Xen and the Art of Virtualization

Revisited

Ian Pratt, Citrix Systems Inc.
Outline

• A brief history of Xen
• Why virtualization matters
• Paravirtualization review
• Hardware-software co-design
 – MMU virtualization
 – Network interface virtualization
• The virtualization frontier
The Xen Story

• Mar 1999 XenoServers HotOS paper
• Apr 2002 Xen hypervisor development starts
• Oct 2003 Xen SOSP paper
• Apr 2004 Xen 1.0 released
• Jun 2004 First Xen developer’s summit
• Nov 2004 Xen 2.0 released
• 2004 Hardware vendors start taking Xen seriously
• 2005 RedHat, Novell, Sun and others adopt Xen
• 2006 VMware and Microsoft adopt paravirtualization
• Sep 2006 First XenEnterprise released
• May 2008 Xen embedded in Flash on HP/Dell servers
Xen Project Mission

• Build the industry standard open source hypervisor
 – Core "engine" that is incorporated into multiple vendors’ products

• Maintain Xen’s industry-leading performance
 – Be first to exploit new hardware acceleration features
 – Help OS vendors paravirtualize their OSes

• Maintain Xen’s reputation for stability and quality
 – Security must now be paramount

• Support multiple CPU types; big and small systems
 – From server to client to mobile phone

• Foster innovation

• Drive interoperability
Why Virtualization is ‘Hot’

• Clearing up the mess created by the success of ‘scale-out’
 – One Application per commodity x86 server
 – Leads to ‘server sprawl’
 – 5-15% CPU utilization typical

• Failure of popular OSes to provide
 – Full configuration isolation
 – Temporal isolation for performance predictability
 – Strong spatial isolation for security and reliability
 – True backward app compatibility
First Virtualization Benefits

• Server consolidation
 – Consolidate scale-out success
 – Exploit multi-core CPUs

• Manageability
 – Secure remote console
 – Reboot / power control
 – Performance monitoring

• Ease of deployment
 – Rapid provisioning

• VM image portability
 – Move image between different hardware
 – Disaster Recovery
2nd Generation Virtualization Benefits

- Avoid planned downtime with VM Relocation
- Dynamically re-balance workload to meet app SLAs or to save power
2nd Generation Virtualization Benefits

- **Restart-HA** monitors hosts and VMs to keep apps running

- **Hardware Fault Tolerance** with deterministic replay or checkpointing
Hypervisor Security

- “hidden hypervisor” attack is a myth, but exploitation of an installed hypervisor is a real and dangerous threat
- Hypervisors add more software and thus increase the attack surface
 - Network-facing control stack
 - VM containment
- Xen smaller and defensible than an OS
 - Need a “strength in depth” approach
 - Disaggregate, De-privilege, narrow interfaces
 - Xen Security Modules from the NSA
 - Measured launch
Improving Security with Hypervisors

• Hypervisors allow administrative policy enforcement from outside of the OS
 – Firewalls, IDS, malware scanning etc
 • More robust as not so easily disabled
 • Provides protection within a network rather than just at borders
 – Hardening OSes with immutable memory, taint tracking, logging and replay
 – Backup policy, multi-path IO, HA, FT etc
 • Availability and Reliability

• Reducing human effort required to admin all the VMs is the next frontier
Breaking the bond between OS and h/w

• Simplifies Application-stack certification
 – Certify App-on-OS; OS-on-HV; HV-on-h/w
 – Enables Virtual Appliances

• Virtual hardware greatly reduces the effort to modify/create new OSes
 – Application-specific OSes
 • Slimming down and optimization of existing OSes
 • “Native execution” of Apps

• Hypervisors enable h/w vendors to ‘light up’ new features more rapidly
Paravirtualization

• Extending the OS to be aware it is running in a virtualized environment
 – For performance and enhanced correctness
 – IO, memory size, CPU, MMU, time

• In Xen <2.0, some paravirtualizations were compulsory to close x86 virtualization holes
 – Intel VT / AMD-V allow incremental paravirtualization

• Paravirtualization is still very important for performance, and works along side enhancements to the hardware
 – Higher-level paravirtualizations yield greatest benefit
MMU Virtualization

- Critical for performance, challenging to make fast, especially SMP
 - Hot-unplug unnecessary virtual CPUs
 - Use multicast TLB flush paravirtualizations etc
- Xen supports 3 MMU virtualization modes
 1. Direct pagetables
 2. Shadow pagetables
 3. Hardware Assisted Paging
- OS Paravirtualization compulsory for #1, optional (and very beneficial) for #2&3
MMU Virtualization: Direct-Mode

- Requires guest changes
 - Supported by Linux, Solaris, FreeBSD, NetBSD etc
- Highest performance, fewest traps
• Guest changes optional, but help with batching, knowing when to unshadow
• Latest algorithms work remarkably well
Hardware Assisted Paging

- AMD NPT / Intel EPT
 - Hardware handles translation with nested pagetables
 - guest PTs managed by guest in normal way
 - guest-physical to machine-physical tables managed by Xen
 - Can increases the number of memory accesses to perform a TLB fill pagetable walk by factor of 5
 - Hopefully less through caching partial walks
 - But reduces the effective TLB size
- Current implementations often perform worse than shadow PTs
 - Wide-SMP guests do relatively better due to no s/w locking
 - TLB flush paravirtualizations essential
 - Hardware will improve: TLBs will get bigger, caching more elaborate, prefetch more aggressive
Network Interface Virtualization

