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Abstract 

This paper proposes making displays and input devices as first-class citizens in a networked system environment for 
collaborative applications.  The paper describes a virtually shared model that enables users to use remote displays as 
extensions of their local displays and to allow multiple users to use multiple cursors and keyboards to input and 
control shared applications and their windows simultaneously.  We have implemented a prototype system and de-
ployed it to three DOE Fusion control rooms.  The implementation performs well on today’s hardware and our user 
feedbacks show that such a paradigm can substantially improve information sharing. 

1. Introduction 
We are moving into a new era of computing in which 
computers and networks are becoming ubiquitous.  One 
of the associated challenges is to achieve seamless 
communication and visualization, i.e. to enable users 
with heterogeneous computing devices to communicate 
with each other and to visualize each other’s informa-
tion effortlessly and seamlessly. 

We advocate that displays and user-input devices 
should be first-class citizens in a networked environ-
ment.  They should be connected such that display in-
formation can be moved from one display to another 
seamlessly for collaboration purposes, functionally 
similar to connecting to external physical displays.  
Users should be able to view shared displays as exten-
sions of their own displays, ideally independent of plat-
forms, operating systems and applications.  A scientist 
could walk into her colleague’s office to show results 
by simply dragging the plots from her laptop onto a 
colleague’s desktop display.  After their discussion, the 
display information on the colleague’s display may 
evaporate.  In a collaborative group setting, multiple 
users can display, input and control information on a 
shared display simultaneously (Figure 1).   

Current operating systems and window systems, how-
ever, have limitations to supporting such scenarios.  
They were designed for single-user use cases in a less 
network-centric era.  A fundamental assumption has 
been that display devices and user-input devices are not 
first-class citizens in a network system environment.  
As Gettys pointed out in his paper on SNAP computing 
[Gett05], “Today’s computing mantra is ‘One key-
board, one mouse, one display, one computer, one user, 
one role, one administration’; in short, one of every-
thing.  However, if several people try to use the same 
computer today, or cross administrative boundaries, or 

change roles from work to home life, chaos generally 
ensues.” 

Figure 1: Application windows that can be readily moved or 
duplicated to other screens, and simultaneous multi-user input 
form the core of a collaborative display environment. 

This paper proposes virtually shared display and user-
input abstractions to create network enabled displays 
and input devices.  The abstractions can be used to con-
veniently design systems to implement seamless infor-
mation sharing for multi-user collaborations. 

We have designed and implemented a shared display 
system by using the proposed abstractions and by lev-
eraging VNC and x2x.  We have released the imple-
mentation to the public domain and deployed our 
shared display system to three DOE fusion control 
rooms for their production use. The users’ feedback 
shows that the proposed abstractions are indeed useful 
and shared displays can substantially improve informa-
tion sharing in control room environments.  Our per-
formance evaluation shows that the implementation can 
provide interactive frame rates and impose reasonable 
network and computing resource requirements. 
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2. Virtually Shared Displays: 
Model and Abstractions 

We propose a virtually shared model for displays and 
user-input in a networked environment.  The goal is to 
conveniently connect components across a network so 
that peer participants can share application windows 
and provide user input across physical devices. There 
are several requirements to support this goal: 

Share display information at the granularity of ap-
plication windows. 

Allow multiple users to input and control applica-
tions simultaneously. 

Support sharing in a many-to-many fashion. 

Be operating system independent and application 
transparent. 

The main abstractions for this model are networked 
user-input devices, networked application windows, 
and networked displays. These components form com-
munication links such that input-devices connect to 
applications, and applications connect to displays. 

Figure 2: Networked user-input, applications and displays 
are the basis of a shared display environment. 

A networked window is an abstraction associated with 
an application that sends graphical outputs and receives 
user inputs across the network. Networked windows 
must support several operations related to these tasks.  

