
Immediate Multi-Threaded Dynamic Software Updates
Using Stack Reconstruction

Kristis Makris Rida A. Bazzi
Arizona State University

Tempe, AZ
{makristis,bazzi}@asu.edu

Abstract

We propose a new approach for dynamic software up-
dates. This approach allows updating applications that
until now could not be updated at runtime at all or could
be updated but with a possibly indefinite delay between
the time an update is initiated and the time the update is
effected (during this period no service is provided). Un-
like existing approaches, we allow arbitrary changes to
functions active on the stack and without requiring the
programmer to anticipate the future evolution of a pro-
gram. We argue, using actual examples, that this capa-
bility is needed to dynamically update common real ap-
plications.

At the heart of our approach is astack reconstruction
technique that allows all functions on the call stack to
be updated at the same time to guarantee that all active
functions have the same version after an update. This is
the first general approach that maintains both code and
data representation consistency for multi-threaded appli-
cations. Our systemUpStarewas used to update the
PostgreSQL database management system (more than
200,000 lines of code) and apply 5.5 years-worth of
updates to the very secure FTP server vsFTPd (about
12,000 lines of code).

1 Introduction

Downtime experienced by applications due to software
updates (feature additions, bug fixes, security patches)
can be prohibitive for applications with high-availability
requirements. Dynamic Software Update (DSU) can
help minimize the downtime by allowing applications to
be updated at runtime. Instead of completely stopping
the application process and then executing the newer ver-
sion, DSU would only momentarily pause the applica-
tion while applying the changein-memory. A typical dy-
namic update would consist of: (1) pausing the execution
of the old version in a given state,s; (2) applying a state

mapping functionS to s to obtain a stateS(s) = snew

(loading new code segments can be a part of the map-
ping); and (3) resume execution of the new version us-
ing snew as the initial state. In general, a state mapping
needs not happen instantaneously and can be done lazily
in stages. The state mapping should be safe in that the
resulting statesnew should be a valid state of the new
application (in a sense that we will make precise in Sec-
tion 2). In general, a valid state mapping is not always
possible, and, when it is possible, it is not necessarily
possible for all states of the old application.

The dynamic software update problem consists of two
components. First, DSU needs to determine the states,
or execution points, of the old application for which it is
possible to apply a valid update, and, for those states for
which a valid update is possible, to determine the state
mapping function to effect the update - this is theup-
date safety problem. Second, DSU needs to effect the
update through a mechanism that maps an old execution
state to a new execution state - this is theupdate mech-
anism problem. In general, the safety problem is unde-
cidable [6]. This implies that, in general, user help is
needed to determine safe update points and to specify the
state mapping function. Nevertheless, this does not mean
that it is not possible to solve the problem automatically
or semi-automatically without or with little user help for
many practical cases of interest.

Since user help is unavoidable, it is important to pro-
vide the user with an update mechanism and safety
checks that make it easier to reason about the update.
Current DSU mechanisms are limited in their support of
the update ofactive functions and data structuresand in
their support forimmediate updates. To support the up-
date of functions that are active on the call stack and for
the update of stack-resident data structures, current DSU
systems require the user to anticipate the future evolu-
tion of a program [3, 14]. Immediate updates are not
supported by existing DSU systems. An update is imme-
diate if it satisfies: (1) atomicity: before the update only

1

old code executes and after the update only new code ex-
ecutes; (2) bounded delay: if a valid mapping is known
for a given state and the execution is in that state, then the
mapping is applied in a bounded amount of time. Atom-
icity is desirable because it is sufficient to guaranteelog-
ical consistency[16, 13]: the execution of the applica-
tion is indistinguishablefrom an execution in which the
old version executes for some time, then the new version
executes. While bounded wait is not necessary for logi-
cal consistency, we argue that for multithreaded applica-
tions, immediate updates are needed to provide logically
consistent updateswithout service interruption; i.e. the
update does not cause the service to be unavailable for an
unbounded amount of time.

To address the limitations of current DSU systems, we
propose a new DSU mechanism and a new DSU system
for C programs. Our systemUpStaresupports the im-
mediate update of functions that are active on the call
stack as well as the update of stack-resident data struc-
tures without requiring the user to anticipate the future
evolution of the program. Our system is also the first sys-
tem to allow immediate update for multi-threaded as well
as multi-process applications.UpStareapplies source-
to-source transformations to make applications dynam-
ically updateable. At the heart of the mechanism is a
novelstack reconstructionupdating mechanism that al-
lows an application to unroll the call stack when an up-
date occurs (while saving all the stack frames) and then
reconstitute the call stack by replacing old versions of
functions with their updated versions (while at the same
time mapping data structures in the old frames to their
updated versions). Stack reconstruction guarantees that
after an update is applied only new code executes. Map-
ping to the new state is automated with an effective
heuristic: a patch generator produces data transformers
for global variables and for local variables of all stack
frames, and a default stack execution continuation map-
ping resumes execution from the new version. These
mappings and transformers can be further fine-tuned by
the user.UpStare’s immediate data mappingeliminates
the need for data wrappersthat are used by other DSU
systems [5, 14, 11, 2] to allow updating datatypes. The
elimination of data wrappers greatly reduces execution
overhead for data intensive applications.

UpStaresupports the update of applications anywhere
during their execution including multithreaded applica-
tions with blocking system calls. This is achieved by
inserting update points in long-lived loops and trans-
forming blocking system calls into non-blocking calls.
This guarantees that we can update threads and processes
without interrupting service indefinitely, since we are not
constrained by the need for an active function to exit be-
fore we can update it as in other DSU systems.

In summary, our immediate update mechanism guar-

antees the following: (1) Representation consistency; (2)
Update immediacy for multi-threaded and multi-process
applications; (3) High updateability; (4) No data-access
indirection.

UpStareis able to update real-world applications of
significant size, such as vsFTPd and PostgreSQL, with
minimal manual adjustments from the user and with
modest overhead. Still our current implementation has
some limitations. First, it is not optimized for perfor-
mance due to a limitation of existing compilers when
partitioning code in hot-cold blocks given branch predic-
tion hints. This limitation can lead to large overhead for
systems with a small instruction cache and large func-
tions. Second, it does not yet integrate support to au-
tomatically transform pointers, which we developed in
previous work [10]. Third, it does not support updates
of data in shared memory or in-transit data in internal
buffers, but this is not a limitation of the approach; it is
a limitation of the current implementation. Finally, since
our emphasis in this work is on the updating mechanism,
we do not provide automatic safety checks through code
analysis as in other DSU systems. Adopting such checks
would increase the usefulness ofUpStare.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the DSU problem. Section 3 describes
our DSU system. Section 4 presents our implementation.
Section 5 evaluates the performance of our system and
analyzes the sources of overhead. Section 6 discusses
related work.

2 The Dynamic Software Update Problem

In this section, we reintroduce the dynamic software
update problem (DSU), describe some common safety
guarantees that are desirable for DSU systems and argue
for the need for immediate updates.

2.1 Dynamic Software Update

Given(Π, s), whereΠ is program code ands is an exe-
cution state, updatingΠ to Πnew, whereΠnew is a new
version ofΠ, consists of:(1) pausing the executionΠ; (2)
applying a state mapping functionS to s to obtain a state
S(s) = snew; and (3) resuming execution ofΠnew from
statesnew.

