Reboots are for Hardware:
Challenges and Solutions to Updating an Operating System on the Fly

Andrew Baumann* Jonathan Appavoo’ Robert W. Wisniewski"

Dilma Da Silva®

Orran Krieger'

Gernot Heiser*

* University of New South Wales and National ICT Australia
YIBM T.J. Watson Research Center

Abstract

Patches to modern operating systems, including bug fixes
and security updates, and the reboots and downtime they
require, cause tremendous problems for system users
and administrators. Dynamic update allows an operat-
ing system to be patched without the need for a reboot or
other service interruption. We have taken the approach
of building dynamic update functionality directly into an
existing operating system, K42.

To determine the applicability of our update system,
and to investigate the changes that are made to OS code,
we analysed K42’s revision history. The analysis showed
that our original system could only support half of the
desired changes to K42. The main problem preventing
more changes from being converted to dynamic updates
was our system’s inability to update interfaces. Other
studies, as well as our own investigations, have shown
that change to interfaces is also prevalent in systems
such as Linux. Thus, it is apparent that a dynamic up-
date mechanism needs to handle interface changes to be
widely applicable.

In this paper, we describe how to support interface
changes in a modular dynamic update system. With this
improvement, approximately 79% of past performance
and bug fix changes to K42 could be converted to dy-
namic updates, and we expect the proportion would be
even higher if the fixes were being developed for dy-
namic update. Measurements of our system show that
the runtime overhead is very low, and the time to apply
updates is acceptable.

This paper makes the following contributions. We
present a mechanism to handle interface changes for dy-
namic updates to an operating system. For performance-
sensitive updates, we show how to apply changes lazily.
We discuss lessons learned, including how an operating
system can be structured to better support dynamic up-
date. We also describe how our approach extends to other
systems such as Linux, that although structured modu-
larly, are not strictly object-oriented like K42.

1 Introduction

Patches and updates to modern operating systems are a
significant problem for users and administrators. Op-
erating system vendors are releasing an increasing vol-
ume of patches at a higher frequency [11], and these
patches require restarting services or rebooting the whole
system, resulting in downtime that is becoming increas-
ingly costly. This downtime, even if scheduled, is expen-
sive, causing administrators to trade-off its cost against
the risks of remaining unpatched. Many do not apply
well-announced and widely-propagated security-critical
patches for weeks [23]. Furthermore, rebooting a system
causes loss of transient state, and thus may be a serious
inconvenience to its users.

When we discuss updates, we are considering primar-
ily the kinds of changes that are released in the mainte-
nance process of a mainstream operating system after a
major release. For example, bug fixes, security fixes, and
performance improvements. Significant new features are
rarely released in this way, because application software
would need to be updated to take advantage of them.
These updates are usually released regularly, depending
on their urgency, and are developed and tested by the op-
erating system vendor before distribution to system ad-
ministrators.

1.1 Existing approaches

Here we give an overview of current approaches to up-
dating systems without loss of service; more closely re-
lated work is discussed later, in Section 8.

Traditionally, the solution to the problems of updates
and reliability has been to use redundant hardware; that
is, either specialised hardware that processes requests on
identical machines, or more commonly commodity hard-
ware. If commodity hardware is used, and the service
maintains state (unlike a traditional web server), soft-
ware support must be provided to maintain synchroni-

USENIX Association

2007 USENIX Annual Technical Conference

337

sation between the redundant systems.

A similar approach is to use virtualisation instead of
physically separate hardware. This also requires soft-
ware support to maintain synchronisation, or a mecha-
nism to migrate applications between virtual machines
at update time [22].

Outside the operating system, the most common ap-
proach to dynamic updating is to build-in support for up-
dates in a language-specific [3, 10, 14,20,25] or domain-
specific [1,6] manner. Our work can be seen as a domain-
specific approach to achieving dynamic update for oper-
ating systems.

1.2 Ouwur approach

Our goal is to provide dynamic update support within the
operating system itself, without the need to re-implement
or significantly restructure its code. Ideally, it should be
possible to load an update into the system similarly to the
way we can load kernel modules to add functionality.