For graphical output, a networked window must sup-
port the operations of replication, migration and or-
phaning. Replication allows network windows to be 
shown on multiple networked displays simultaneously. 
Migration allows a networked window to be moved 
from one networked display to another. Orphaning al-
lows an application to continue running even when no 
network display resources are available.  

A networked window must also be able to receive input 
from networked input-devices. If the networked appli-
cation is multi-user aware it can allow for simultaneous 
input; otherwise, it can serialize multiple input streams 
that it receives. 

These networked window operations permit a variety 
of use cases such as collaborative sharing (replication), 

mobile computing (migration), and display composition 
to view high-resolution spanned windows. 

A networked display is an abstraction that implements 
a display surface for computer systems in a network to 
display application windows.  The main difference 
from the traditional display abstraction is that it allows 
for multiple focused windows per display to support 
multiple simultaneous networked input devices. The 
main operations of a networked display are at-
tach/detach window, attach/detach cursor. Attach win-
dow is the operation that allows a networked applica-
tion window to begin showing content on the net-
worked display. Attach cursor is the operation that 
allows a networked user-input device to provide input 
to the networked display. Note that only networked 
windows on a display can be seen or controlled re-
motely by others. In other words, the networked or 
non-networked property of a group of windows serves 
as the protection domain for information sharing in this 
paradigm. 

A networked input device is an abstraction that virtual-
izes a physical user-input device for composing sys-
tems in a network. The goal of the abstraction is to treat 
input devices also as first-class citizens in a network to 
enable building flexible multi-user systems.  

Traditionally, user input is forwarded to the focused 
application by the display server or window manager. 
In our model, the networked input devices can instead 
make direct connections to their focused networked 
applications. In this case, the networked display still 
tracks cursor-to-window focus relationships but, in-
stead of forwarding input, it provides the URL address 
of the networked application when focus relationships 
are established. This can provide for a direct communi-
cation model with better security and performance. 

The main operations of a networked input device are 
attach/detach to or from a networked application. This 
abstraction allows dynamic binding with networked 
window abstractions.  Thus, they can be used to com-
pose an implementation that allows for multiple simul-
taneous inputs. 

3. Previous Work 
It is desirable to leverage previous work in this area in 
order to establish a collaborative display system for 
fusion scientists without excessive engineering effort. 
The final system must meet the four requirements listed 
in section 2: many-to-many, window-granularity shar-
ing, with multi-user input across varied hardware plat-
forms. 

Network Layer 
Network Layer 

Networked 
Input Devices 

Networked 
Application 
Windows 

Networked 
Displays 
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The X windows system provides a network-based dis-
play protocol that makes it possible to connect to re-
mote display servers. However such connections can 
only be established at application startup and so dy-
namic replication or migration of windows is not sup-
ported [Gett04]. Several X11-based proxy servers have 
been created such as SharedX, Xmove and DMX to 
allow display redirection. However, they also require 
applications to connect at startup and aren’t cross-
platform compatible. These limitations do not lend 
themselves to the type of ad-hoc and dynamic collabo-
ration required. 

A number of collaborative systems provide a one-to-
many sharing paradigm such as LiveMeeting, Net-
Meeting, Remote Desktop, Citrix and WebEx.  These 
systems allow one person at a time to share display 
information and provide input. They, unfortunately, do 
not support many-to-many or peer-to-peer type sharing 
where multiple participants simultaneously share win-
dows and provide user input. 

Another class of collaborative display systems is based 
on VNC (Virtual Network Computer). VNC uses a 
pixel-based approach to replicate all desktop pixels 
from one computer to another [Rich98]. The advantage 
of this type of approach is its support for dynamic, 
cross-platform sharing. One variant of VNC called 
MetaVNC [Sato04] allows remote desktop windows 
and local windows to appear side-by-side on the desk-
top. This is accomplished by making the background of 
the remote desktop appear transparent. The main draw-
back of MetaVNC and other VNC implementations is 
that sharing is done at the granularity of the desktop. 
When connecting to a remote MetaVNC server, all 
desktop windows will be shared. We would like to re-
strict the sharing granularity to the window level for 
privacy reasons.  