By updating an executing program, we obtain a hy-
brid execution that in general needs not satisfy the se-
mantics of either the old or the new versions. In general,
the desired semantics for the hybrid executions needs to
be determined by the user. We say that a states for pro-
gramΠ is valid for updatefrom Π to Πnew if there is a
state mapping functionS that can be by applied in states
such that the resulting hybrid execution satisfies the de-

2

sired semantics. The dynamic software update problem
has two aspects:

• Update safety: Identify a valid states and a corre-
sponding state mapping function.

• Update mechanism: Implement the state mapping
function.

Gupta [6] showed that, even for weak requirements on
the semantics of the hybrid execution, it is undecidable
to determine if a given states is valid for update fromΠ
to Πnew . The problem is related to the problem of identi-
fying semantic differences [7] between two versions of a
program. Identifying semantic differences has been stud-
ied extensively and is also undecidable although safe ap-
proximations are known [8].

So, in general, assistance from the user is required to
both identify valid states and guide the state mapping.
Nonetheless, there are many situations in which a default
state mapping can produce a new state that will satisfy
the desired semantics.

2.2 Safety

Given that it is not possible in general to guarantee the
safety of updates without user help, it is helpful to pro-
vide some restricted safety guarantees that are satisfied
by the updated program. The goal is to make it easier for
the user to establish that the default mappings result in
valid updates and, if they do not, to supplement the state
mapping to make it valid. Some useful guarantees are:

1. Type-safety: No old version of codeΠ should be
executed on a newer version of a datatype representation
τ ′ (oldcode-type-safety) and no new version of codeΠ′

should be executed on an older version of a datatype rep-
resentationτ (newcode-type-safety).

As an example, consider adding in a Cstruct that
contains five fields a new field as the third field listed
and properly constructing a new statesnew for a variable
of this datatype. If code from the old version accessed
the newer version of this datatype insnew it would in-
correctly access the memory area used by the new field
when intending to access the fourth field, and corrupt
data.

2. Transaction-safety: Some sections of code are de-
noted as transactions and are specified by the user to ex-
ecute completely in the old version or completely in the
new version.

Unlike type safety, transaction safety requires user an-
notations. One way to ensure transaction safety is by pro-
hibiting updates when execution is in such a user speci-
fied section. This can be done at runtime by querying if
the current state is in a forbidden region, but this is not
straightforward to achieve. If a functionf is called inside

a transaction and in other parts of the program, then de-
termining the execution state requires knowledge of the
stack contents. Alternatively, transaction safety can be
ensured at compile time by conservatively estimating up-
date points that will not violate the transactional require-
ments.

More generally, a DSU system may be able to provide
the user with a more flexible notation to specify that an
update is not valid in a given state. For example, stat-
ing that an update is not allowed if Thread 1 is executing
in (say)<functionA,lines 135-160> while Thread 2 is
executing anywhere within<functionB> can be suffi-
cient input to a DSU system to apply the update when
these threads do not violate this safety constraint.

3. Representation Consistency: Both state and pro-
gram representation consistency hold. An update guar-
anteesstate representation consistencyif at no time the
executing application expects different representationsof
state (such as global variables or the stack-frame con-
tents). An update guaranteesprogram representation
consistencyif following the update onlyΠnew is exe-
cuted over the new statesnew; no part ofΠ is executed
again. Representation consistency (state and program)
makes it easier to reason about the effects of executing
code on the state becauseΠnew and snew in memory
match the source code, but it is not an end-goal in itself.
The difference between state representation consistency
and type-safety is that one could provide type-safety by
allowing new and old definitions of a type to be valid
simultaneously. For example, one could apply forward
and backward datatype transformers [5], but this makes
it harder to reason about updated programs. Addition-
ally, it may not be possible to convert a datatype for new
code, then backward for old code, and then forward for
new code again, since updated types often contain more
information than older types and data could be lost.

4. Logical Representation Consistency: An update
system provides logical consistency if the hybrid execu-
tion is indistinguishable to an outside observer from exe-
cutions that are obtained with representationally consis-
tent updates [16, 13].

5. Thread-X-safety: An update is thread-X-safe if X-
safety is provided in a multithreaded applications. For
example, thread-type-safety means that type-safety is
provided for a multithreaded application. In general if
a DSU system guarantees that X-safety is satisfied for
individual threads independently, then thread-X-safety is
not necessarily guaranteed.

Our update mechanism provides the user with the abil-
ity to initiate a representationally consistent update in
any state of the program. The emphasis is on the mech-
anism though. Determining the validity of a particular
state for update requires other analyses [8, 16, 13].

3

2.3 Immediate Updates

In this section, we introduce immediate updates and ar-
gue that they are needed to guarantee that the update of
common multithreaded applications is logically consis-
tent and can be achieved without unbounded service in-
terruption. We first introduce the concept of update with
bounded delay.

Bounded delay update: If a valid mapping is known
for a valid old states and the application is in states, a
state mapping can be applied without pausing the appli-
cation for an unbounded amount of time.

An update isimmediateif it satisfies representation
consistency and bounded delay. To understand the need
for immediate updates, consider a multithreaded appli-
cation in which each server thread handles a client con-
nection and threads read/write in a shared data structure
after receiving client requests. In general, there might be
a long delay between successive client requests.

Now, consider an update that changes the specification
of the data structure and how it is accessed and assume a
number of connections are active. To effect the update,
there are a number of options:

• Do not allow any new connections and wait until
all active connections terminate. When all connec-
tion terminate, apply the update. This is not a good
option because it can result in the service being un-
available for an unbounded amount of time.

• Allow new connections, but using the old version of
the code. This can result in the update being indef-
initely delayed because the new version may never
get to be executed.

• Allow new connections using the new version of the
code while connections created with the old version
are active (possibly blocked for client input). This
is the more interesting case. Once the shared data
structure is accessed by threads running the new
version, the data representation would have to re-
flect the semantics of the new version. This means
that on the next access by the old version we ei-
ther violate logical representation consistency or we
force the thread running the old version to be trans-
formed to the new version. Since violating logical
consistency is not an option, we are left with the
need to immediately update the thread running the
old version. Otherwise the connection will not be
available for its client for an unbounded amount of
time.

So, for all cases, the capability to immediately update
individual threads is necessary. If multiple threads of
the old version are attempting to access the shared data
structures, the updated mechanism should support their

collective immediate update. The update mechanism we
propose is the first that can support immediate update of
single-threaded as well as multi-threaded applications.

3 Dynamic Update System

We describe our proposed update model and how we ap-
ply state mappings under this model.

3.1 Update Model

We propose an update model that is more flexible than
the update models of existing works in two respects.
First, we consider stack frames as part of updateable pro-
gram state. Stack frames include local variables, for-
mal parameters, and return addresses. Second, we con-
sider the Program Counter as updateable program state.
Unlike existing work, we can ensure updates meet the
safety guarantees of Section 2 while employing an up-
dating model that can modify all aspects of the old pro-
gram states. This means our approach has a wider reach
(more old valid states) in applying an update compared to
existing work that needs to accept fewer old valid states
if it is to meet these safety guarantees.

A program(Π, s) is a pair of program codeΠ and pro-
gram states. Program codeΠ is a set containing the exe-
cutable code of all the functions of the program. Program
states = (h, Tsf , TPC) is a tuple consisting of a seth
containing all global variables on the heap, an arrayTsf

of ordered listssf of stack frames, one for each thread of
the program, and an arrayTPC of Program Counters for
each Thread. Each stack framef(l, p, ra) in sf contains
a setl of local variables on the stack, the formal param-
etersp and the return addressra. We omit the semantics
of program execution from this description.