We observe that pressures of software development,
safety, extensibility, and configurability are driving mod-
ern operating systems, even those with a monolithic ker-
nel structure, to become highly modular or componen-
tised. For example, several projects have added more
modularity to Linux to enable fault isolation [26, 28].
Software construction techniques such as abstract types,
data hiding and encapsulation, and separation of con-
cerns are features of these modular interfaces.

Our approach is to leverage module boundaries to up-
date the code and data within a module without affect-
ing the rest of the system. We provide mechanisms for
safely updating a specific module, and transforming the
data structures maintained by that module. We repeat-
edly use those mechanisms to update all modules in-
volved in a larger change, achieving a whole-system up-
date as a series of small self-contained changes. Despite
the module-based approach, we are able to apply updates
even when a module’s interface changes.

1.3 Overview

In previous work [4], we developed a prototype imple-
mentation of dynamic update for the K42 research oper-
ating system, and tested it with a small number of hand-
picked update examples. This prototype is outlined in
the following Section 2.

Selecting a small number of changes to convert to
dynamic updates, as we had done previously, showed
that our system worked but did not help to determine
whether the system would be able to apply all of the rel-
evant changes as dynamic updates. To properly assess
the coverage of our dynamic update system, we con-
ducted a study of the K42 revision history, that is de-

scribed in Section 3. In our previous prototype, changes
to module interfaces could not be applied as dynamic up-
dates. We had expected such changes to be rare, however
the results of our study showed that they were relatively
frequent—the majority of new features and a significant
proportion of bug fixes and performance improvements
included changes to interfaces. Our own investigation
and other studies have found that the same is also true
for Linux.

To provide a more complete update system, we de-
signed a dynamic update mechanism for an OS that han-
dles interfaces changes, as described in Section 4. This
section also describes the new lazy update functional-
ity we have developed for mitigating the performance
impact of large updates. Revisiting the revision history
analysis with these improvements, we found that the ma-
jority of all changes, and an even higher proportion of
maintenance changes could now be converted to dynamic
updates.

We have measured the performance impact of adding
the capability to perform dynamic updates to the system,
and found it to be negligible. We have also measured the
costs incurred when a dynamic update is applied. These
results are presented in Section 5, along with a descrip-
tion of example updates enabled by the added functional-
ity. We then discuss lessons learned from implementing
dynamic update in K42 in Section 6, including how we
would structure the system differently to better support
it.

The work presented here enables dynamic updates to
the operating system, but also raises some questions for
future research. In Section 7 we discuss open issues in
the area, and in Section 8 we describe related and com-
plementary work. Section 9 concludes.

To summarise, our primary contributions over the pre-
vious work are as follows. We have conducted a broad
analysis of changes in the revision history of an OS, and
used this to assess the applicability of our update system.
Based on the limitations identified, we have extended the
model to support interface changes, which significantly
increased the scope of changes that we could support as
dynamic updates. We have also added support for lazy
conversion of data structures, because the performance
impact of converting all data structures at once could be
dramatic. Finally, we include an evaluation of the perfor-
mance characteristics of our system, and a discussion of
our experiences using and developing it.

2 Background

We previously developed a prototype dynamic update
system [4,5]. Because that work is essential background
information, we briefly summarise it here.

338

2007 USENIX Annual Technical Conference

USENIX Association

2.1 Design

We identified several fundamental requirements for an
operating system to provide dynamic update capability.
The most important of these are a modular system struc-
ture, a mechanism for detecting a safe point to update
a given module, and state tracking and transfer mecha-
nisms to locate and transform the state information main-
tained by a module.

Given these requirements, the generic update process
for a single module is as follows: First, the code associ-
ated with an update is loaded into the system by a ker-
nel module loader, or similar mechanism. Next, a state
tracking mechanism is used to locate all data instances
affected by an update. Then, using a level of indirec-
tion on module invocations, we block any new accesses
to the affected module. Once the safe point mechanism
detects that the module is idle, or guiescent, we update
the code in the module and transform its data structures
using the state transfer mechanism. Finally, having fin-
ished the update, the new module is made accessible, and
any blocked calls are resumed.

2.2 Dynamic update in K42

K42 is an operating system project targeting scalabil-
ity and customisability [13]. It runs primarily on 64-
bit PowerPC systems, and supports the Linux API and
ABI. K42 is implemented in C++, and is object-oriented:
each resource managed by the kernel is provided by one
or more distinct object instances. To improve scalabil-
ity in an SMP system, all objects are accessed indirectly
through a global object translation table (OTT); this in-
direction also enables dynamic update.