THINC is another virtual display system that allows 
networked desktop sharing. It is implemented at the 
device driver level and as such can support dynamic 
sharing and achieve good performance [Bara05]. How-
ever, because it operates at the device driver level, it 
does not track application window boundaries and so 
doesn’t support window granularity sharing. Addition-
ally it currently only has a Linux implementation. 

Previous work on supporting multiple simultaneous 
user input has been done in the Computer-Supported-
Cooperative-Work (CSCW) community. It focuses on 
multi-user computer-human interaction [Cars99].  Re-
lated work has also been done in the Single-Display 
Groupware community to look at multi-user interaction 

on a shared display [Myer99]. These classes of research 
have typically looked at human-interface needs and 
application support for collaboration rather than at sys-
tems level requirements. They have not looked at OS- 
and Window Manager- level support for multiple cur-
sor interaction and in particular do not address multi-
user interaction on legacy systems and applications. 

A recent effort has been made on a multi-pointer X11 
server [Hutt06]. This server allows multiple mice to be 
plugged into the same computer to create multiple cur-
sors and simultaneous interaction. This work is very 
relevant and could be extended in the future to support 
a networked input abstraction. 

4. Design and Implementation 
In implementing the proposed collaborative display 
abstractions, our approach is to leverage existing soft-
ware components where possible.  VNC can form a 
good basis for display sharing because it supports 
cross-platform sharing; however, it must be modified to 
add support for window granularity and many-to-one 
sharing. Additionally, x2x forms a good basis for creat-
ing networked user input. It is X11 based, but can eas-
ily be supported on Windows systems using Cygwin. It, 
however, must be modified to support capturing and 
distinguishing multiple simultaneous user input. 

Leveraging these software systems, we have designed 
and implemented the three networked components as 
described below and shown in figure 3. We will discuss 
the implementation of these components in the remain-
der of this section. 

Networked application windows – supported with 
a modified VNC server that allows capturing and 
sharing pixels at window granularity. 

Networked user input – supported with a modified 
version of x2x that can generate distinct input from 
multiple users. 

Networked displays – supported with a modified 
VNC viewer that can display windows from multi-
ple servers and with a modified window manager 
that supports simultaneous multi-cursor input. 

As mentioned earlier, VNC is a pixel-based protocol 
that allows easy cross-platform sharing. However, 
VNC only provides functionality to share the entire 
desktop, not individual windows. This has undesirable 
consequences for both privacy and utility in collabora-
tive display systems. Privacy issues arise because users 
typically have some content they want to share, such as 
a data graph, and other content they want to keep pri-
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vate, such as their email.  Additionally, utility is limited 
when an entire desktop is shared because application 
windows from different collaborators cannot be placed 
side-by-side for comparison and discussion. 

Figure 3: Shared display system architecture using virtually 
shared display and input device abstractions. 

Figure 4: Original VNC provides display and management of 
pixels at the granularity of the desktop. We extend this by 
adding a windowing manager to allow window-granularity 
sharing between multiple sources. 

To overcome these limitations we created an extended 
VNC protocol and implementation as depicted in Fig-
ure 4. Original VNC implements the gray components 
including the capture, transmission and display of pix-
els at the granularity of the desktop. In addition, it han-
dles one-to-many connection management, which al-
lows one presenter to share to many viewers. Our im-
plementation has added the functionality represented by 
the white boxes. A windowing manager is added to 
maintain window-level knowledge, such as the loca-
tion, size and relationship of all desktop windows. This 
permits the sharing of certain windows and exclusion 
of others. In addition, we extend the viewer connection 
manager to handle multiple simultaneous connections. 
This allows many-to-one sharing where many users 
share content to the same viewer, such as a display 
wall. 

