
Therefore, the hypercall may fail, but there is no risk that
the contents of memory will be incorrect: the source and
client frame will continue to be used as before.

For copy-on-write disks, we want to make an early
decision about whether or not physical I/O will be re-
quired. Therefore, we use the mark ro hypercall to en-
force read-only status on all pages that are read from the
read-only substrate. (Technically, we make a page read-
only by treating it as 1-way shared; if the guest writes
to it, the sharing is simply broken by marking the page
as writable and changing the owner to the guest.) The
complementary get ro ref hypercall ensures that the
contents of the frame have not been changed (i.e. that
the MFN is still read-only), and increments the sharing
reference count to prevent it from being discarded. We
describe the copy-on-write disk support in § 5.2.

The final hypervisor component required for page
sharing is a modified page fault handler. We added two
new types of page fault, which Xen must handle differ-
ently. The first is a straightforward copy-on-write fault,
which is triggered when a guest attempts to write to a
shared page. In this case, the handler recalculates the
sharing entitlements for the affected guests, and reclaims
a page from one of the guests that now has claimed more
memory than its entitlement. The handler removes this
page from the appropriate guest’s repayment FIFO and
copies in the contents of the faulting page. We also add

a discard fault, which arises when a guest attempts to
access a previously-volatile page that the VMM has re-
claimed. If so, the handler injects this fault into the
guest, as described in § 5.3.

5.2 Sharing-aware block devices
We implemented duplicate detection using sharing-
aware block devices. Xen provides a high-performance,
flexible interface for block I/O using split devices. The
guest contains a front-end driver, which presents itself to
the guest OS as a regular block device, while the control
VM hosts a corresponding back-end driver. Previous
work has shown how the back-end is a suitable interposi-
tion point for various applications [24], in particular for
creating a distributed storage system [9]. We use the ex-
isting block-tap architecture to add duplicate detection.

The key steps in a block-tap read request are as fol-
lows:

1. The front-end (in the guest) issues a read request to
the back-end through the inter-VM device channel,
by providing a block number and an I/O buffer.

2. The back-end maps the I/O buffer into a user-space
control tool, called tapdisk.

3. tapdisk performs device-specific processing for
the given block number, and returns control to the
back-end driver.

4. The back-end unmaps the I/O buffer and notifies
the front-end of completion.

Since tapdisk is implemented as a user-space pro-
cess and provides access to I/O data, it is simple to add
custom block-handling code at this point. Satori modi-
fies the tapdisk read path in order to record informa-
tion about what data is loaded into which locations in
the guests’ memory. We developed two versions of du-
plicate detection: content-based sharing, and copy-on-
write disk sharing.

For content-based sharing, we hash the contents of
each block as it is read from disk. We use the hash
as the key in a hashtable, which stores mappings from
hash values to machine frame numbers (MFNs). First,
we look for a match in this table, and, if this is success-
ful, the resulting MFN is a candidate for sharing with
the I/O buffer. Note that the MFN is merely a hint: the
contents of that frame could have changed, but since we
have already loaded the data into the I/O buffer, it is ac-
ceptable for the sharing attempt to fail. If the hash is not
present in the hashtable, we invalidate any previous en-
try that maps to the I/O buffer’s MFN, and store the new
hash-to-MFN mapping.

For copy-on-write disk sharing, the process is slightly
different (see Figure 3). The first time a block is read
from the substrate disk, Satori invokes the mark ro
hypercall on that page, and stores a mapping from the

Figure 3: mark ro and get ro ref usage for copy-
on-write disks.

block number to the I/O buffer MFN. (If the guest sub-
sequently writes to the page before it is shared, the
read-only status is removed.) On subsequent reads,
Satori consults the block number-to-MFN mapping to
see if the block is already cached in memory. If it is,
Satori invokes the get ro ref hypercall on the MFN,
which, if it succeeds, ensures that the subsequent call to
share mfns will be successful. If the block number is
not found in the mapping table or if get ro ref fails,
Satori must request physical disk I/O to read the appro-
priate block. At this point, a second look-up could be
used to detect content-based sharing opportunities.