In K42, state-transfer functions are implemented for
each object, and convert an object’s internal state to, or
from, a common intermediate representation. Our sys-
tem detects quiescence by tracking the lifetime of kernel
threads, and providing a mechanism to determine when
all threads that were active when access to an object was
blocked have terminated. This works well, because the
kernel is event-driven, and its threads are short-lived.

Our original implementation added two features to
K42 to support dynamic update: a kernel module loader
and a factory mechanism. The module loader is similar
to the one used in Linux, but simpler because updated
code is only accessed indirectly through object refer-
ences. The factory mechanism is responsible for the cre-
ation, destruction, and tracking of object instances within
K42 via the factory design pattern [9]. Factories in K42
are live objects accessed through well-known references,
one per class. They allow us to update all the objects af-
fected by a code change, ensure that future instantiations
use the updated code, and track when all the objects of a

given class have been updated.

Using these foundations, we were able to apply dy-
namic updates to K42. We hand-picked some interesting
changes from the K42 revision history, converted those
to dynamic updates, and applied them to the running sys-
tem.

3 Analysis of CVS history

In this section, we describe a study we have performed of
changes from the K42 CVS revision history. Questions
we sought to answer included:

e What change types are seen in K42’s development?

e What proportion of these changes are bugfixes,
security fixes, or performance improvements that
would be shipped in maintenance releases?

e How many, and what kind of changes could we ap-
ply using our dynamic update mechanism?

The broader question of how operating system code
evolves is also not well understood, and is a rich area
for further investigation.

3.1 Method

K42 was developed over a period of nine years (the first
revision is from March 1997), by around five to ten de-
velopers. Hence, there is a lot of revision data in the
repository to be examined: 4,814 files and 56,199 revi-
sions in the core modules we examined.!

One of the drawbacks of CVS is that it operates only
at a file and revision level, and does not track any depen-
dencies between files or directories. Thus, we first had
to develop mechanisms and heuristics for extracting in-
dependent transactions or changes from CVS revisions.
This required two assumptions.

First, we assumed that each commit operation by a de-
veloper was a single logical change or feature. This is
usually true, but not always. A few developers tended
to commit unrelated changes together. This means that
we see fewer and larger changes than we should, so our
results are pessimistic.

Second, we assumed that after each commit the repos-
itory was in a consistent state. That is, it could be ex-
pected to compile and run correctly. Obviously develop-
ers make mistakes, so this is not always true. However,
K42 includes an extensive set of regression tests that de-
velopers usually run before committing, so in the major-
ity of cases the assumption was valid.

Given these assumptions, we developed a modified
version of the slurp tool [16] to process the CVS repos-
itory data and import it into a database for further anal-
ysis, and used an algorithm described by Zimmermann

USENIX Association

2007 USENIX Annual Technical Conference

339

and Weiligerber [30] to group related CVS revisions
into logical transactions. For each source file revision,
we also filtered out all the comments, reformatted the
code in a consistent style using an indent tool, and com-
puted the differences between the cleaned and reformat-
ted source. This significantly reduced the number of ir-
relevant changes that needed to be examined.

Using this data, we performed two types of analysis.
First, we used automatically-computed contextual infor-
mation to determine which transactions changed only
code inside dynamically-updatable objects and could
therefore be developed into dynamic updates. Second,
we randomly selected transactions from our sample and
manually inspected them to gather more accurate and
more detailed information about what types of changes
are possible, and specifically what prevents changes from
being converted to dynamic updates. Based on that re-
sult, we estimated from the overall set of changes what
proportion could be converted to dynamic updates.

For both analyses we considered only transactions that
altered some kernel code. Specifically, the source differ-
ences computed in the final step were non-empty, and
at least one of the files modified by the transaction was
within the os/kernel directory. Apart from some
common library code, this directory contains the K42
kernel, including process and memory management, IPC
mechanisms, exception handlers, boot code, and Linux
glue code. File-systems and device drivers are reused
from Linux, and their source is maintained elsewhere.

