
Virtually Shared Displays and User Input Devices
Grant Wallace and Kai Li

Department of Computer Science,
Princeton University, Princeton, NJ 08540

Abstract

This paper proposes making displays and input devices as first-class citizens in a networked system environment for
collaborative applications. The paper describes a virtually shared model that enables users to use remote displays as
extensions of their local displays and to allow multiple users to use multiple cursors and keyboards to input and
control shared applications and their windows simultaneously. We have implemented a prototype system and de-
ployed it to three DOE Fusion control rooms. The implementation performs well on today’s hardware and our user
feedbacks show that such a paradigm can substantially improve information sharing.

1. Introduction
We are moving into a new era of computing in which
computers and networks are becoming ubiquitous. One
of the associated challenges is to achieve seamless
communication and visualization, i.e. to enable users
with heterogeneous computing devices to communicate
with each other and to visualize each other’s informa-
tion effortlessly and seamlessly.

We advocate that displays and user-input devices
should be first-class citizens in a networked environ-
ment. They should be connected such that display in-
formation can be moved from one display to another
seamlessly for collaboration purposes, functionally
similar to connecting to external physical displays.
Users should be able to view shared displays as exten-
sions of their own displays, ideally independent of plat-
forms, operating systems and applications. A scientist
could walk into her colleague’s office to show results
by simply dragging the plots from her laptop onto a
colleague’s desktop display. After their discussion, the
display information on the colleague’s display may
evaporate. In a collaborative group setting, multiple
users can display, input and control information on a
shared display simultaneously (Figure 1).

Current operating systems and window systems, how-
ever, have limitations to supporting such scenarios.
They were designed for single-user use cases in a less
network-centric era. A fundamental assumption has
been that display devices and user-input devices are not
first-class citizens in a network system environment.
As Gettys pointed out in his paper on SNAP computing
[Gett05], “Today’s computing mantra is ‘One key-
board, one mouse, one display, one computer, one user,
one role, one administration’; in short, one of every-
thing. However, if several people try to use the same
computer today, or cross administrative boundaries, or

change roles from work to home life, chaos generally
ensues.”

Figure 1: Application windows that can be readily moved or
duplicated to other screens, and simultaneous multi-user input
form the core of a collaborative display environment.

This paper proposes virtually shared display and user-
input abstractions to create network enabled displays
and input devices. The abstractions can be used to con-
veniently design systems to implement seamless infor-
mation sharing for multi-user collaborations.

We have designed and implemented a shared display
system by using the proposed abstractions and by lev-
eraging VNC and x2x. We have released the imple-
mentation to the public domain and deployed our
shared display system to three DOE fusion control
rooms for their production use. The users’ feedback
shows that the proposed abstractions are indeed useful
and shared displays can substantially improve informa-
tion sharing in control room environments. Our per-
formance evaluation shows that the implementation can
provide interactive frame rates and impose reasonable
network and computing resource requirements.

2007 USENIX Annual Technical ConferenceUSENIX Association 375

2. Virtually Shared Displays:
Model and Abstractions

We propose a virtually shared model for displays and
user-input in a networked environment. The goal is to
conveniently connect components across a network so
that peer participants can share application windows
and provide user input across physical devices. There
are several requirements to support this goal:

Share display information at the granularity of ap-
plication windows.

Allow multiple users to input and control applica-
tions simultaneously.

Support sharing in a many-to-many fashion.

Be operating system independent and application
transparent.

The main abstractions for this model are networked
user-input devices, networked application windows,
and networked displays. These components form com-
munication links such that input-devices connect to
applications, and applications connect to displays.

Figure 2: Networked user-input, applications and displays
are the basis of a shared display environment.

A networked window is an abstraction associated with
an application that sends graphical outputs and receives
user inputs across the network. Networked windows
must support several operations related to these tasks.

For graphical output, a networked window must sup-
port the operations of replication, migration and or-
phaning. Replication allows network windows to be
shown on multiple networked displays simultaneously.
Migration allows a networked window to be moved
from one networked display to another. Orphaning al-
lows an application to continue running even when no
network display resources are available.

A networked window must also be able to receive input
from networked input-devices. If the networked appli-
cation is multi-user aware it can allow for simultaneous
input; otherwise, it can serialize multiple input streams
that it receives.

These networked window operations permit a variety
of use cases such as collaborative sharing (replication),

mobile computing (migration), and display composition
to view high-resolution spanned windows.