The Xen architecture places each virtual block device
in a separate tapdisk process, to simplify manage-
ment and improve fault isolation. However, we need
to share information between devices, so it was neces-
sary to add a single additional process, called spcctrl
(Shared Page Cache ConTRoLler), which hosts the
mappings between content hashes or block numbers,
and MFNs. The tapdisk processes communicate with
spcctrl using pipes, and our current implementation
of spcctrl is single-threaded.

5.3 Guest enlightenments
In Satori, we have used enlightenments to obtain OS-
level information about guest pages. These extend the
existing paravirtualised Linux guests, which Xen al-
ready supports [1].

For Satori, the most important enlightenment is
adding the repayment FIFO to the guest kernel. Recall
that the repayment FIFO is a list of volatile pages, i.e.
physical pages that the operating system is willing to re-
linquish at any time (in particular, when sharing is bro-
ken and a new frame is needed for a private copy). Since
the guest must relinquish these pages without warning, it
is essential that their contents can be reconstructed from
another source. Hence an obvious source of volatile
pages is the set of clean pages in the page cache. We par-
avirtualised the Linux page cache to provide page hints
about volatile pages.

We based our implementation of volatile pages on
earlier work on Collaborative Memory Management
(CMM) [14]. CMM is, in essence, a memory controller
which relies on page states (especially page volatility)
to dynamically adjust the available (machine) memory

for each guest. CMM is implemented for the IBM
zSeries z/VM hypervisor, but the majority of the code
is architecture-independent, as it deals with page-state
transitions in the Linux page and swap caches. We built
on CMM’s page hinting by adding support for the x86
architecture and the Xen hypervisor.

The major difference between x86 and zSeries (s390)
in the context of volatile pages is the handling of dirty-
ing. The x86 architecture maintains dirty bits for virtual
pages in the PTE, whereas the s390 architecture main-
tains a dirty bit for each machine page. Since a given
page can only become volatile if it is not dirty, we im-
plemented a machine-page-level dirty bit in software for
the x86 architecture. Our approach is more conservative
than is strictly necessary, because we consider the exis-
tence of any writable mapping to dirty the page, even if
there was no actual write.

Satori uses a shared structure between Xen and each
guest to store and modify page states (as discussed in
§ 5.1). The page states read from this structure are used
in the guest page fault handler to distinguish between
“regular” and discard faults. On a discard fault, Linux
uses reverse mappings to remove all references to the
discarded page, effectively removing the page from its
respective cache (page or swap).

We also use the instrumentation in the page allocator,
already present in order to drive page state transitions, to
support the no-copy-on-write policy. Whenever a page is
reallocated, we update the shared page state structure to
reflect this. On a write fault to a shared page, Xen checks
to see whether the page has been reallocated, and, if so,
provides a page from its zero page cache.

In addition, we have added support to guests for spec-
ifying that some pages must not be shared (to avoid the
secret-stealing attack described in § 4.3). At present,
we allow the guest to specify that a set of pseudo-
physical pages must never be shared (i.e. all calls to
share mfns or get ro ref will fail).

6 Evaluation
To characterise Satori’s performance, we have con-
ducted an evaluation in three parts. First, we have pro-
filed the opportunities for page sharing under different
workloads (§ 6.1). In contrast with previous work, we
specifically consider the duration of each sharing oppor-
tunity, as this is crucial to the utility of page sharing. We
then measure the effectiveness of Satori, and show that
it is capable of quickly detecting a large amount of shar-
ing (§ 6.2). Finally, we measure the effect that Satori has
on performance, in terms of the benefit when sharing is
enabled, and the overhead on I/O operations (§ 6.3).

For our tests we used two Dell PowerEdge 1425
servers each equipped with two 2.8 GHz Xeon CPUs,
2.5 GB of RAM and an 80 GB Seagate SATA disk. VMs

Rank Pages saved Percentage saving
2 1565421 79.7%
3 137712 7.01%
4 59790 3.04%
5 18760 0.96%
6 24850 1.27%
8 10059 0.51%

10 10467 0.53%
14 10218 0.52%

others 126865 6.46%

Table 1: Breakdown of sharing opportunities by rank
(excluding zero-pages).

ran Ubuntu Linux 8.04 in all cases, except for two exper-
iments, for which we state the OS version explicitly.