3.2 Automatic analysis

Most of K42 consists of objects accessed indirectly
through the object translation table. However, some
parts, such as the exception handlers and parts of the
scheduling code, are not accessed indirectly, and there-
fore are not dynamically updatable. To calculate what
proportion of changes could be converted to dynamic up-
dates, it is necessary to determine which changes affect
only code inside these dynamically-updatable objects.

We would have liked to determine what functions, data
structures, and objects were changed by each transaction
in the repository. This implies parsing the code. How-
ever, a normal C++ parser would read all the header files
included by a particular file; effectively it would require
reconstructing the K42 source tree for every transaction,
which would be very slow. To avoid this, we wrote a
pseudo-parser handling just enough of the language (for
example, the class keyword, function definitions, and
braces) to identify a program context for every line of
C++ source. A program context is a function or class
name, or a special global context (used, for example, for
preprocessor directives).

Given this contextual information, we identified for

each transaction any classes or functions added or
deleted by that transaction, and also any that were mod-
ified. We then examined every transaction that included
a change to kernel code (a total of 3618 transactions),
and categorised them based on those that added contexts,
those that deleted them, and those that just modified code
within existing contexts.

Using a list of classes known to be dynamically up-
datable, we then identified the transactions that changed
only dynamically-updatable code. Our list included
some classes that do not yet have state-transfer functions
or factories, so are currently not updatable. We included
these, because the addition of state-transfer functions and
factories is relatively simple (the changes are confined to
the class itself), and because we believe that showing the
limitations of the model is more meaningful than show-
ing those of the K42 implementation.

We found that 22% of transactions only modified or
added methods in dynamically-updatable classes. A
number of common problems prevented more transac-
tions from being classified as dynamically-updatable:

e changes to code for testing, tracing, or debugging,
that would not be released as updates, and so are
irrelevant to our target problem;

e changes to initialisation code that would instead be
implemented as part of the state transformation and
dynamic update load process;

e changes to simple classes that aren’t themselves dy-
namically updatable, but are encapsulated within
dynamically-updatable objects, and so could be up-
dated as part of the surrounding object;

e changes to the global context, such as preproces-
sor definitions or global declarations, that would be
handled differently for a dynamic update.

If we include these, the result rises to 48%. If we ex-
clude changes before 2002, when K42 was in a more de-
velopmental phase, the total proportion of dynamically
updatable transactions rises to 55%.

Due to the automatic nature of this analysis, these re-
sults include a certain amount of noise. For example,
some changes were committed to the tree, then reverted
because they caused regressions, and later committed
again with fixes; these should be counted as only one
transaction. Other transactions included, upon closer in-
spection, multiple independent changes. Many changes
performed cleanup actions, such as moving code be-
tween header files, splitting or merging classes, and so
on.

These examples show the limitations of automatically
analysing the revision history. The result is skewed by
a large number of changes that would never need to be

340

2007 USENIX Annual Technical Conference

USENIX Association

developed into dynamic updates, however it gives us a
reasonable lower bound for the proportion of dynami-
cally updatable changes. For a more accurate result, we
conducted the manual analysis described in the following
section.

3.3 Manual sampling

The automatic analysis gave us useful information about
the overall proportion of dynamically updatable changes,
but these results include all the changes in K42’s revi-
sion history, and the revision history of an experimen-
tal operating system does not mirror what would hap-
pen in the maintenance of a released operating system.
Changes that happened frequently in K42, such as new
features, code cleanups or debugging changes, would not
be shipped in maintenance updates. For a more accu-
rate analysis of the applicability of our dynamic update
system to the specific types of change in which we are
interested, we conducted a manual investigation using a
sample of the CVS transactions.

We developed a simple web application allowing a hu-
man analyst to examine randomly-selected transactions.
For each transaction, the analyst was shown the commit
log message and other meta data, the source code differ-
ences for affected files, and the list of changed program
contexts computed by the previous automatic analysis.
The analyst then assigned each transaction to a number
of categories, using their knowledge of the K42 code, as
well as an understanding of what could be changed by a
dynamic update. Our goal was to examine a sufficiently
large number of transactions to obtain statistically sig-
nificant conclusions about the proportion of dynamically
updatable changes. In total, we have manually analysed
250 transactions.