• Network IO is tough
 – High packet rate
 • Batches often small
 – Data must typically be copied to VM on RX
 – Some apps latency sensitive

• Xen’s network IO virtualization has evolved over time
 – Take advantage of new NIC features
 – Smart NIC categorization: Types 0-3
Level 0: Modern conventional NICs

- Single free buffer, RX and TX queues
- TX and RX checksum offload
- Transmit Segmentation Offload (TSO)
- Large Receive Offload (LRO)
- Adaptive interrupt throttling
- MSI support

- (iSCSI initiator offload – export blocks to guests)
- (RDMA offload – helps live relocation)
I/O Architecture

VM0
- Device Manager & Control s/w
- GuestOS
- Back-End
- Native Device Driver

VM1
- Applications
- GuestOS
- Front-End Device Drivers

VM2
- Applications
- GuestOS
- Front-End Device Drivers

VM3
- Applications
- GuestOS
- Device Emulation

Xen Virtual Machine Monitor

Control IF
Safe HW IF
Event Channel
Virtual CPU
Virtual MMU

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)
Direct Device Assignment

VM0
- Device Manager & Control s/w
 - GuestOS
 - Back-End
 - Native Device Driver

VM1
- Applications
 - GuestOS
 - Native Device Driver

VM2
- Applications
 - GuestOS
 - Front-End Device Drivers

VM3
- Applications
 - GuestOS
 - Device Emulation

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Xen Virtual Machine Monitor

Control IF
Safe HW IF
Event Channel
Virtual CPU
Virtual MMU
Level 1 : Multiple RX Queues

- NIC supports multiple free and RX buffer Q’s
 - Choose Q based on dest MAC, VLAN
 - Default queue used for mcast/broadcast
- Great opportunity for avoiding data copy for high-throughput VMs
 - Try to allocate free buffers from buffers the guest is offering
 - Still need to worry about bcast, inter-domain etc
- Multiple TX queues with traffic shaping
Level 2: Direct guest access

- NIC allows Q pairs to be mapped into guest in a safe and protected manner
 - Unprivileged h/w driver in guest
 - Direct h/w access for most TX/RX operations
 - Still need to use s/w path for bcast, inter-dom
- Memory pre-registration with NIC via privileged part of driver (e.g. in dom0)
 - Or rely on architectural IOMMU in future
- For TX, require traffic shaping and basic MAC/srcIP filtering enforcement
Level 2 NICs e.g. Solarflare / Infiniband

- Accelerated routes set up by Dom0
 - Then DomU can access hardware directly
- Allow untrusted entities to access the NIC without compromising system integrity
 - Grant tables used to pin pages for DMA
- Treated as an “accelerator module” to allow easy hot plug/unplug
• NIC presents itself as multiple PCI devices, one per guest
 – Relies on IOMMU for protection
 – Still need to deal with the case when there are more VMs than virtual h/w NIC
 – Worse issue with h/w-specific driver in guest

• Full L2+ switch functionality on NIC
 – Inter-domain traffic can go via NIC
 • But goes over PCIe bus twice
Performance

- Smarter NICs reduce CPU overhead substantially
- Care must be taken with type-2/3 NICs to ensure benefits of VM portability and live relocation are not lost
- “Extreme late copy” for zero-copy inter-domain communication under development
Xen Client: A Hypervisor for Client Devices

• Security, Manageability and Supportability
• “Embedded IT” virtual appliances
 – IDS, Malware detection, remote access, backup etc.
• Building Multi-level secure systems
 – Run multiple guest VMs with very controlled information flow
 • Enables Bring-Your-Own-PC model
 • Corporate VM; VM for web browsing; VM for banking
 • Seamless merging of VM displays
 • Migration of VMs between datacentre and laptops for offline use
• Security requires a true hypervisor architecture
 – Intel TXT / AMD SKINIT and Trusted Platform Module
From Laptops to Mobiles

• Smart phones and PDAs
 – Xen ARM
 – Smart phones now suffer from many of the same problems as PCs

• Simple restricted use cases:
 – Three VMs running on one CPU:
 • Real time VM for controlling the radio
 • VM for vendor/operator -supplied s/w
 • VM for user-downloaded software
XenoServers: University Project from 1999

- Incremental rollout
- Flexible platform
- Unified management

- Global services and apps
- Exploit network topology
- Open commercial platform
Augmenting IT infrastructure with Cloud

- Dynamic infrastructure as a service
 - 100% virtualized, and fully manageable
 - Pay as you use - no long-term contracts
- Enterprise - Cloud Bridge
 - Optimize VM image deployment
 - Secure gateway between Cloud and Enterprise
- Initial applications for Cloud
 - End-user facing applications (e.g. Web) - take advantage of Cloud’s global presence and fat pipes
 - Test and Dev environments, Disaster Recovery
Conclusions

• Open Source is a great way to get impact from University research projects
• Hypervisors will become ubiquitous, near zero overhead, built in to the hardware
• Virtualization may enable a new "golden age" of operating system diversity
• Virtualization is a really fun area to be working in!

ian.pratt@xen.org