Software updates are effected by replacingΠ with
Πnew , applying a state transformerS to s, and continu-
ing execution from programΠnew in stateS(s) = snew.
Dynamic updates take place atupdate points, which are
a subset of possiblePC locations for the program. Our
compiler inserts update points automatically when com-
piling a program to be update-enabled, as we discuss
Section 4. The update mechanism allows the state trans-
former to modify the entire old program state. For ex-
ample, for each new stack framef ′(l′, p′, ra′) it can add
new local variables to producel′, change function signa-
tures by extending or reducing the formal parameters to
obtain the new formal parametersp′, or adjust the return
addressra′ of a stack frame to continue from a different
execution point on the parent stack frame. It can insert
new stack frames inTsf ′ or remove stack frames. It can
also set a new Program CounterTPC′ for all threads. For
example it can set threads to “escape” from execution of
a loop or a function.

4

3.2 Default State Mapping

Default state mappings are needed to reduce the effort
required from the user. In general we would hope that
the default mapping is what the user desires, but there
are no guarantees for that. The user is always given the
capability to override default mappings.

Our approach involves an effective heuristic that re-
lies on verification of its validity by the user. We apply
data transformers of global variables on the heaph and
local variablesl of every stack frameTsf , and re-issue
function parametersp. Additionally we map execution
continuation of return addressesra and Program Coun-
tersTCP . Transformers and mappings are automatically
generated, can be overridden by the user, and, for the
cases we have tested, they are effective enough and re-
quire minimal user involvement.

Datatype updates. When an update is requested,
stack framesTsf and program countersTPC of all run-
ning threads are saved and the stack is unrolled up to the
thread entry-point function. At this point, the entire old
states at the time the update was initiated is available
(having just been saved) to systematically produce the
new statesnew. For every global variable whose datatype
τ has changed, a new global variable of the new datatype
τ ′ is allocated inh′. If the datatype is astruct or union
and it has been extended, a transformer copies the old
fields (only new fields must be initialized by the user). If
the datatype is reduced, the remaining fields are copied
with no user assistance. If the variable is an array, a trans-
former is applied on all array elements. If the datatype
change simply extends an array with more elements (e.g.
parseconf uint array in vsFTPd offers more configura-
tion options), a new array with more room is allocated
and the values of all old elements are copied.

Stack framesf ′(l′, p′, ra′) are reconstructed with a
default automatic mapping by copying the old stack
framef(l, p, ra). Local variablesl′ are grouped into a
struct and automatically copied froml. Variable addi-
tions are treated as new field additions in astruct and
can be initialized to a default value by a user-supplied
stack transformer. Datatype changes of local variables
l are mapped in a way similar to global variablesh and
formal parametersp′ are automatically copied fromp or
further extended by the user.

Execution continuations. Return addressesra and
Program CountersTPC are automatically preserved, and
they correspond to continuation points. Continuation
points are all points prior to function calls and all up-
date points. That’s how execution control flow can de-
scend to reconstruct a callee, or resume a program after
an update, respectively. We take the simple approach of
assigning unique numeric ids to continuation points in
the order they appear in each function body. By default,

struct vsf_transfer_ret
vsf_ftpdataio_transfer_file(
struct vsf_session* p_sess, int remote_fd,
int file_fd, int is_recv, int is_ascii)
{

// Continuation point 1
if (!is_recv) {
if (is_ascii) {

// Continuation point 2
return

do_file_send_ascii(p_sess, remote_fd, file_fd);
} else {

// Continuation point 3
return

do_file_send_binary(p_sess, remote_fd, file_fd);
}

} else {
// Continuation point 4
return do_file_recv(p_sess, remote_fd,

file_fd, is_ascii);
}

}

(a) vsFTPd v1.2.2

struct vsf_transfer_ret
vsf_ftpdataio_transfer_file(
struct vsf_session* p_sess, int remote_fd,
int file_fd, int is_recv, int is_ascii)
{

filesize_t curr_offset;
filesize_t num_send;

// Continuation point 1
if (!is_recv) {
if (is_ascii || p_sess->data_use_ssl) {

// Continuation point 2
return do_file_send_rwloop(p_sess, file_fd,

is_ascii);
} else {

// Continuation point 3
curr_offset =

vsf_sysutil_get_file_offset(file_fd);
// Continuation point 4
num_send = calc_num_send(file_fd, curr_offset);
// Continuation point 5
return do_file_send_sendfile(p_sess, remote_fd,

file_fd, curr_offset, num_send);
}

} else {
// Continuation point 6
return do_file_recv(p_sess, file_fd, is_ascii);

}
}

(b) vsFTPd v2.0.0

Figure 1: Continuation points in vsFTPd.

we map continuation points with the same enumerator in
Π andΠnew. If the call graph of the application did not
change and the loop structure did not change, this map-
ping is very effective for actual updates. By adjusting
a continuation point a user can define how control flow
should continue upon returning to a parent stack frame.
We have not found it necessary to insert additional con-
tinuation points (e.g. one in every basic block).

Figure 1 shows an example of mapping the con-
tinuation of do file send binary in an update of vs-
FTPd from v1.2.2 to v2.0.0. Updating this func-
tion requires mapping thera to its parent stack frame
vsf ftpdataio transfer file. It requires mapping con-

5

upstare_mapping_t mappings_v200[] = {
{ "vsf_ftpdataio_transfer_file",
"vsf_ftpdataio_transfer_file",
2, // 2 continuation points are mapped
{ { 3, 5 },

{ 4, 6 }
}

},
{ "do_file_send_binary",
"do_file_send_sendfile",
5, // 5 continuation points are mapped
{ { 6, 2 },

{ 7, 3 },
{ 8, 4 },
{ 9, 5 },
{ 10, 6 }

}
}

};

Figure 2: Relevant continuation mapping for an update
of do file send binary in vsFTPd v1.2.2 to v2.0.0.

tinuation point 3 from v1.2.2 to continuation point
5 in v2.0.0, including supplying the new parameters
curr offset and num send (initialized in the stack
transformer) to the new versiondo file send sendfile.
Without this mapping an update would incorrectly
resume from ra=3 in v2.0.0, which would load
vsf sysutil get file offset on the stack, and the old state
Tsf of callee stack frames ofdo file send binary would
not be restored.

Figure 2 shows the relevant declaration of the variable
(source code in C) used to express the continuation map-
ping to update to vsFTPd 2.0.0. There are two mapping
points forvsf ftpdataio transfer file: 3 maps to 5, and 4
maps to 6. 1 and 2 use the default mapping: they map to
their old values of 1 and 2. Alsodo file send binary is
replaced withdo file send sendfile and execution con-
tinues from the replaced function at an offset continua-
tion of -4, which means some code from the beginning
of do file send binary was removed.

Mapping pointers. Mapping pointers of datatypes
known at compile-time is straightforward. However,
void* pointers are cast at runtime to generic datatypes
and are harder to map. Support for tracking pointer types
at runtime is needed to invoke the appropriate datatype
transforms. We have developed this support in previous
work [10] and it has low overhead (1-7%), but we do not
yet integrate it with UpStare.