Some transactions were considered irrelevant to the
analysis, and ignored. These included a change that was
reverted and then recommitted later, a small number of
transactions that included many unrelated changes, and
many changes that were functionally-equivalent such as
a reorganisation of header files, changes that only added
debugging output, changes to preprocessor directives,
and so on. In total, 39% of the transactions that we ex-
amined were ignored.

We then looked at the change as a whole, and placed
it into one of five categories based on its main pur-
pose: bug fixes, security fixes, minor/maintenance per-
formance improvements, new features, and changes for
non-functionally-equivalent cleanup or restructure. Of
the non-ignored transactions, 48% were restructuring,
36% added new features, 11% were bug fixes, and the
remaining 5% performance improvements. We found no
security fixes. Because K42 has been used to date only
for research purposes, security holes that would neces-

sitate fixes have not been uncovered. However, because
security fixes are a subclass of bug fixes, and tend to be
of a small, isolated, and feature-less nature [2], we ex-
pect that results for the bug fix category will be a good
indicator of our system’s support for security updates.
We also examined the code differences and deter-
mined what was affected by the change: data structures,
interfaces, multiple objects, and library functions (recall
that we selected any changes affecting the kernel source
code, which could also include changes to user libraries).
Finally, we decided whether the change was convert-
ible to a dynamic update. Of the transactions categorised
as bug fixes or performance improvements, which we
will refer to as maintenance changes, only 50% could
be converted to dynamic updates. Of the non-updatable
maintenance changes, 58% were ruled out because they
changed interfaces, and the remainder changed non-
updatable exception handler code. In the other cate-
gories, only 11% of new features and 6% of code re-
structures could be converted to dynamic updates. These
results are shown as the simple update case in Figure 2.

3.4 Conclusions

Extending our results from a case-study analysis of the
K42 revision history to more general conclusions about
the applicability of our dynamic update model is poten-
tially error-prone. The revisions in the main branch of a
research operating system do not necessarily reflect the
maintenance and update release process of a production
system. Nevertheless, our study gives an indication of
the updates we can expect to see in systems code. In a
production operating system in maintenance mode, we
would expect far fewer broad restructures and added fea-
tures, and a greater proportion of performance and secu-
rity updates or bug fixes.

We were surprised by the high incidence of changes
to interfaces, even among the maintenance updates. An
interface change in K42 is any change to the virtual
methods defined for a class, that would cause code com-
piled against the previous definition to behave incor-
rectly. This includes the addition or deletion of meth-
ods, arguments, or changes to types, none of which were
supported for dynamic update. We were aware that this
was a limitation, but believed that it was not significant,
as most updates would not change interfaces. However,
our results showed that a surprisingly high proportion of
kernel updates did require changes to interfaces.

To verify that this problem was not unique to K42,
we inspected recent stable releases of the Linux kernel:
versions from 2.6.18.1 to 2.6.18.6 inclusive and version
2.6.19.1. These releases include relatively few changes,
the largest uncompressed patch being 250 kilobytes in
size, and contain only bug and security fixes. However,

USENIX Association

2007 USENIX Annual Technical Conference

341

four of the seven versions examined included changes to
the prototypes of non-inline kernel functions, confirming
the prevalence of interface change in Linux.

Other researchers have reached similar conclusions re-
garding the need to support interface changes. Neamtiu
et al. [17] conducted a study of source code evolution
in several common open-source programs, including the
Linux kernel, with the goal of informing the design of
dynamic update systems. They concluded that changes
to type definitions and function prototypes were both
common enough to be an important feature for a dynamic
update system to support. Furthermore, another recent
study of collateral evolution in Linux device drivers [21]
highlighted the problems associated with changes to in-
terfaces in that system.

Therefore, it is clear that for our dynamic update sys-
tem to be usable, it must support evolution of interfaces
within the kernel. In the following section we will dis-
cuss how to address this challenge.

4 Extending to complex dynamic updates

Based on our experiences and results from the previous
section, to enable more updates to be applied, and to in-
crease the applicability of our system, we have made a
series of improvements to its design and implementa-
tion. Here we discuss the most significant: support for
interface changes and lazy update. We also describe the
process of developing and applying an update.