The multiple shared windows on the viewer are each 
placed in their own frame and so look identical to na-
tive windows of the viewer display. The shared win-
dows include all parts of the application display includ-
ing menus. The shared windows can be rearranged in-
dependently of their positions on the originating 
computer, and so can be placed anywhere on a net-
worked display. This allows for easy side-by-side com-
parison of shared windows. If a shared window be-
comes occluded on its originating server, it will stop 
sending display updates for that region and that viewer 
content will remain static until the occlusion is re-
moved. Our implementation, SharedAppVNC, is re-
leased to the public domain (http://shared-app-
vnc.sourceforge.net/). 

Allowing multiple users to simultaneously interact on 
the collaborative display was the second priority in our 
prototype system. Current windowing systems only 
have data structures supporting a single cursor, so to 
accomplish simultaneous interaction we created a spe-
cialized X11 window manager [Wall04]. 

The window manager renders multiple cursor arrows 
on the screen by drawing small 16x16 pixel windows 
and utilizing the XShape extension to make their shape 
identical to a normal cursor. Each multi-cursor is ren-
dered with a unique color to easily distinguish it from 
the others. Cursor events are sent to the window man-
ager using a modified version of x2x which packs the 
cursor id into 3 unused bits in the XEvent state field. 
This allows the distinction of 8 unique cursors. The 
cursor id allows the window manager to maintain 
multi-cursor state information including the current 
location, focused window and activated control keys. 

When the window manager receives a multi-cursor 
event, it applies that cursor’s saved state to the system 
cursor and then resends the event through the normal 
event loop (figure 5). This process essentially time-
slices the system cursor between the multi-cursors. The 
time-slicing will be imperceptible to simultaneous users 
because user input such as typing or dragging is of low 
bandwidth compared to the system and display update 
response. Also, we suppress the z-order and window 
decoration changes that normally happen during a key-
board focus event. This makes keyboard focus changes 
unnoticeable to users. Window decorations and z-order 
are only changed when a multi-cursor establishes focus 
on a window. At that point the window is decorated 
with the cursor’s color to designate the focus relation-
ship where input will be directed.  
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Operations that involve mouse dragging are the one 
instance where events cannot be effectively interleaved. 
For this situation we allow users to obtain an exclusive 
lock for dragging. By pressing the shift button while 
dragging, all other multi-cursor events are suppressed. 
The other cursors will appear as an X until the drag 
operation is completed. 

Figure 5: Our prototype system accomplishes simultaneous 
multi-user input by time-slicing the system cursor provided 
by a standard operating system. 

The multi-cursor window manager is implemented for 
X11 displays; a release version based on IceWM is 
available at http://multicursor-wm.sourceforge.net/.

Figure 6: Our shared display system deployed in the Prince-
ton Plasma Physics Lab control room. 

Our initial system has been evaluated by several fusion 
facilities and is currently part of the production envi-
ronment in the control rooms of General Atomics in 
San Diego, and the Princeton Plasma Physics Lab. This 
system has changed how the display walls in those 
rooms are used. Instead of just showing pre-determined 
content, the shared displays are now a dynamic forum 
for user discussion. In a typical discussion, 2-5 users 
will push application windows onto the wall and com-
pare their results side-by-side. We anticipate that future 

stages of our system will also integrate remote users 
into the collaborative discussions. 

5. Evaluation 
We have evaluated our system on its ability to provide 
adequate frame-rate and response time. In a Fusion 
control room, users typically share a few types of data 
including 2D plots, animated 2D plots and video clips 
from the Fusion engine camera. We test the system 
with similar workloads. 