A networked display is an abstraction that implements
a display surface for computer systems in a network to
display application windows. The main difference
from the traditional display abstraction is that it allows
for multiple focused windows per display to support
multiple simultaneous networked input devices. The
main operations of a networked display are at-
tach/detach window, attach/detach cursor. Attach win-
dow is the operation that allows a networked applica-
tion window to begin showing content on the net-
worked display. Attach cursor is the operation that
allows a networked user-input device to provide input
to the networked display. Note that only networked
windows on a display can be seen or controlled re-
motely by others. In other words, the networked or
non-networked property of a group of windows serves
as the protection domain for information sharing in this
paradigm.

A networked input device is an abstraction that virtual-
izes a physical user-input device for composing sys-
tems in a network. The goal of the abstraction is to treat
input devices also as first-class citizens in a network to
enable building flexible multi-user systems.

Traditionally, user input is forwarded to the focused
application by the display server or window manager.
In our model, the networked input devices can instead
make direct connections to their focused networked
applications. In this case, the networked display still
tracks cursor-to-window focus relationships but, in-
stead of forwarding input, it provides the URL address
of the networked application when focus relationships
are established. This can provide for a direct communi-
cation model with better security and performance.

The main operations of a networked input device are
attach/detach to or from a networked application. This
abstraction allows dynamic binding with networked
window abstractions. Thus, they can be used to com-
pose an implementation that allows for multiple simul-
taneous inputs.

3. Previous Work
It is desirable to leverage previous work in this area in
order to establish a collaborative display system for
fusion scientists without excessive engineering effort.
The final system must meet the four requirements listed
in section 2: many-to-many, window-granularity shar-
ing, with multi-user input across varied hardware plat-
forms.

Network Layer
Network Layer

Networked
Input Devices

Networked
Application
Windows

Networked
Displays

2007 USENIX Annual Technical Conference USENIX Association376

The X windows system provides a network-based dis-
play protocol that makes it possible to connect to re-
mote display servers. However such connections can
only be established at application startup and so dy-
namic replication or migration of windows is not sup-
ported [Gett04]. Several X11-based proxy servers have
been created such as SharedX, Xmove and DMX to
allow display redirection. However, they also require
applications to connect at startup and aren’t cross-
platform compatible. These limitations do not lend
themselves to the type of ad-hoc and dynamic collabo-
ration required.

A number of collaborative systems provide a one-to-
many sharing paradigm such as LiveMeeting, Net-
Meeting, Remote Desktop, Citrix and WebEx. These
systems allow one person at a time to share display
information and provide input. They, unfortunately, do
not support many-to-many or peer-to-peer type sharing
where multiple participants simultaneously share win-
dows and provide user input.

Another class of collaborative display systems is based
on VNC (Virtual Network Computer). VNC uses a
pixel-based approach to replicate all desktop pixels
from one computer to another [Rich98]. The advantage
of this type of approach is its support for dynamic,
cross-platform sharing. One variant of VNC called
MetaVNC [Sato04] allows remote desktop windows
and local windows to appear side-by-side on the desk-
top. This is accomplished by making the background of
the remote desktop appear transparent. The main draw-
back of MetaVNC and other VNC implementations is
that sharing is done at the granularity of the desktop.
When connecting to a remote MetaVNC server, all
desktop windows will be shared. We would like to re-
strict the sharing granularity to the window level for
privacy reasons.

THINC is another virtual display system that allows
networked desktop sharing. It is implemented at the
device driver level and as such can support dynamic
sharing and achieve good performance [Bara05]. How-
ever, because it operates at the device driver level, it
does not track application window boundaries and so
doesn’t support window granularity sharing. Addition-
ally it currently only has a Linux implementation.

Previous work on supporting multiple simultaneous
user input has been done in the Computer-Supported-
Cooperative-Work (CSCW) community. It focuses on
multi-user computer-human interaction [Cars99]. Re-
lated work has also been done in the Single-Display
Groupware community to look at multi-user interaction

on a shared display [Myer99]. These classes of research
have typically looked at human-interface needs and
application support for collaboration rather than at sys-
tems level requirements. They have not looked at OS-
and Window Manager- level support for multiple cur-
sor interaction and in particular do not address multi-
user interaction on legacy systems and applications.