4.1 Interface changes

Our previous design and implementation did not sup-
port changes to object interfaces. As shown in the CVS
analysis, this was a serious limitation on the applicabil-
ity of our system. When an object’s interface changes,
any calling objects that depend on the interface must
also be changed. The obvious solution is to update all
affected objects in a single atomic operation, however
blocking and updating multiple objects may be unwork-
able. For complex changes, it effectively requires qui-
escence across the entire kernel, leading to large delays,
and potential deadlock and correctness issues (for exam-
ple, missed interrupts could cause the system to lockup
or crash).

From a closer examination of the changes to inter-
faces observed in the K42 revision history, we found that
most of the changes were relatively minor. These in-
cluded: adding or renaming functions; removing param-
eters from functions; and extending the parameter list of
existing functions, but providing a default parameter to
avoid updating all the existing call points.

Informed by these observations, we decided to use the
object adaptor design pattern [9]. Adaptors wrap a class

v1 calls v2 calls

adaptor

V2 instance

Figure 1: Adaptor object

to make it provide a different interface. In K42, adap-
tors were implemented for dynamic update, and oper-
ate transparently to other objects through the use of the
object translation table. They can maintain their own
state information, and are able to intercept and rewrite
all function calls from old un-updated callers of the ob-
ject. Changes made possible by adaptors include:

e adjusting virtual method numbers, when functions
have been added;

o shuffling parameter registers, and computing or sup-
plying defaults for new parameters;

e altering return values, or directly returning a value
(such as an error code) without calling the object.

Not all interface changes can be expressed by an
adaptor. In particular, changes that are not backwards-
compatible, or where the old interface cannot be pro-
vided by operations in the adaptor or on the updated ob-
ject, are not possible. This includes changes where func-
tionality is removed, or complex restructuring changes,
such as when an object’s functionality is split into sev-
eral other objects. However, the forms of interface
change supported by adaptors are sufficient for mainte-
nance changes, as will be shown in Section 4.4.

Our design is shown in Figure 1. Any change that al-
ters an object’s interface requires an adaptor to be sup-
plied along with the updated code. When the dynamic
update is applied, the new object with the updated inter-
face is installed on a new object reference, and an adap-
tor object is instantiated for the old reference, forward-
ing calls to the underlying object. Then, caller objects
are progressively updated to directly invoke the new in-
terface. Once all old caller objects are updated, as deter-
mined by the relevant factory objects, the old reference
and the adaptor object are destroyed.

Some low-level code in K42, such as the initial page-
fault handlers, is not part of the object system and there-
fore not updatable. If any of the objects called by such
low-level code are updated with an adaptor, then the
adaptor will be required permanently, because it is not
otherwise possible to update the calling code to use the

342

2007 USENIX Annual Technical Conference

USENIX Association

new interface. Fortunately, in K42 there is very little
code in this category.

The use of adaptor objects follows our fundamental
design principle of applying dynamic updates as a se-
ries of small independent changes. Adaptors allow us
to update the system progressively, without the need to
concurrently block access to multiple objects. Adaptors
impose additional overhead on all function calls to an af-
fected object, but this overhead is only transient—as the
calling objects are updated to versions that support the
new interface, which happens as part of the overall up-
date, the adaptors are removed.

4.2 Lazy update

Our original model transformed every object at the time
an update was loaded; other dynamic update systems
that support changes to data structures have also taken
this approach [8, 19]. However, this presents a scalabil-
ity and performance problem, because some objects may
have thousands or more instances present within the ker-
nel; for example, the objects associated with open files
or memory regions. When testing a K42 update that al-
tered the in-memory data structures of each open file on
a loaded system, we found that the system performance
was severely degraded while converting all the affected
objects.

To illustrate the scale of this problem, we used the
/proc/slabinfo file to count instances of different
kernel data structures on a moderately-loaded file and
compute server running Linux 2.6.18. We found 1.9 mil-
lion each of the filesystem’s inode and vrnode structures,
234,264 blocks in the buffer cache, 51,301 virtual mem-
ory areas, and 14,437 open files, to take a few examples.
If any of these data structures were changed, it would
not be feasible to delay the system’s execution while they
were all updated.

To address this problem, we implemented the ability to
perform the dynamic update lazily [6]. When a lazy up-
date is loaded, affected object references are changed to
point to a special lazy-update object. The first time this
object is invoked, it initiates the actual update, restarts
the method call that triggered it, and then removes itself
from the affected object reference. Laziness mitigates
the performance impact of updates involving many ob-
jects by spreading out the load, because rather than trans-
forming all object instances at once, objects are gradually
converted as they are accessed. It achieves this while still
guaranteeing that the old code will not be invoked once
the initial process of installing the lazy-update objects is
complete.