4 Implementation

UpStare consists of a compiler to generate updateable
programs, a runtime environment for dynamically apply-
ing updates, a patch generator, and a dynamic updating
tool, as shown in Figure 3. This architecture is similar to
those of existing updating systems. The compiler applies
high-level, source-to-source transformations that make

Figure 3: UpStare system architecture.

programs dynamically updateable. It is written in OCaml
using the CIL framework[15] v1.3.6 and is architecture
and operating system independent. Users replace in their
build process (e.g. Makefiles) calls to an existing com-
piler like gcc with calls to the compiler of our system
(hcucc.pl). No source code modifications by a user are
required in existing programs. Programs are transformed
as needed to coordinate application of updates with the
dynamic updating runtime (written in C; 64KB memory
footprint). Updates are initiated by the user with a sep-
arate dynamic updating control tool that connects using
TCP to a thread waiting for update requests. Updates are
loaded in memory usingdlopen and applied under the
guidance of the runtime.

Given the source code of the old and updated pro-
grams, a patch generator automatically produces the
source code for a dynamic update patch. The patch in-
cludes the newer versions of functions, and the old and
updated datatype definitions of modified variables, either
global or declared on the stack. It also includes automati-
cally generated datatype and stack transformers, and, op-
tionally, user-defined execution continuation mappings
that override the default ones to produce the new state.

4.1 Stack Reconstruction

Stack reconstruction consists of two major steps. It saves
the existing stack state when unrolling and restores the
updated state when reconstructing. To reduce the size
of active instrumented code, wrapper functions that effi-
ciently save and restore stack frames are produced away

6

functionA()
{

char a;
int param;

...
functionB(param);

}

(a) Non-Instrumented

typedef struct {
char a;
int param;

} stack_functionA_v1_t;

(*functionB_ptr) (int) =
&functionB_transformed;

functionA_transformed()
{

stack_functionA_v1_t locals;

...
functionB_6_before:
functionB_ptr(locals.param);
if (may_reconstruct && must_reconstruct()) {
if (must_unroll_up(‘‘functionA’’)) {

save_frame__functionA(&locals, 6);
return;

}
goto functionB_6_before;

}
}

(b) Instrumented

Figure 4: Transformation of function calls for stack re-
construction (functionB ptr just returned).

from the text segment in a separate memory area of cold
code executed only during reconstruction.

Figure 4 shows how stack frames are saved.func-
tionA is transformed to check upon returning from the
callee functionB whether the stack should be recon-
structed. Note thatmay reconstruct is a global flag
raised only in reconstruction mode to improve perfor-
mance. Ifmust reconstruct is true (this thread should
participate in reconstruction) and execution should be
unrolled (must unroll up is true: the topmost frame, by
default, has not been reached yet, but the user can spec-
ify that unrolling stops at a different frame), the stack
frame and continuation point6 are saved andfunctionA
returns to its caller. Returning to callers continues until
the start of the program is reached: themain function in
single-threaded applications or the start routine passed
to a pthread create call for multi-threaded applica-
tions. Otherwise unrolling should stop (must unroll up
is false). Agoto statement resumes execution fromfunc-
tionB 6 before and descends infunctionB for recon-
struction.

Figure 5 shows how execution is resumed fromfunc-
tionA. If on function entry the stack should be recon-
structed downwards, the stack frame is restored. A
switch statement maps the continuation point6 to con-
tinuation labelfunctionB 6 before using agoto state-

functionA()
{

char a;
int param;

...
functionB(param);

L1:...
}

(a) Non-Instrumented

functionA_transformed()
{

stack_functionA_v1_t locals;

if (may_reconstruct && must_reconstruct()) {
restore_frame__functionA(&locals);
switch (next_continuation_point()) {

...
case 3:
goto try_to_update_3_after;

...
case 6:
goto functionB_6_before;

...
}

}
...
functionB_6_before:
functionB_ptr(locals.param);
if (may_reconstruct && must_reconstruct()) {

if (must_unroll_up(‘‘functionA’’)) {
save_frame__functionA(&locals, 6);
return;

}
goto functionB_6_before;

}
L1:...
}

(b) Instrumented

Figure 5: Transformation of function entrypoints for
stack reconstruction (enteringfunctionA transformed).

ment. Execution flow continues by callingfunctionB.
When the update is complete (may reconstruct is false:
we are no longer in reconstruction mode) andfunctionB
finishes, execution continues normally (fromL1).

Thread entry-points. If the main function or the start
routine passed to apthread create attempt toreturn
during reconstruction they will terminate permanently.
To allow the update ofmain or thread entry points, calls
to such functions are initiated from a wrapper function.
To accurately discover thread entry-points (and signal-
handlers, discussed next) we use the points-to alias anal-
ysis provided by CIL.

Signal handlers. The address of signal handlers, de-
fined withsigaction andsignal, is stored inside the op-
erating system. To avoid resetting signal handlers when
they are updated calls to them are initiated from a wrap-
per function. Additionally, signal handlers return execu-
tion to the kernel and are incompatible with stack recon-
struction. They are instrumented to raise a flag on entry
and reset the flag before exiting. Requests to update are
rejected when a program is executing a signal handler.

7

functionA()
{

char a;
int param;

while(condition)
{

...
}

}

(a) Non-Instrumented

functionA_transformed()
{

stack_functionA_v1_t locals;

...
while(condition)
{

if (must_update) {
coordinate_update_top(&locals, 3);
return;

try_to_update_3_after:
coordinate_update_bottom();

}
...

}
}

(b) Instrumented

Figure 6: Insertion of an update point at the beginning of
a loop.

They are immediately satisfied when the program con-
tinues in normal execution mode, and can update signal
handlers at that point. Signal handlers are discovered us-
ing points-to alias analysis provided by CIL.

Redirecting function calls. Function calls are exe-
cuted using pointer indirection. For each functionf v1,
a global variablef ptr is created that points to&f v1 and
calls to f v1 are transformed to calls to*f ptr. For each
function pointer*g v1, wrapper functions are created
that call it.

Inserting update points. Update points are auto-
matically inserted at the beginning of each function and
each loop so they can be encountered often to allow im-
mediate updates. Figure 6 shows an example update
point inserted at the beginning of a loop. When the
must update flag is raised, the current thread partici-
pates in synchronization to block all threads. The cur-
rent continuation point3 and the stack frame offunc-
tionA are saved, and execution returns to the function’s
caller. When the stack is reconstructed andfunctionA
is called again (see Figure 5b), execution flow resumes
from try to update 3 after.

Our current implementation is restricted to a coarse-
activation of update points using a singlemust update
flag. However, it is straightforward to support more
fine-grain selective activation by dynamically disengag-
ing update points. For example, the user could specify
when requesting an update that (say) all update points

except 250-259 should effect the update.
Exporting local variables. The dlopen library call

will successfully load a dynamic update patch only if
the patch references global variables. References to vari-
ables that were declared local in the original version (us-
ing thestatic keyword) are not accessible after dynamic
loading, leading to system exceptions when executing
state transformers. Our compiler removes thestatic key-
word from all local variables and exports them to global.

4.2 Multi-Threaded Updates

Updating a multi-threaded or multi-process application
requires all threads to be blocked. If some threads are
not blocked the possibility of thread-safety violations re-
mains open.

We adapted an algorithm that blocks all threads
in heterogeneous checkpointing for multi-threaded
applications[9] to dynamic updates. The idea is to force
all but one thread to block when the application must
update. The one thread that is not blocked will be the
coordinator of the update. It polls the status of the re-
maining threads until it can tell for sure that all threads
are blocked, as defined below.