A recent effort has been made on a multi-pointer X11
server [Hutt06]. This server allows multiple mice to be
plugged into the same computer to create multiple cur-
sors and simultaneous interaction. This work is very
relevant and could be extended in the future to support
a networked input abstraction.

4. Design and Implementation
In implementing the proposed collaborative display
abstractions, our approach is to leverage existing soft-
ware components where possible. VNC can form a
good basis for display sharing because it supports
cross-platform sharing; however, it must be modified to
add support for window granularity and many-to-one
sharing. Additionally, x2x forms a good basis for creat-
ing networked user input. It is X11 based, but can eas-
ily be supported on Windows systems using Cygwin. It,
however, must be modified to support capturing and
distinguishing multiple simultaneous user input.

Leveraging these software systems, we have designed
and implemented the three networked components as
described below and shown in figure 3. We will discuss
the implementation of these components in the remain-
der of this section.

Networked application windows – supported with
a modified VNC server that allows capturing and
sharing pixels at window granularity.

Networked user input – supported with a modified
version of x2x that can generate distinct input from
multiple users.

Networked displays – supported with a modified
VNC viewer that can display windows from multi-
ple servers and with a modified window manager
that supports simultaneous multi-cursor input.

As mentioned earlier, VNC is a pixel-based protocol
that allows easy cross-platform sharing. However,
VNC only provides functionality to share the entire
desktop, not individual windows. This has undesirable
consequences for both privacy and utility in collabora-
tive display systems. Privacy issues arise because users
typically have some content they want to share, such as
a data graph, and other content they want to keep pri-

2007 USENIX Annual Technical ConferenceUSENIX Association 377

vate, such as their email. Additionally, utility is limited
when an entire desktop is shared because application
windows from different collaborators cannot be placed
side-by-side for comparison and discussion.

Figure 3: Shared display system architecture using virtually
shared display and input device abstractions.

Figure 4: Original VNC provides display and management of
pixels at the granularity of the desktop. We extend this by
adding a windowing manager to allow window-granularity
sharing between multiple sources.

To overcome these limitations we created an extended
VNC protocol and implementation as depicted in Fig-
ure 4. Original VNC implements the gray components
including the capture, transmission and display of pix-
els at the granularity of the desktop. In addition, it han-
dles one-to-many connection management, which al-
lows one presenter to share to many viewers. Our im-
plementation has added the functionality represented by
the white boxes. A windowing manager is added to
maintain window-level knowledge, such as the loca-
tion, size and relationship of all desktop windows. This
permits the sharing of certain windows and exclusion
of others. In addition, we extend the viewer connection
manager to handle multiple simultaneous connections.
This allows many-to-one sharing where many users
share content to the same viewer, such as a display
wall.

The multiple shared windows on the viewer are each
placed in their own frame and so look identical to na-
tive windows of the viewer display. The shared win-
dows include all parts of the application display includ-
ing menus. The shared windows can be rearranged in-
dependently of their positions on the originating
computer, and so can be placed anywhere on a net-
worked display. This allows for easy side-by-side com-
parison of shared windows. If a shared window be-
comes occluded on its originating server, it will stop
sending display updates for that region and that viewer
content will remain static until the occlusion is re-
moved. Our implementation, SharedAppVNC, is re-
leased to the public domain (http://shared-app-
vnc.sourceforge.net/).

Allowing multiple users to simultaneously interact on
the collaborative display was the second priority in our
prototype system. Current windowing systems only
have data structures supporting a single cursor, so to
accomplish simultaneous interaction we created a spe-
cialized X11 window manager [Wall04].

The window manager renders multiple cursor arrows
on the screen by drawing small 16x16 pixel windows
and utilizing the XShape extension to make their shape
identical to a normal cursor. Each multi-cursor is ren-
dered with a unique color to easily distinguish it from
the others. Cursor events are sent to the window man-
ager using a modified version of x2x which packs the
cursor id into 3 unused bits in the XEvent state field.
This allows the distinction of 8 unique cursors. The
cursor id allows the window manager to maintain
multi-cursor state information including the current
location, focused window and activated control keys.

When the window manager receives a multi-cursor
event, it applies that cursor’s saved state to the system
cursor and then resends the event through the normal
event loop (figure 5). This process essentially time-
slices the system cursor between the multi-cursors. The
time-slicing will be imperceptible to simultaneous users
because user input such as typing or dragging is of low
bandwidth compared to the system and display update
response. Also, we suppress the z-order and window
decoration changes that normally happen during a key-
board focus event. This makes keyboard focus changes
unnoticeable to users. Window decorations and z-order
are only changed when a multi-cursor establishes focus
on a window. At that point the window is decorated
with the cursor’s color to designate the focus relation-
ship where input will be directed.