In the following subsections, we make repeated refer-
ence to several workloads, which we abbreviate as fol-
lows:

KBUILD-256 Vanilla Linux 2.6.24 kernel build
with 256 MB of physical memory.

KBUILD-512 As KBUILD-256, with 512 MB.
HTTPERF httperf benchmark [6] run against

Apache web-server with 512 MB of
memory, serving randomly gener-
ated static webpages.

RUBIS RUBiS web auction application with
512 MB, serving requests generated
by the default client workload gen-
erator [11].

6.1 Sharing opportunities
The major difference between Satori and contemporary
page sharing schemes is that it can share many identi-
cal pages as soon as they are populated. In this subsec-
tion, we show that a substantial proportion of sharing is
short-lived. Therefore, Satori is much more likely to ex-
ploit this sharing than schemes that rely on periodically
scanning physical memory, looking for identical page
contents [23, 4].

To analyse the sharing opportunities, we ran each of
the KBUILD-256, KBUILD-512, HTTPERF and RUBIS
workloads in two virtual machines for 30 minutes, and
took a memory dump every 30 seconds.

Table 1 shows the number of pages that can be freed
using page sharing, for each rank. (In a sharing of rank
n, n identical pages map to a single physical page.)
The figures are an aggregate, based on the total of 60
memory dumps sampled from pairs of VMs running the
KBUILD-512, HTTPERF and RUBIS workloads. Note
that most sharing opportunities have rank 2: i.e. two
identical pages exist and can be combined into a single
physical page.

Operation Count Total (ms) Avg (µs)
mark ro 127479 5634 44.1

share mfns 61905 474 7.7
get ro ref 69124 64 0.9

Total 258508 6172 —

Table 2: Breakdown of Satori hypercalls during
HTTPERF workload

Figure 4 compares the number of unique shared pages
during the KBUILD-256 and KBUILD-512 workloads.
(By considering only unique shared pages, we underesti-
mate the amount of savings for pages with rank > 2. Ta-
ble 1 demonstrates that the majority of shareable pages
have rank 2, except zero pages, which we address sep-
arately below.) We have divided the sharing opportuni-
ties into four duration ranges. The figures clearly show
that a substantial amount of sharing is short-lived, espe-
cially in a more memory-constrained setup (KBUILD-
256). Also, the amount of sharing for the KBUILD-
512 workload is approximately twice as much as that
for KBUILD-256, because of less contention in the page
cache. Finally, the kernel build process completes 6 min-
utes sooner with 512 MB of memory: this makes the
benefits of additional memory clear.

Figure 5 separately categorises shareable non-zero
pages and zero pages into the same duration ranges as
Figure 4. It should be noted that the number of shar-
ing opportunities arising from zero pages (Figures 5(c)
and 5(d)) is approximately 20 times greater than from
non-zero pages (Figures 5(a) and 5(b)). However, more
than 90% of zero-page sharing opportunities exist for
less than five minutes. This supports our argument that
the benefits of zero-page sharing are illusory.

In § 4.1, we stated that, on average, it will take 40
minutes for VMware ESX Server to detect a duplicate
page using its default page scanning options. We ran the
following experiment to validate this claim. Two VMs
ran a process which read the same 256 MB, randomly-
generated file into memory, and Figure 6 shows the num-
ber of shared pages as time progresses. The lower curve,
representing the default settings, shows that half of the
file contents are shared after 37 minutes, which is close
to our predicted value; the acceleration is likely due to
undocumented optimisations in VMware ESX Server.
The higher curve shows the results of the same exper-
iment when using the most aggressive scanning options.
Using the same analysis, we would expect a duplicate
on average to be detected after 7 minutes. In our experi-
ment, half the pages were detected after almost 20 min-
utes, and we suspect that this is a result of the aggressive
settings causing the page hint cache to be flushed more
often.