When a thread reaches an update point and the appli-
cation must update, it raises a flag indicating that it is
willing to cooperateon the update and then attempts to
acquire acoordination lock. The first thread to acquire
the coordination lock is thecoordinatorof the update.
The coordinator can tell that some threads are blocked
if their cooperation flags are raised. But this does not
cover all threads. Some threads might be blocked wait-
ing on an application lock owned by a thread that is al-
ready willing to cooperate and that is blocked on theco-
ordination lock. To that end, the system needs to keep
track of the blocking status of various threads. Calls
to pthread mutex lock andpthread mutex unlock are
replaced with wrapper calls to keep track of the blocking
status of threads. When a thread attempts to acquire a
lock, it adds the lock to aWANT list. When the lock is
acquired, the lock is removed from theWANT list and
placed on aHAVE list. When the thread releases the
lock, the lock is removed from theHAVE list.

The coordinator determines that a thread isreally
blockedif:

1. The thread is willing to update;

2. The thread is blocked waiting on a lock owned by
another thread that isreally blocked.

The coordinator keeps on checking the status of the
other threads until it can determine that all other threads
arereally blocked, at which time the coordinator initiates
the actual update: the stack of each thread is unrolled

8

and the threads block; all datatypes are transformed; the
stacks are reconstructed and the threads block; and, the
threads resume executing the updated version.

The algorithm outlined above has been extended to
support blocking threads that use semaphores[9], but our
current implementation does not yet integrate that capa-
bility with the dynamic update system.

Multi-process updates. We extend multi-threaded
updates in multi-process applications.fork calls are re-
placed with wrapper calls that maintain a hierarchy of
children. This information is used by the parent process,
which acts as a central coordinator of the individual up-
date steps, to apply an atomic update among all children:
it waits for all threads of all children to block; all stack
frames to be unrolled; transforms datatypes; reconstructs
stacks; and, releases all children after all their threads
are ready to resume execution.wait andwaitpid are also
intercepted to cleanup the children hierarchy.

4.3 Blocking System Calls

To enable the runtime to regain execution when an up-
date is initiated, we transform blocking I/O calls into
non-blocking calls and we segment write calls into writes
of smaller chunks.

Calls to sendfile, which is used in vsFTPd for file
transfer, are segmented into 256KB chunks. We do not
yet implement segmentation forsend but it should be
straightforward to do so.read, recv, accept, andse-
lect calls are wrapped to check if the file descriptor is
set to blocking mode. If it is, the file descriptor is con-
verted to non-blocking mode, the operation is issued, and
execution is voluntarily blocked in a manner that allows
unblocking: we issue aselect that includes in its read set
the file descriptor of a pipe created by the runtime. If an
update must be applied, hence we need to unblock, we
write to the pipe to forceselect to return and encounter
an update point. A bottom handler executed after the up-
date point resets the file descriptor to blocking mode. To
allow state transformation while a blocking system call is
issued without corrupting the data buffer ofread or recv,
these calls are issued with a buffer allocated on the heap.
When the operations complete, the data are copied back
to the original buffer. A possible optimization, which we
have not yet implemented, is to transform programs to
always allocate I/O data buffers on the heap instead of
the stack, to avoid copying data back to the buffer when
such operations complete.

A more general approach to handling any blocking
system call, not just I/O calls, is to always issue the call
in a separate thread. This allows the runtime to remain
in control and initiate reconstruction even if the system
call has not returned yet. Our original implementation of
blocking I/O calls followed this approach but was not as

efficient as the self-pipeselect solution, due to the cost
of pthread create (we did not try worker threads).

5 Evaluation

We demonstrate the working of UpStare on three appli-
cations. The data-intensive KissFFT, the vsFTPd server,
and the PostgreSQL database. We give a detailed analy-
sis of the sources of overhead, such as runtime overhead,
memory footprint, and network overhead.

5.1 KissFFT

We compiled (at-O3) the KissFFT1 v1.2.0 Fast Fourier
Transform library (1936 lines of code) usingfloat
datatypes to be dynamically updateable and performed
100,000 iterations on 20,000 points. This is an applica-
tion with heavy data access and for which source code
instrumented with Ginseng was made available to us.
We did not update this application, but we compiled it
to be updateable. We used this application to get a bet-
ter understanding of the sources of overhead introduced
by our instrumentation. We ran experiments that selec-
tively omitted parts of the code that UpStare introduces
in an application. We measured the time to run this ap-
plication: (1) using the original compiler, (2) using CIL,
(3) when only wrapper functions to save/restore stack
frames are produced, (4) when functions were called di-
rectly without pointer indirection, (5) when if-statements
without a body are inserted for update points (Figure 6),
the switch statement prologue (Figure 5b), or upwards
stack unrolling (Figure 4b); here we aim to measure
the overhead of branch checks when themust update
andmust reconstruct flags are not raised, and (6) after
adding the body of these if-statements.

Figure 7 shows the impact of the presence of
reconstruction-aware code in the program. To compare
the results we identify the best compiler to use with
a non-instrumented KissFFT and the best compiler to
use under instrumentation. Given an non-instrumented
KissFFT,gcc 4.1 (GNU C Compiler) is the best com-
piler and given an instrumented KissFFT the best com-
pilers areicc 10.1 (Intel C Compiler) for Ginseng and
gcc 3.4 for UpStare, all on a Pentium M. Under this
comparison, the best performing Ginseng reports over-
head of 149.8% (87.1% for UpStare) and the best per-
forming UpStare reports overhead of 38.2% (179.3% for
Ginseng). The overhead of Ginseng stems from access-
ing data through a versioned pointer indirection instead
of accessing them directly. In comparison, the overhead
of UpStare is rooted at the increase of function size that

1http://sourceforge.net/projects/kissfft

9

 0

 10

 20

 30

 40

 50

 60

 70
S

ec
o

n
d

s

KissFFT of 100000 iterations on 2000 points

cc
CIL

UpStare - no-if-stmts-no-indirection
UpStare - no-if-stmts

UpStare - if-stmts-no-body
UpStare

Ginseng - update-points-only
Ginseng

gcc 3.4
8KB L1

256KB L2
Pentium 4

1.6Ghz

gcc 4.1 icc 10.1 gcc 3.4
8KB L1

256KB L2
Xeon

1.5Ghz

gcc 4.1 icc 10.1 gcc 3.4
32KB L1
1MB L2

Pentium M
1.3Ghz

gcc 4.1 icc 8.0 icc 9.1 icc 10.1

Figure 7: KissFFT: Impact of reconstruction code on runningtime.

overexerts the ITLB and branch predict unit of the pro-
cessor.

CIL. CIL transforms source code in simpler terms and
should not alter performance. It generally doesn’t, but it
reported up to 4.2% overhead (Pentium 4:icc 10.1) and
up to 1.0% improvement (Pentium M:icc 10.1).

Wrapper save/restore functions. Compared to CIL,
producing wrapper functions to save/restore stack frames
should not report overhead because these functions are
stored outside the text segment. However, on a Pentium
M it reported 11.8% overhead withgcc 4.1 and 11.0%
improvement withgcc 3.4. Intel compilers report no
overhead, suggesting a problem withgcc.

Function indirection. Functions called via pointer in-
direction should incur constant overhead. They report
overhead up to 3.0% on a Pentium M (icc 10.1), 1.2% on
a Xeon (gcc 4.1), and 10.3% on a Pentium 4 (gcc 3.4).