 Connection Manager

Communication ManagerDesktop Manager

Route
pixels

Route
input

Track Windows

Track
sharers

Track
viewers

Authentication

Capture
pixels

Display
pixels

Access Control

User
input

Rx/Tx
pixels

Rx/Tx
input

Compression

Windowing Manager

Display Hardware Network Hardware

Connection Manager

Communication ManagerDesktop Manager

Route
pixels

Route
input

Track Windows

Track
sharers

Track
viewers

Authentication

Capture
pixels

Display
pixels

Access Control

User
input

Rx/Tx
pixels

Rx/Tx
input

Compression

Windowing Manager

Display Hardware Network Hardware

Network

Serve

Shared Application
Viewer

Networked
Input Devices

Networked
Display

Network

Multi-Cursor
x2x

SharedAppVNC
Server

Multi-Cursor
Window Manager

Networked
Application

Window

2007 USENIX Annual Technical Conference USENIX Association378

Operations that involve mouse dragging are the one
instance where events cannot be effectively interleaved.
For this situation we allow users to obtain an exclusive
lock for dragging. By pressing the shift button while
dragging, all other multi-cursor events are suppressed.
The other cursors will appear as an X until the drag
operation is completed.

Figure 5: Our prototype system accomplishes simultaneous
multi-user input by time-slicing the system cursor provided
by a standard operating system.

The multi-cursor window manager is implemented for
X11 displays; a release version based on IceWM is
available at http://multicursor-wm.sourceforge.net/.

Figure 6: Our shared display system deployed in the Prince-
ton Plasma Physics Lab control room.

Our initial system has been evaluated by several fusion
facilities and is currently part of the production envi-
ronment in the control rooms of General Atomics in
San Diego, and the Princeton Plasma Physics Lab. This
system has changed how the display walls in those
rooms are used. Instead of just showing pre-determined
content, the shared displays are now a dynamic forum
for user discussion. In a typical discussion, 2-5 users
will push application windows onto the wall and com-
pare their results side-by-side. We anticipate that future

stages of our system will also integrate remote users
into the collaborative discussions.

5. Evaluation
We have evaluated our system on its ability to provide
adequate frame-rate and response time. In a Fusion
control room, users typically share a few types of data
including 2D plots, animated 2D plots and video clips
from the Fusion engine camera. We test the system
with similar workloads.

In the first experiment, since video clips are the most
resource-intensive to share, we measured the frame-
rates achievable when sharing multiple video clips from
one workstation to the shared display. For this experi-
ment we used a 3.2GHz Pentium 4 with 2GB of mem-
ory running Fedora Core 5 for both the scientist work-
station and the computer driving the shared display.
They were connected by 100Mbit Ethernet and the sci-
entist workstation had a resolution of 1280x1024. The
scientist workstation ran 4 video windows, each occu-
pying about 25% of the screen (640x480).

We measured the video frame-rate achievable while
sharing 1, 2, 3 or all 4 windows simultaneously and
compare that with sharing the entire desktop with un-
modified VNC (graph 1). Sharing one or two windows
achieved a frame-rate of about 9 and 8 fps respectively,
still satisfactory for typical control room simulation
videos. As additional videos were shared, frame-rates
fell off as expected, giving about 4 fps with 4 windows
shared. This validates our assumption that sharing
smaller portions of the screen should provide better
performance. For comparison, sharing the whole desk-
top using normal VNC gives about 4.5 fps, about
equivalent to sharing all 4 windows with
SharedAppVNC.

In addition to adequate frame-rate, interactive applica-
tions must provide good response time to be useable.
To measure response time we made a trace of a user
interacting with a 2D dataset application. We then used
a robot tool to replay the user input from a remote dis-
play and measured the execution time. For comparison
we measured the execution time of the trace on the lo-
cal computer without sharing; this formed our base
execution time, normalized to 1. We measured the exe-
cution time of the trace application occupying 100%,
50%, or 25% of the originating screen; this corresponds
to background pixel activity occupying 0%, 50% or
75% of the screen. We ran two cases, one with the
background pixels static and the other with the back-
ground pixels active. The active background case con-

2007 USENIX Annual Technical ConferenceUSENIX Association 379

sists of an image slide-show with image transitions
every 1 second. The results are shown in graph 2. For
single-window sharing using SharedAppVnc, the slow-
down is typically a factor of about 1.5 for both the
static background content and the slide-show back-
ground (solid lines graph 2). This is as expected be-
cause individual window sharing can ignore the back-
ground pixel data. We expect a slight performance im-
provement with smaller windows, a trend we see
initially when the window reduces to 50% of the
screen.