!30s !5mins !15mins "30mins

5 10 15 20 25 30
min

2000

4000

6000

8000

10000

12000

14000

!pages

(a) KBUILD-256

5 10 15 20 25 30
min

5000

10000

15000

20000

25000

!pages

(b) KBUILD-512

Figure 4: Sharing opportunities during the execution of workloads KBUILD-256 and KBUILD-512.

!30s 30s " !5mins 5min " !15mins 15min " "30mins surviving

24.5!

46.5!

8.06!
3.91!

17.0!

(a) KBUILD-256

15.9!

16.2!

24.9!

5.51!
37.4!

(b) KBUILD-512

56.8!

37.1! 0.159!

5.99!

(c) KBUILD-256

65.8!

26.0! 0.523!

7.59!

(d) KBUILD-512

Figure 5: Duration of page sharing opportunities for kernel compilation workloads. (a) and (b) show non-zero pages,
(c) and (d) zero pages. The exploded sectors show sharings left at the end of the experiment.

6.2 Satori effectiveness
In the next set of experiments, we measured the amount
of sharing that Satori achieved using sharing-aware
block devices. We also examined how the surplus mem-
ory was distributed between individual virtual machines.

The first experiment used two pairs of virtual ma-
chines. Two VMs each ran the HTTPERF-256 work-
load, i.e. the HTTPERF workload with 256 MB of mem-
ory (rather than 512 MB). Because the aggregate amount
of memory was insufficient to cache the entire data set
in memory, the number of shareable pages varied as
data was loaded into and evicted from each VM’s page
cache. The other two VMs each ran the KBUILD-512
workload; however they used Debian Linux rather than
Ubuntu.

Figure 7 shows that the sharing entitlements for the
VMs running KBUILD-512 are unaffected by the highly
variable amount of sharing between the two HTTPERF
workloads. Also, because we used different OSes for
each pair of VMs, the sharing entitlements achieved be-
fore the workloads started (5 to 6 minutes after the mea-
surements began) differ by about 30%.

Next, we ran two instances of a workload in separate

VMs for 30 minutes, and repeated the experiment for
the KBUILD-256, KBUILD-512, HTTPERF and RUBIS
workloads. We ran these experiments under Satori and
measured the number of shared pages, and compared
these to memory dumps using the same methodology as
described in § 6.1.

Figure 8 summarises the amount of sharing that Satori
achieves for each workload. Satori performs best with
the HTTPERF workload, shown in Figure 8(c). In this
case, it achieves 94% of the total sharing opportunities,
which is to be expected since HTTPERF involves serv-
ing a large volume of static content over HTTP, and the
majority of the data is read straight from disk. The RU-
BIS workload performs similarly, with Satori achiev-
ing 91% of the total. The kernel compilation work-
loads, KBUILD-256 and KBUILD-512, perform less
well. KBUILD-512 achieves about 50% of the total shar-
ing opportunities until the very end of the build, when
the kernel image is assembled from individual object
files. KBUILD-256 is more memory-constrained, which
forces the OS to flush dirty (non-shareable) caches.

Finally, we ran two experiments which evaluated
Satori in a more heterogeneous environment. In the

0 20 40 60 80 100 120
0

10000

20000

30000

40000

50000

60000

Time !min"

A
m
ou
nt
of
sh
ar
in
g
!!pag

es
"

default settings
aggressive scanning

Figure 6: Sharing as time progresses for default and ag-
gressive scanning settings in VMware ESX Server.

!

! ! ! ! ! !

! !

!

!

!

! ! !
!
!

! !

! !

!

!

! !
!

! !

! !
!

! ! ! ! ! ! !