If-statements. On a Pentium M, inserting if-
statements adds an overhead of 7.2% foricc 10.1, 7.2%
for gcc 4.1 and 11.3% forgcc 3.4. This suggests branch
prediction can be a significant factor in final perfor-
mance. Still, update points in Ginseng and UpStare incur
comparable overhead.

Increased function size. In comparison to the to-
tal overhead of if-statements without a body (Pentium
M: 18.0% forgcc 4.1; 9.2% foricc 10.1), an increased
function image size adds an overhead of 23.0% and
57.4% respectively, and is responsible for most of the
system overhead. We used OProfile to collect perfor-
mance statistics on the Pentium 4 withgcc 4.1 (over-
head 31.3%) and further investigate this issue. We ob-
served a 15% increase in the number of ITLB trans-
lations and an 11% increase in the number of instruc-
tion fetch requests from the branch predict unit. Other

events like ITLB misses, retired mispredicted branches
and page walks showed no significant deviation.

We attempted to use inline assembly to place the body
of if-statements outside the text segment. Inline assem-
bly convention prohibits using branch instructions since
their presence is not available to high-level optimiza-
tions. The compiler would produce intermediate assem-
bly code for the stack unrolling code that would fail to
link (inline code supplying linking directives in unreach-
able basic blocks would not be produced). We also at-
tempted to partition code in hot and cold blocks with-
freorder-blocks-and-partition using bothgcc 4.1 and
icc 10.1 but the compilers moved the cold blocks only to
the end of the function image without reducing the over-
head. Placing the cold blocks to the end of the process
image instead may reduce the final overhead.

Memory footprint. We measured the resident set size
at the various stages of instrumentation. CIL does not in-
crease the working set. Wrapper code that saves/restores
stack frames is responsible for most of the memory in-
crease, up to 236KB (48.7%) usinggcc 4.1 on a Pentium
M. If-statements marginally increase memory by 4-8KB
(0.9-1.7%). The best performing UpStare in respect to
running time (Pentium M:gcc 3.4), increased memory
by a total of 260KB (53.7%), while Ginseng (Pentium M:
icc 10.1) increased memory by 76KB (13.3%). Ginseng
increases memory by type wrappingstruct datatypes,
while UpStare adds updateable code inside functions and
wrapper functions to save/restore stack frames.

5.2 The Very Secure FTP Daemon

vsFTPd is a fast, secure, widely used FTP application
that forks connection handlers that do not communicate

10

Ver. Date LoC2 Types Variables Functions
Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd. Tot. Same Add. Del. Upd.

1.1.0 2002-07-31 8,389 628 - - - - 158 - - - - 436 - - - -
1.1.1 2002-10-07 8,468 628 628 0 0 0 161 156 3 0 2 436 420 0 0 16
1.1.2 2002-10-16 8,731 639 626 11 0 2 165 159 4 0 2 447 428 11 0 8
1.1.3 2002-11-09 8,839 646 638 7 0 1 167 164 2 0 1 449 439 2 0 8
1.2.0 2003-05-29 10,011 659 641 16 3 2 201 163 35 1 3 481 378 39 7 64
1.2.1 2003-11-13 10,506 664 655 7 0 2 205 196 7 3 2 486 447 6 1 33
1.2.2 2004-04-26 10,547 664 664 0 0 0 204 202 1 2 1 487 476 1 0 10
2.0.0 2004-07-01 11,527 998 649 342 8 7 218 200 16 2 2 513 421 35 9 57
2.0.1 2004-07-02 11,543 687 674 8 319 5 219 218 1 0 0 513 506 0 0 7
2.0.2 2005-03-03 11,612 688 687 1 0 0 219 219 0 0 0 513 489 1 1 23
2.0.3 2005-03-19 11,743 688 688 0 0 0 226 216 8 1 2 516 481 5 2 30
2.0.4 2006-01-09 11,857 694 687 6 0 1 229 225 3 0 1 519 499 4 1 16
2.0.5 2006-07-03 11,923 694 693 0 0 1 234 228 5 0 1 519 494 0 0 25
2.0.6 2008-02-13 12,202 701 691 7 0 3 239 231 5 0 3 523 497 4 0 22

Table 1: vsFTPd: Source code evolution.

with each other or their parent. We applied 13 updates
spanning 5.5 years of application evolution, compiled
with gcc 4.1 on a 2.4Ghz Xeon. The updates were pre-
pared automatically using the patch generator. They re-
quired a total of 11 user-defined continuation mappings
for the two use cases we tested. Additional mappings
will probably be needed to update from other update
points. They also involved some manual initialization
of new variables andstruct fields.

Table 1 studies the source code evolution of vsFTPd.
New datatypes are more often added than modified. Vari-
able additions are common, and there are few datatype
changes or variable deletions. Functions are updated
very often and are less likely to be deleted. We also
note that a large collection of functions and variables
are added in major revisions of the program, such as
from v1.1.3 to v1.2.0 and from v1.2.2 to v2.0.0. The
large number of types added in v2.0.0 is due to including
header files from GnuTLS (for secure communication)
while in v2.0.1 (released one day later) the OpenSSL
header files were removed. We applied updates to vs-
FTPd under two use cases:

• Idle client. A client connected to the server, authen-
ticated correctly, and was waiting idle for user input
on the command line. An update was applied.

• File transfer. A client connected to the server,
authenticated correctly, and requested to retrieve a
large file. The file begun being transmitted to the
client but has not finished transmission. An update
was applied.

Our goal was to determine if vsFTPd required updates
of functions on the stack under these use cases, which
are typical for this type of application. In 7 out of 13 up-
dates thevsf session struct variable allocated inmain
was extended with new fields and needed to be updated.
For an idle client, in 7 out of 13 updates functions on the

2Generated using David A. Wheeler’s ’SLOCCount’.

stack needed to be updated. 5 of those 7 updates were
of forward control flow that had not been executed yet
and was pending on the stack. For a file transfer, in 9
out of 13 updates functions on the stack needed to be up-
dated and 6 of those 9 updates were of forward control
flow. Additionally, we observed a case where an update
applied during a large file transfer possibly needed to es-
cape a loop. During the update from v1.1.2 to 1.1.3 the
new code indo sendfile should be executed only if a
new global flag is on. If the update requires the initial
state of this flag to be off, execution should break out of
the loop and stop transferring the file.

613 update points where automatically inserted in vs-
FTPd v2.0.5. Updating during a large file transfer oc-
curred at stack depth 11 (maximum depth is 16, aver-
age 8.9) and took 59.7ms: 50.2ms to block all processes;
0.4ms to unroll the stack; 0.95ms to unroll the stack of
children processes; 0.45ms to reconstruct; 1ms to recon-
struct the stack of children processes. In comparison,
Ginseng applies a vsFTPd update in under 5ms [14].

While Ginseng can support the update ofvsf session
struct, it achieves that with data padding whose limita-
tions we have already discussed.