Lazy update also allows us to avoid unnecessarily con-
verting objects that are not invoked between updates or
ever again. If an object has been only lazily updated, and

another update to that object is loaded, we could use the
state-transfer functions from both update versions in se-
quence, avoiding the cost of twice achieving quiescence
in that object. Another modification of the technique
would be to combine lazy update with a daemon thread
that runs at low priority, updating objects as the system’s
idle time allows.

4.3 Update process

The changed process for developing and applying a dy-
namic update, as opposed to the simpler version outlined
in Section 2, is as follows. To build a dynamic update,
we take the new version of any changed classes, develop
and add necessary state-transfer functions, and compile
them together with code that initiates the update to form
a loadable module. If the update changes a class inter-
face, then an adaptor object must also be implemented
and included in the module.

The update module is then loaded into the kernel. Its
initialisation code triggers an update of the factories for
the affected classes. Next, a new factory walks through
the old object instances, either initiating a direct update,
or marking them to be updated lazily. Presently, the de-
veloper of an update determines whether to use laziness,
but this could also be implemented by heuristics in the
factories; for example, if there are more than 100 live
instances, use lazy update.

To update an individual object, if an adaptor is being
used, it is first installed on the old reference, then the
state is transferred to the new object while both are qui-
escent. If an adaptor is not required, the object’s refer-
ence does not need to change, because all calls conform
to the same interface and thus can be intermingled—in
this case, the new object simply takes over the old refer-
ence.

When an object is updated to understand altered in-
terfaces, its state-transfer function must locate the new
reference for any objects whose interfaces have changed.
This is done using a special function implemented in the
base classes for all objects, that returns the canonical ref-
erence for a given object.

As object updates complete, either directly or lazily,
the old objects and lazy-update objects are destroyed. Fi-
nally, when all old objects of a given type are updated,
as determined by the relevant factory, two cleanup oper-
ations occur. First, any adaptor objects can be removed
and their references reclaimed. Second, the code used for
the loaded module corresponding to the previous version
of the class, and other static kernel memory associated
with that class is reclaimed; however, our module loader
implementation does not yet free memory.

USENIX Association

2007 USENIX Annual Technical Conference

343

100%

[Rewrite update
[Adaptor update
M Simple update

80%
60% b

40% b

Percentage of Commits

20% *

Maintenance New features Restructuring

Figure 2: Results of manual CVS analysis

4.4 CVS analysis revisited

With support for limited interface changes in the form of
adaptors, we revisited the manual CVS analysis of Sec-
tion 3. We also considered whether the changes could
have been altered slightly to allow them to be dynam-
ically updated. For each transaction, there were now
four possibilities: the change could be updated without
adaptors, the change could be updated only with an adap-
tor, the change could be updated only after some simple
rewriting of the code (possibly also with an adaptor), or
the change could not easily be updated. These results are
shown in Figure 2.

We found that all of the maintenance changes that al-
tered interfaces could have been supported through the
use of an adaptor, raising the total of updatable mainte-
nance changes to 79% (none required rewriting). Of the
other categories, 35% of new features and 15% of code
restructures could now be converted to dynamic updates.
All of the complex interface changes that could still not
be supported by the use of an adaptor were found in the
new feature or code restructure categories, confirming
that the limited form of interface change supported by
adaptors is sufficient for maintenance purposes.

In the course of analysis, we found it common for
transactions that were otherwise dynamically updatable
to include minor related changes to add test code, alter
initialisation functions, or perform some other cleanup
that was not updatable, or was part of another object.
These other changes would have been ignored in devel-
oping the dynamic update, so we did the same in our
analysis and added another series of flags to note when
this was done. Of all the dynamically updatable changes,
39% fell into one of these categories. Of only the main-
tenance updates, we ignored minor parts of 33% of the
changes.