"

" " " " " "

" "

"

"

"

" " "
" "

" "

"
"

"

"

" "
"

" "

" "
"

" " " " " " "

#

#####

#
#

#
#

#
#######

$

$ $ $ $ $

$ $ $ $ $
$ $ $ $ $

$ $ $ $ $ $ $ $
$ $ $ $

$ $ $
$ $ $ $ $ $ $

0 10 20 30 40
0

5000

10000

15000

20000

25000

Time !min"

Sh
ar
in
g
en
tit
le
m
en
ts
!!pag

es
" ! HTTPERF"1

" HTTPERF"2
KBUILD"512"1
$ KBUILD"512"2

Figure 7: Sharing entitlements for two KBUILD-512 and
two HTTPERF-256 workloads executing simultaneously.

first experiment, two VMs running the same version
of Ubuntu Linux performed the HTTPERF and RUBIS
workloads. In this setup Satori was able to exploit over
70% of the total sharing opportunities. (The remain-
ing 30% was mostly due to the identical kernel images,
which the current version of Satori does not detect.).
In the second experiment, we used the same workloads
with different guest OSs (Ubuntu and Debian respec-
tively). In this setup, 11 MB of sharing was theoretically
possible, and only because the two distributions use an
identical kernel. In this case, Satori could only achieve
approximately 1 MB of savings (9% of the total).

Although Satori achieves varying results in terms of
memory savings, recall that these results come solely
from using our enlightened block device. These re-
sults show that we can exploit up to 94% (for HTTPERF)
of the total sharing opportunities through this method
alone. The alternative approach, which involves scan-
ning memory, incurs a constant overhead at run-time,
and must be rate-limited to prevent performance degra-
dation [21]. The Difference Engine exhibits an overhead
of up to 7% on some macrobenchmarks, though this in-
cludes the overhead of page compression and sub-page-

level patching [4]. Satori provides a flexible interface for
adding other sharing policies: we are developing a tool
that systemically identifies the source(s) of other sharing
opportunities. We hope that this will lead to additional
enlightenments that improve Satori’s coverage.

In § 4.3, we described an attack on memory shar-
ing that allows a VM to identify sensitive data in an-
other guest. On VMware ESX Server, we were able to
determine the precise version of sshd running in an-
other guest, by loading a page from each of 50 common
distribution-supplied sshd binaries into memory, and
periodically measuring the write latency to these pages.
(On our hardware, we observed a 28-times increase for
the matching page.) In Satori, we were able to protect
the entire sshd address space, and, as a result, this at-
tack failed.

6.3 Performance impact
We initially stated that memory sharing is desirable be-
cause it can improve the overall performance of VMs
running on the same physical machine. In this subsec-
tion, we investigate the performance characteristics of
Satori under various workloads. First, we measure nega-
tive impact: Satori introduces new operations for sharing
memory, and these incur a measurable cost. We mea-
sure the cost of each sharing-related hypercall, and the
overall effect on disk I/O. However, we then show that,
for realistic macrobenchmarks, the overhead is insignif-
icant, and the additional memory can improve overall
performance.

To measure the cost of individual sharing-related op-
erations, we instrumented the Xen hypervisor to record
the number and duration of each hypercall. Table 2
shows the results for a 30-minute HTTPERF workload.
The first thing to note is that Satori-related operations ac-
count for less than 6.2 seconds of the 30-minute bench-
mark. Of the individual operations, mark ro is the
most expensive, as it must occasionally perform a brute-
force search of the shadow page tables for all mappings
of the page to be marked read-only. We could optimise
performance in this case by making the guest VM ex-
change back-reference information with the hypervisor,
but the overall improvement would be negligible.

Satori detects sharing by monitoring block-device
reads, and therefore the majority of its overhead is felt
when reading data from disk. In order to measure this
overhead, and stress-test our implementation, we ran the
Bonnie filesystem benchmark in a guest VM against a
sharing-aware block device. Table 3 shows a breakdown
of read bandwidths. We ran the benchmark in four con-
figurations, and repeated each experiment five times. In
the baseline configuration, we disabled all Satori mecha-
nisms. In successive configurations, we enabled content
hashing, IPC with spcctrl, and finally hash lookup,

!

!!

!
!!

!

!!!
!

!
!
!

!

!
!
!
!

!
!

!

!

!
!!
!
!

!
!
!!!

!

!
!
!

!

!!!

!!
!!!!

!!
!!

!
!!!!

!!!!

"

""

"
""

"
""
""

""
"

"

"""""
""

""""
""""

""
"

"

"
"
"""
"
"

""
""""

"
"""
"
""""

""""

5 10 15 20 25 30
min

2000

4000

6000

8000

10000

12000

14000

!pages

(a) KBUILD-256

!