We setup a client-server configuration connected with
a cross-over cable to eliminate network fluctuations. We
found this setup necessary to accurately measure per-
formance: in preliminary measurements our system re-
ported performance improvement, which was counter-
intuitive. We installed vsFTPd to serve files both from
a hard-disk and from an in-memory filesystem to elimi-
nate performance perturbation of hard-disk accesses and
identify the worst-case overhead. We measured the la-
tency of establishing a connection and retrieving a 32-
byte file 1000 times and the throughput of retrieving
a 300MB file. Table 2 reports the median of 11 runs
and shows comparable performance for files served ei-
ther from a hard-disk or from memory. Stack reconstruc-
tion slows down an updateable vsFTPd v2.0.5 by∼0.37-
0.50ms (4.9-5.3%), multi-process support by∼0.65-
0.70ms (6.8-7.4%), and support for blocking system calls

11

vsFTPd Configuration Connection Latency(ms)
32-byte file

Hard-disk Memory

v2.0.5 - NonInstrumented9.61 9.49
v2.0.5 - CIL 9.64 (0.3%) 9.54 (0.5%)
v2.0.5 - Reconstruction 10.08 (4.9%) 9.99 (5.3%)
v2.0.5 - MultiProcess 10.26 (6.8%)10.19 (7.4%)
v2.0.5 - BlockingCalls 9.97 (3.8%) 9.76 (2.9%)
v2.0.5 - UpStare-FULL 11.15 (16.0%)11.06 (16.5%)

v2.0.6 - NonInstrumented9.62 9.52
v2.0.6 - CIL 9.63 (0.1%) 9.54 (0.2%)
v2.0.6 - UpStare-FULL 11.16 (16.0%)11.09 (16.5%)
v2.0.5 - update to v2.0.611.22 (16.6%)11.12 (16.8%)

Table 2: vsFTPd: Impact of instrumentation on latency.

by ∼0.27-0.36ms (2.9-3.8%). The worst-case overhead
is from memory: 1.57ms (16.5%), and 1.63ms (16.8%)
when updated to v2.0.6. Ginseng reported overhead of
3% for an updateable and 5% for an updated vsFTPd, but
did not report if it eliminated hard-disk accesses or the
network from the experiment. In terms of throughput, an
updateable v2.0.5 and an update to v2.0.6 reported zero
overhead, like Ginseng.

The numbers for latency are presented as a worst-case
scenario because, in a practical situation, transferring a
file remotely would incur a latency that is considerably
larger than the latency of retrieving a 32-byte file. For
transferring files, throughput is more relevant and for that
measure our system reports zero overhead.

5.3 PostgreSQL Database

PostgreSQL is an advanced DBMS that forks connec-
tion handlers that communicate with each other through
shared memory. It is a large application of 369K lines
of code, with the postmaster process consuming 225K
lines of code (source code fromsrc/backend/). Us-
ing the patch generator, we automatically prepared an
update from v7.4.16 to v7.4.17 compiled with gcc 4.1
on a 2.4Ghz Xeon. v7.4.17 updated 64 functions and
added one variable. The update was applied dynamically
without any user-specified continuation mappings when
a client was waiting idle for user input. User-specified
mappings will probably be needed to update from other
update points (9931 update points where automatically
inserted in v7.4.16). The update occurred at stack depth
10 (maximum depth is 35, average 15) and took 60ms:
53.7ms to block all processes; 0.2ms to unroll the stack;
0.45ms to unroll the stack of children processes; 0.3ms
to reconstruct the stack; 0.4ms to reconstruct the stack of
children processes.

The instrumented v7.4.16 and the update to v7.4.17
passed 85 (out of 93) tests of the PostgreSQL testsuite,

PostgreSQL Configuration pgbench throughput (t/s)
100,000 transactions

Hard-disk Memory

v7.4.16 - NonInstrumented175.6 319.7
v7.4.16 - CIL 169.7 (3.4%)319.0 (0.2%)
v7.4.16 - Reconstruction 133.0 (24.3%)199.2 (37.7%)
v7.4.16 - MultiProcess 170.5 (2.9%)312.9 (2.1%)
v7.4.16 - BlockingCalls 161.1 (8.3%)293.4 (8.2%)
v7.4.16 - UpStare-FULL 130.7 (25.6%)189.7 (40.7%)

v7.4.17 - NonInstrumented174.3 317.8
v7.4.17 - CIL 171.3 (1.7%)316.6 (0.4%)
v7.4.17 - UpStare-FULL 128.0 (26.6%)189.8 (40.3%)
v7.4.16 - update to v7.4.17131.8 (24.4%)188.8 (40.6%)

Table 3: PostgreSQL: Impact of instrumentation on
throughput.

both in serial and parallel execution. For the remain-
ing 8 testcases we verified with MPatrol and Valgrind
that a non-instrumented PostgreSQL was causing buffer
overflows, illegal memory accesses, and uses of unini-
tialized data. While these access errors seem to produce
no problems for an non-instrumented PostgreSQL, they
were contributing to failures of other testcases or crashes
of a PostgreSQL instrumented with stack reconstruction.
Since the memory corruption bugs of PostgreSQL can
produce unpredictable results we cannot guarantee our
implementation will work in the presence of such bugs.

We measured over a cross-over cable the overhead of
an updateable v7.4.16 compared to a non-instrumented
v7.4.16 using the PostgreSQLpgbench tool that runs a
“TPC-B like” benchmark: five SELECT, UPDATE, and
INSERT commands per transaction. We measured the
time to run 100,000 transactions after a ramp-up time
of 40,000 transactions. Table 3 measures the through-
put when the database is loaded both on hard-disk and in
memory. Stack reconstruction reports 37.7% overhead
in memory but this is a worst-case scenario because a
database needs stable storage to be durable (24.3% on
hard-disk). Although only one client connection was
established overall, multi-process support reported over-
head 2.1%-2.9% and blocking system calls 8.3%. An
updateable v7.4.16 was 40.7% slower in memory and
25.6% slower on hard-disk. For these cases, the trans-
actions were all executed over the same connection. The
numbers show that each transaction consumes 5.7ms and
7.7ms for the non-instrumented and updateable v7.4.16
cases respectively. This translates into a latency overhead
of 34.4% for each transaction on average. This latency is
for transactions over the same connection.

To measure a worst-case scenario, we measured la-
tency for establishing a connection and running only one
transaction over the connection. We measure the latency
by running a transaction 1000 times (1000 connections

12

PostgreSQL Configuration pgbench latency (ms)
Average of 1000 transactions

Hard-disk Memory

v7.4.16 - NonInstrumented25.62 23.56
v7.4.16 - CIL 25.70 (0.3%)23.77 (0.9%)
v7.4.16 - Reconstruction 34.98 (36.5%)33.03 (40.2%)
v7.4.16 - MultiProcess 27.33 (6.7%)25.44 (8.0%)
v7.4.16 - BlockingCalls 26.94 (5.2%)25.45 (8.0%)
v7.4.16 - UpStare-FULL 48.09 (87.7%)45.97 (95.1%)

v7.4.17 - NonInstrumented25.56 23.53
v7.4.17 - CIL 25.73 (0.7%)23.64 (0.5%)
v7.4.17 - UpStare-FULL 48.34 (89.1%)45.85 (94.9%)
v7.4.16 - update to v7.4.1748.36 (89.2%)46.21 (96.4%)

Table 4: PostgreSQL: Impact of instrumentation on la-
tency.

were established and torn down). Table 4 reports that
the combination of stack reconstruction, multi-process
support and blocking system calls support have a severe
impact on latency. When isolated, these features report
a total overhead of 48.4-56.2%. However, when com-
bined an updateable v7.4.16 is 22.41-22.47ms slower
(87.7-95.1%), and 89.2-96.4% slower when updated to
v7.4.17. We speculate this is due to the limited size of the
processor cache and we intend to run more experiments
to better understand the results. Note that the overhead
due to reconstruction is comparable to that of KissFFT.
We speculate that is due to the nature of the application
(data-intensive). We could not obtain a number for Gin-
seng because it could not compile PostgreSQL but we
would expect that the data accesses through pointer indi-
rection in Ginseng would result in high overhead.