In the first experiment, since video clips are the most 
resource-intensive to share, we measured the frame-
rates achievable when sharing multiple video clips from 
one workstation to the shared display. For this experi-
ment we used a 3.2GHz Pentium 4 with 2GB of mem-
ory running Fedora Core 5 for both the scientist work-
station and the computer driving the shared display. 
They were connected by 100Mbit Ethernet and the sci-
entist workstation had a resolution of 1280x1024. The 
scientist workstation ran 4 video windows, each occu-
pying about 25% of the screen (640x480). 

We measured the video frame-rate achievable while 
sharing 1, 2, 3 or all 4 windows simultaneously and 
compare that with sharing the entire desktop with un-
modified VNC (graph 1). Sharing one or two windows 
achieved a frame-rate of about 9 and 8 fps respectively, 
still satisfactory for typical control room simulation 
videos. As additional videos were shared, frame-rates 
fell off as expected, giving about 4 fps with 4 windows 
shared. This validates our assumption that sharing 
smaller portions of the screen should provide better 
performance. For comparison, sharing the whole desk-
top using normal VNC gives about 4.5 fps, about 
equivalent to sharing all 4 windows with 
SharedAppVNC. 

In addition to adequate frame-rate, interactive applica-
tions must provide good response time to be useable. 
To measure response time we made a trace of a user 
interacting with a 2D dataset application. We then used 
a robot tool to replay the user input from a remote dis-
play and measured the execution time. For comparison 
we measured the execution time of the trace on the lo-
cal computer without sharing; this formed our base 
execution time, normalized to 1. We measured the exe-
cution time of the trace application occupying 100%, 
50%, or 25% of the originating screen; this corresponds 
to background pixel activity occupying 0%, 50% or 
75% of the screen. We ran two cases, one with the 
background pixels static and the other with the back-
ground pixels active. The active background case con-
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sists of an image slide-show with image transitions 
every 1 second. The results are shown in graph 2. For 
single-window sharing using SharedAppVnc, the slow-
down is typically a factor of about 1.5 for both the 
static background content and the slide-show back-
ground (solid lines graph 2). This is as expected be-
cause individual window sharing can ignore the back-
ground pixel data. We expect a slight performance im-
provement with smaller windows, a trend we see 
initially when the window reduces to 50% of the 
screen.  

Graph 1: Frame-rates achieved using SharedAppVNC to 
share multiple video windows. SharedAppVNC achieves 
higher frame-rates by  limiting the screen-area shared. 
 

Graph 2: Execution slowdown of an application shared using 
VNC or SharedAppVNC. The window size and background 
pixel activity is varied. SharedAppVNC keeps relatively con-
stant performance by avoiding sending background pixels.   

We also measured the slowdown using normal VNC 
sharing the entire desktop (dotted lines, graph 2). 
Unlike with window-sharing, desktop-sharing slow-
down is affected by the background pixel activity. For a 
full screen trace-window, the relative slowdown is 
equivalent to that of SharedAppVnc – about 1.5. For 

smaller trace-window sizes, the relative slowdown for 
VNC increases because VNC must also transfer the 
background pixel activity to the remote client. 

These experiments validate our experience that 
SharedAppVnc can achieve better performance when 
smaller areas of the screen are shared, and that the per-
formance slowdown for the remote user is tolerable. 

6. Conclusion 

We have proposed a virtually shared model for net-
worked displays and user-input devices. Using this 
model we have implemented a prototype system, re-
leased it to the public domain, and deployed it into the 
control rooms of two DOE fusion research labs where 
it has been incorporated into daily production use.   

Some quotes from scientists indicate their appreciation 
for the collaborative system. “[Previously] everyone 
had their own screen, or hardcopy. To collaborate, they 
usually looked over someone's shoulder. [The collabo-
rative software] allows easy side-by-side comparisons 
of data from different people…[and] lets scientists 
make connections and correlations between displays 
and data sets that would be difficult without the wall.”  

These positive results and feedback encourage us to 
continue future research and enhancements to shared 
display environments such as implementing a direct 
communication model between networked components 
so that latency can be improved and permissions set-
tings supported. 
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