!!

!!!
!
!!
!!!!

!!!
!
!
!

!!!!!
!!!

!!
!!
!!!

!

!
!

!
!!
!

!

!!

!
!!!!!!!!!!!!!!!

"

""

"""
"
"""
"""
""""

"""""
"""""

"""
""""

"

"""
"""

"""

"
"""""""""""""""

5 10 15 20 25 30
min

5000

10000

15000

20000

25000

!pages

! Ideal
" Satori

(b) KBUILD-512

!

!!

!

!

!
!
!

!

!
!!

!

!

!
!!!
!!

"

""

"

"

"

"
"

"

"
""

"

"

"
"""
""

0 5 10 15 20 25 30
min0

20000

40000

60000

80000

100000
!pages

(c) HTTPERF

!

!

!
!
!
!
!
! !
! ! ! ! !

!
! !
!
! ! ! !

! ! !
!
!
!
! !
! ! ! ! ! ! ! !

! !

!

"

"
"
"
"
"
""""

"""""""""""""""""""""""""""""

0 5 10 15 20
min0

5000

10000

15000

20000

25000

30000
!pages

(d) RUBIS

Figure 8: Amount of sharing achieved by Satori for each of the four main workloads (no zero-pages)

in order to isolate the performance impact of each func-
tion. Table 3 reports bandwidth figures for reads using
getc(), and “intelligent reads”, which use a block size
of 16384 bytes.

The first thing to note is that Bonnie performs sequen-
tial reads on a 512 MB file, so the effect of any compu-
tation on the I/O path is amplified. (The impact of Satori
on random reads is negligible.) Therefore, the 34.8%
overhead for chunked reads with Satori fully enabled is
a worst-case figure, and is to be expected. With a realis-
tic workload, the I/O cost is likely to dominate. Never-
theless, it is instructive to consider the individual over-
heads:

• The overhead involved in hashing is relatively con-
stant and less than 0.4%.

• IPC with the spcctrl process is costly. The
present implementation uses UNIX pipes to com-
municate with spcctrl, which involves two ad-
ditional context switches per read request. We plan
to redesign this component to store the hashtable in
a shared memory segment.

• The relative overhead of fully-enabled Satori is
worse in the chunked read case, because less time
is being wasted in making repeated system calls in
the guest VM.

While we are continuing to improve Satori’s perfor-
mance, and eliminate these bottlenecks, we have only
encountered the above issues when running Bonnie. For
example, we ran a stripped-down kernel compilation in a
single VM, which took an average of 780 seconds with
Satori disabled, and 779 seconds with Satori fully en-
abled. Since the standard deviation over five runs was
27 seconds, it is clear that the overhead is statistically
insignificant. In this experiment, the workload ran in iso-
lation, and there were no benefits from sharing. As we
will see next, the advantage of having additional mem-
ory can improve performance for many workloads.

We first ran an experiment to illustrate the benefit of
memory sharing between VMs that share a copy-on-
write disk. We ran a workload that read the contents
of a copy-on-write disk into memory in a pseudorandom
order. Five seconds later (while the first read was on-
going), we started the same workload, reading from the
same disk in the same sequence, in another VM. Figure 9
shows the progress that both VMs achieved as a propor-
tional gradient. VM1 reads at a consistent rate of 4.96
MB/s. When the workload commences in VM2, its ini-
tial rate is 111 MB/s, as the data that it reads can be pro-
vided by sharing memory with the page cache in VM1.
After 0.22 seconds, VM2 has read all of the data held

Mode
Read bandwidth (MB/s)

getc() “Intelligent read”
Min Max Avg Overhead Min Max Avg Overhead

No sharing 26.9 28.2 27.6 — 47.1 47.4 47.4 —
Hashing only 26.1 28.4 27.5 0.4% 47.1 47.4 47.3 0.2%

Hashing + IPC 22.7 23.8 23.2 15.9% 31.8 33.0 32.4 31.6%
Sharing enabled 23.2 24.9 24.2 12.9% 30.7 31.1 30.9 34.8%