6 Related Work

Table 5 compares existing DSU systems withUpStare. It
first compares kernel updating systems, and then appli-
cation updating systems.

DynAMOS [11] demonstrates transaction safety
through user-supplied adaptation handlers. However it
may need to wait indefinitely for a safe update point.
Its newcode-type-safety relies on pointer indirection
through “shadow data structures”, which incurs over-
head, to access the new fields of updated datatypes. But it
cannot guarantee oldcode-type-safety if old types change
their semantics, like other binary instrumentation sys-
tems [17, 2, 1].

K42 [3] is an OS that is particularly crafted to be up-
dateable and its approach cannot be generally applied to
existing systems without significant re-engineering. By
design it requires all kernel-threads to be short-lived and
non-blocking to guaranteequiescence: no to-be-updated
functions should be active on the stack.

POLUS [4] accomplishes type-safety of global vari-
ables by trapping all data accesses for the duration of
an update and synchronizing the state of the old and
new types. But it cannot update data on the stack, and
does not address representation consistency or the thread
safety issues of DSU.

Ginseng [14] pads datatypes with enough space to ac-
commodate future growth. Retrieving the appropriate
version of padded datatypes during runtime requires in-
direction for data access. This leads to considerable over-
head in data-intensive applications and after many up-
dates there may be no space left to accommodate the up-
date. Ginseng does not provide state and program rep-
resentation consistency but it offers logical consistency
through static analyses [16, 13] which improve safety
and updateability. Since its state mapping is restricted,
because of its updating mechanism, these conservative
analyses may not always find safe update points for that
mapping. Still, Ginseng can update multi-threaded ap-
plications [12], although continuation may not be imme-
diate. Additionally, Ginseng requires users to anticipate
long-lived loops and mark them for “loop extraction” of
the loop body into a separate function to update them be-
fore the next iteration begins.

Generally, existing systems have difficulty in updat-
ing functions [11, 2, 3, 1, 4, 14] and datatypes [1, 3, 4]
that are already active on the stack, or function re-
turn addresses [17, 11, 2, 3, 1, 4, 14]. They mostly
allow functions to be updated the next time they are
called [11, 2, 1, 3, 4, 14]. This is due to their restric-
tive updating mechanism that opens the possibility for
executing part old code, part new code, and part old code
again, which can be undesirable. Some systems elimi-
nate the possibility of executing mixed code by requiring
quiescence before they update[1, 3, 4] but this limits up-
dateability in practice [1, 4]. In Table 5 the overall ability
to update from as many old states as possible is coarsely
captured in theupdateabilityparameter.

UpStare offers high updateability because of its up-
dating mechanism. It can modify all aspects of the old
program state (stack-resident functions, datatypes, and
return addresses), which allows updating from a wider
range of old valid states. Although it provides useful
safety guarantees, it requires some involvement from the
user in validating semantic safety of updates. UpStare
has the potential to provide transaction-safety by dynam-
ically disengaging update points, although this is not im-
plemented yet. The transaction safety analysis [13] of-
fered by Ginseng could be used by UpStare to reduce
user input in validating state transformers.

Acknowledgements. We would like to thank our
shepherd George Candea, the anonymous reviewers, and
Michael Hicks for their feedback. This work was sup-
ported in part by NSF Grant CSR-0849980.

13

DynAMOS [11] K42 [3] POLUS [4] Ginseng [14] UpStare

Domain Kernel Kernel Applications Applications Applications
Preparation Binary Source Binary Source Source
No program anticipation by user √ X √ X √

Datatype access Direct Direct Direct Indirect Direct
Updated datatype access Part-indirect Direct Trap+Sync Indirect Direct
User involvement for update High Medium Low Low Medium
Oldcode type-safety X √ Globals only Static Analysis √

Newcode type-safety √ √ Globals only Static Analysis √

Transaction safety Adaptive Quiescence Quiescence Static Analysis Possible
Representation consistency X √ X X √

Logical representation consistency X √ X √ √

Thread safety X √ X √ √

Immediate continuation X √ X X √

Updateability Medium High Low Medium High

Table 5: Comparison of existing DSU systems.

References

[1] Gautam Altekar, Ilya Bagrak, Paul Burstein, and Andrew
Schultz. OPUS: Online Patches and Updates for Secu-
rity. In 14th USENIX Security Symposium, pages 287–
302, July 2005.

[2] Jeff Arnold and M. Frans Kaashoek. KSplice: Automatic
Rebootless Kernel Updates. InEuroSys 2009, April 2009.

[3] Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, and Robert W. Wis-
niewski. Providing Dynamic Update in an Operating Sys-
tem. InUSENIX Symposium on Operating Systems De-
sign and Implementation, April 2005.

[4] Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-
Chung Yew. Polus: A powerful live updating system. In
ICSE ’07: Proceedings of the 29th International Confer-
ence on Software Engineering, pages 271–281, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[5] Dominic Duggan. Type-based hot swapping of running
modules. InInternational Conference on Functional Pro-
gramming, pages 62–73, 2001.

[6] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A for-
mal framework for on-line software version change.Soft-
ware Engineering, 22(2):120–131, 1996.

[7] Susan Horwitz. Identifying the semantic and textual dif-
ferences between two versions of a program. InProceed-
ings of the ACM SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, volume 25,
pages 234–245, White Plains, NY, June 1990.

[8] Susan Horwitz and Thomas Reps. The use of program
dependence graphs in software engineering. InIn Pro-
ceedings of the Fourteenth International Conference on
Software Engineering, pages 392–411, 1992.

[9] Feras Karablieh and Rida A. Bazzi. Heterogeneous
Checkpointing for Multithreaded Applications. In21st
Symposium on Reliable Distributed Systems (SRDS), Oc-
tober 2002.

[10] Feras Karablieh, Rida A. Bazzi, and Margaret Hicks.
Compiler-Assisted Heterogenous Checkpointing. In
20th IEEE Symposium on Reliable Distributed Systems
(SRDS), October 2001.

[11] Kristis Makris and Kyung Dong Ryu. Dynamic and
Adaptive Updates of Non-Quiescent Subsystems in Com-
modity Operating System Kernels. InEuroSys 2007,
March 2007.

[12] Iulian Neamtiu. Practical Dynamic Software Updating.
PhD thesis, University of Maryland, August 2008.

[13] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and
Polyvios Pratikakis. Contextual effects for version-
consistent dynamic software updating and safe concurrent
programming. InProceedings of the ACM Conference
on Principles of Programming Languages (POPL), pages
37–50, January 2008.

[14] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and
Manuel Oriol. Practical Dynamic Software Updating for
C. In Proceedings of the ACM Conference on Program-
ming Language Design and Implementation (PLDI), June
2006.

[15] George C. Necula, Scott McPeak, S.P. Rahul, and Westley
Weimer. CIL: Intermediate Language and Tools for Anal-
ysis and Transformation of C Programs. InProceedings
of Conference on Compilier Construction, 2002.

[16] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter
Sewell, and Iulian Neamtiu.Mutatis Mutandis: Safe and
flexible dynamic software updating.ACM Transactions
on Programming Languages and Systems (TOPLAS),
2006.

[17] Ariel Tamches and Barton P. Miller. Fine-Grained Dy-
namic Instrumentation of Commodity Operating System
Kernels. InThird Symposium on Operating System De-
sign and Implementation, February 1999.

14