Graph 1: Frame-rates achieved using SharedAppVNC to
share multiple video windows. SharedAppVNC achieves
higher frame-rates by limiting the screen-area shared.

Graph 2: Execution slowdown of an application shared using
VNC or SharedAppVNC. The window size and background
pixel activity is varied. SharedAppVNC keeps relatively con-
stant performance by avoiding sending background pixels.

We also measured the slowdown using normal VNC
sharing the entire desktop (dotted lines, graph 2).
Unlike with window-sharing, desktop-sharing slow-
down is affected by the background pixel activity. For a
full screen trace-window, the relative slowdown is
equivalent to that of SharedAppVnc – about 1.5. For

smaller trace-window sizes, the relative slowdown for
VNC increases because VNC must also transfer the
background pixel activity to the remote client.

These experiments validate our experience that
SharedAppVnc can achieve better performance when
smaller areas of the screen are shared, and that the per-
formance slowdown for the remote user is tolerable.

6. Conclusion

We have proposed a virtually shared model for net-
worked displays and user-input devices. Using this
model we have implemented a prototype system, re-
leased it to the public domain, and deployed it into the
control rooms of two DOE fusion research labs where
it has been incorporated into daily production use.

Some quotes from scientists indicate their appreciation
for the collaborative system. “[Previously] everyone
had their own screen, or hardcopy. To collaborate, they
usually looked over someone's shoulder. [The collabo-
rative software] allows easy side-by-side comparisons
of data from different people…[and] lets scientists
make connections and correlations between displays
and data sets that would be difficult without the wall.”

These positive results and feedback encourage us to
continue future research and enhancements to shared
display environments such as implementing a direct
communication model between networked components
so that latency can be improved and permissions set-
tings supported.

7. References
[Bara05] Baratto, R., Kim, L., and Nieh, J., "THINC: A Virtual Dis-

play Architecture for Thin-Client Computing", ACM Sympo-
sium on Operating Systems Principles (SOSP 2005).

[Cars99] Carstensen, P., Schmidt, K.,” Computer supported coop-
erative work: New challenges to systems design”. In K. Itoh
(Ed.), Handbook of human factors, 1999.

[Gett05] Gettys, Jim, “SNAP Computing and the X Window System”,
Linux Symposium, July 2005.

[Gett04] Gettys, J., Packard, K., “The (Re)Architecture of the X Win-
dow System”, Linux Symposium, July 2004.

[Hutt06] Hutterer, P., MPX, http://wearables.unisa.edu.au/mpx
[Meng94] Menges, J., Jeffay, K., “Inverting X: An Architecture for a

Shared Distributed Window System”, Workshop on Infrastruc-
ture for Collaborative Enterprises, 1994.

 [Myer99] Myers, B. and Stiel, H., “An implementation architecture
to support single-display groupware”, CMU Technical Report,
CMU-CS-99-139, 1999.

[Rich98] Richardson, T., Stafford-Fraser, Q., Wood, K., Hopper, A.
“Virtual Network Computing”, IEEE Internet Computing, 2(1),
Jan/Feb 1998.

[Sato04] Satoshi, U., MetaVNC, http://metavnc.sourceforge.net
[Wall04] Wallace, G., Bi, P., Li, K., Anshus, O., “A Multi-Cursor X

Window Manager Supporting Control Room Collaboration”,
Princeton University, Computer Science, Technical Report TR-
707-04, July 2004.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 De s kt op

Number of Shared Windows

F
ra

m
e

s
p

e
r

s
e

c
o

n
d

App vs Desktop Sharing
Execution Slowdown

1

1 .5

2

2 .5

3

3 .5

0% 50% 75%

% of screen that is
unrelated background pixels

S
lo

w
d

o
w

n

VNC-s ta tic -bk

VNC -a ctiv e -bk

S hApp -s ta tic-b k

S hApp -a c tiv e -b k

2007 USENIX Annual Technical Conference USENIX Association380