Table 3: Results of the Bonnie filesystem benchmark on Satori

Figure 9: Copy-on-write disk read rates

0 50 100 150 200 250
0

50

100

150

200

Time !s"

Re
sp
on
se
ra
te
!rsp#s

"

Satori
VMware with Tools
VMware without Tools

Figure 10: Aggregate HTTPERF response rates for the
two VMs running on Satori, VMware, and VMware with
VMware Tools

by VM1, and the two VMs become mutually synchro-
nised, at the original rate, which is limited by the disk
access time. Although this example is artificial, it shows
Satori’s effectiveness at exploiting page cache sharing
for copy-on-write disks. Many recent cloud comput-
ing systems, such as Amazon’s EC2 [17], encourage the
use of standard machine image files, which are natural
candidates for a copy-on-write implementation. Satori
would be particularly effective in this case.

Finally, we ran the HTTPERF workload in two VMs as
a macrobenchmark, to discover how well Satori exploits
the extra memory that is made available through sharing.
We compare Satori to VMware ESX Server—the lead-
ing commercial hypervisor—which uses the techniques
described by Waldspurger to achieve page sharing and
memory overcommitment [23].

Figure 10 shows how the aggregate HTTPERF re-
sponse rate changes over time for Satori and VMware
(with and without VMware Tools). The performance of
Satori can be divided into two phases. First, it achieves
approximately 30 responses per second while the cache
is being loaded, which takes approximately 85 seconds.
The response rate then jumps to between 170 and 200 re-
sponses per second as all subsequent requests can be sat-
isfied from caches. In order to maintain these response
rates, the VMs use their sharing entitlements to increase
their page cache sizes. The physical memory available
to each VM grows to over 770 MB over the first 120
seconds of the experiment.

The results for VMware are interesting. We note first
that it was necessary to install the VMware Tools (which
include a balloon driver) in order to achieve performance
that was comparable to Satori. Without the VMware
Tools, the VMM begins paging after approximately 15
seconds, and throughput drops almost to zero. Once host
paging starts, the throughput only recovers occasionally,
and never to more than 5 responses per second. With
the VMware Tools installed, we observed that balloon
permanently limited each VMs physical memory alloca-
tion to 500 MB. Therefore, the VMs were able to make
progress without host paging, but the data set did not fit
in the cache, and the response rate remained at around
40 responses per second. VMware was unable to estab-
lish sufficient sharing because the lifetime of a page in
either page cache was usually too short for the memory
scanner to find it.

7 Conclusions
We described Satori, which employs enlightenments to
improve the effectiveness and efficiency of page shar-
ing in virtualised environments. We have identified sev-
eral cases where the traditional page sharing approach
(i.e. periodic memory scanning) does not discover or
exploit opportunities for sharing. We have shown that,
by using information from the guest VMs, and making
small modifications to the operating systems, it is possi-
ble to discover a large fraction of the sharing opportuni-
ties with insignificant overhead.

Our implementation has concentrated on sharing-
aware block devices. In the future we intend to add other

enlightened page sharing mechanisms—such as long-
lived zero-page detection, page-table sharing and kernel
text sharing—which will improve Satori’s sharing dis-
covery rate. We also intend to investigate the application
of our technique to nearly-identical pages [4].

Acknowledgments
We wish to thank members of the Systems Research
Group at the University of Cambridge for the many fruit-
ful discussions that inspired this work. We also wish to
thank our shepherd, Geoffrey Voelker, and the anony-
mous reviewers for their insightful comments and sug-
gestions that improved this paper.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[2] E. Bugnion, S. Devine, and M. Rosenblum. Disco: run-
ning commodity operating systems on scalable multipro-
cessors. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, 1997.

[3] P. J. Denning. The working set model for program be-
havior. In Proceedings of the 1st ACM Symposium on
Operating System Principles, 1967.

[4] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: Harnessing memory redundancy in virtual ma-
chines. In 8th USENIX symposium on Operating System
Design and Implementation, 2008.

[5] S. M. Hand. Self-paging in the nemesis operating sys-
tem. In Proceedings of the 3rd USENIX symposium on
Operating Systems Design and Implementation, 1999.

[6] Hewlett-Packard Development Company, L.P. httperf
homepage, 2008. http://www.hpl.hp.com/
research/linux/httperf/, accessed 9th Jan-
uary, 2009.

[7] J. F. Kloster, J. Kristensen, and A. Mejlholm. On the
Feasibility of Memory Sharing. Master’s thesis, Aalborg
University, June 2006.

[8] J. F. Kloster, J. Kristensen, and A. Mejlholm. Determin-
ing the use of Interdomain Shareable Pages using Kernel
Introspection. Technical report, Aalborg University, Jan-
uary 2007.

[9] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J.
Feeley, N. C. Hutchinson, and A. Warfield. Parallax: vir-
tual disks for virtual machines. In Proceedings of the 3rd
EuroSys conference on Computer Systems, 2008.

[10] G. Neiger, A. Santoni, F. Leung, D. Rogers, and R. Uh-
lig. Intel R© Virtualization Technology: Hardware Sup-
port for Efficient Processor Virtualization. Intel R© Tech-
nology Journal, 10(3):167–178, Aug 2006.

[11] ObjectWeb Consortium. RUBiS – Home Page, 2008.
http://rubis.objectweb.org/, accessed 9th
January, 2009.

[12] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtualization
aware file systems: Getting beyond the limitations of vir-
tual disks. In Proceedings of the 3rd USENIX sympo-
sium on Networked Systems Design and Implementation,
2006.

[13] J. H. Schopp, K. Fraser, and M. J. Silbermann. Resizing
Memory with Balloons and Hotplug. In Proceedings of
the 2006 Ottawa Linux Symposium, 2006.

[14] M. Schwidefsky, H. Franke, R. Mansell, H. Raj,
D. Osisek, and J. Choi. Collaborative Memory Manage-
ment in Hosted Linux Environments. In Proceedings of
the 2006 Ottawa Linux Symposium, 2006.

[15] L. H. Seawright and R. A. MacKinnon. VM/370 - A
Study of Multiplicity and Usefulness. IBM Systems Jour-
nal, 18(1):4–17, 1979.

[16] A. S. Tanenbaum. Modern Operating Systems, page 122.
Prentice-Hall, 1992.

[17] (Unattributed). Amazon Elastic Compute Cloud (Ama-
zon EC2). http://aws.amazon.com/ec2/, ac-
cessed 5th January, 2009.

[18] (Unattributed). Understanding Full Virtualization, Par-
avirtualization and Hardware Assist. Technical report,
VMWare, Inc., 2007.

[19] (Unattributed). AMD-VTM Nested Paging. Technical re-
port, Advanced Micro Devices, Inc., Jul 2008.

[20] (Unattributed). Performance and capacity require-
ments for Hyper-V, 2008. http://technet.
microsoft.com/en-us/library/dd277865.
aspx, accessed 9th January 2009.

[21] (Unattributed). Resource Management Guide, ESX
Server 3.5, ESX Server 3i version 3.5, VirtualCen-
ter 2.5, page 171. VMware, Inc., 2008. http:
//www.vmware.com/pdf/vi3_35/esx_3/
r35u2/vi3_35_25_u2_resource_mgmt%.pdf,
accessed 9th January, 2009.

[22] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. C. Snoeren, G. M. Voelker, and S. Savage. Scala-
bility, fidelity, and containment in the Potemkin virtual
honeyfarm. In Proceedings of the 20th ACM Symposium
on Operating systems Principles, 2005.

[23] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th USENIX
symposium on Operating Systems Design and Implemen-
tation, 2002.

[24] A. Warfield, S. Hand, K. Fraser, and T. Deegan. Facili-
tating the development of soft devices. In Proceedings of
the 2005 USENIX Annual Technical Conference, 2005.

[25] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Per-
formance in the Denali Isolation Kernel. In Proceedings
of the 5th USENIX symposium on Operating Systems De-
sign and Implementation, 2002.

[26] W. Zhao and Z. Wang. Dynamic Memory Balancing for
Virtual Machines. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual Exe-
cution Environments, 2009.