The new results in our analysis show that approxi-
mately 79% of maintenance changes could directly be
converted to dynamic updates. We regard this as a worst-
case for our model, because the changes were developed
without considering dynamic update, and because some

changes to exception handlers might instead have been
implemented at a higher level in dynamically-updatable
code. We expect that in the maintenance of a real system
it would be possible to develop most of the remaining
changes as dynamic updates. We will discuss this further
in Section 6.2.

5 Evaluation

We conducted experiments to measure the overhead of
our update mechanism, and the performance of our sys-
tem when applying various updates. The results of this
evaluation are reported in this section, along with a de-
scription of more complex updates enabled by our im-
provements.

In several of the experiments reported below, we
used the ReAIM implementation of the AIM7 multi-user
benchmark, in the alltests configuration. This bench-
mark exercises OS services such as IPC mechanisms,
file IO, signal delivery, and networking. It was modified
slightly to work with K42: we replaced the test using
Unix-domain sockets with UDP sockets, altered some
code to handle different error return values from K42’s
Linux emulation library, and prevented the benchmark
from removing shared memory regions at the end of its
run, because this is not yet supported by K42. We ran the
benchmark inside a RAM disk, to avoid IO latencies not
imposed by the OS.

All experiments reported here were conducted on an
Apple Xserve system, with two 2GHz GS5 processors and
512MB of main memory. We built K42 in the no-debug
configuration, and ran it in dual-processor mode.

5.1 Costs of mechanism

In this section we examine the added runtime costs of
having support for dynamic update in the system. This
is much more important than the time to apply an update
(which we measure in Section 5.2) because we expect
updates to be infrequent events, and because even if the
system experiences a slowdown while an update is ap-
plied, the advantages over rebooting are significant.

Indirection overhead

First, we consider a property that is part of the fundamen-
tal structure of K42: the object translation table’s addi-
tional indirection on object calls. This indirection adds
extra overhead to each object invocation; an object call
in K42 requires 6 instructions, instead of 5 for a regular
virtual function call. The added instruction is a depen-
dent load, however, because object references are allo-
cated sequentially from a single region of memory, the

344

2007 USENIX Annual Technical Conference

USENIX Association

object translation table is dense, and thus the extra load
is likely to be cached.

It is not possible to directly measure the cost of ob-
ject indirection, because it is a fundamental part of K42’s
structure. Instead, we estimated the overhead of object
indirection by instrumenting the object system to count
the number of indirect object invocations during a run
of the ReAIM benchmark. Multiplying this by the num-
ber of cycles required for a load from the second-level
cache, we estimated the overhead of indirection at less
than 0.1% of the total running time on the unmodified
system.

Arguably a bigger impact comes from not having a
static system structure, preventing application of such
cross-module optimisations as inlining, path straighten-
ing and dead-code elimination. Furthermore, such a
structure replaces direct with indirect branches, and af-
fects the performance of hardware branch prediction.
However, any system offering basic module-loader func-
tionality suffers the same problem, and kernel module
loaders are now common in commodity operating sys-
tems, so this cost has been accepted in those systems.

State tracking overhead

The other added overhead comes from factory objects.
During object creation, a factory is now involved, and
records the new object’s reference. During deletion, the
reference is removed from the factory’s data structures.

To measure the impact of factories on system perfor-
mance, we used the ReAIM benchmark described pre-
viously. We implemented factories for process objects,
one of which exists for each process, and the core mem-
ory management objects,? a pair of which are created for
each open file or mapped memory region. These rep-
resent a significant proportion of the objects created in
the kernel during benchmark activity: 1,791,808 of all
2,996,920 objects created during a ReAIM run, or 60%,
were created using a factory. Hence, we would expect
any impact to be visible.

We benchmarked the unmodified system and the mod-
ified system with factories added for the above objects.
We repeated each experiment three times, taking the av-
erage of the peak jobs-per-minute result from each run.
We measured a slight (less than 0.5%) performance im-
provement with the factories present. This is well within
the noise caused by changes in code layout and cache
behaviour, so we concluded that the use of factories
within the kernel has negligible performance impact on
the overall system.

Modified ReAIM benchmark, "alltests" workfile
1400

1200 | S
update applied

1000

800

600

Jobs per Minute

400

200
base system, no update —+—
dynamic update during run ----x---

0 2 4 6 8 10 12
Number of clients

Figure 3: sync update applied while benchmarking

5.2 Experiences

Here we describe several example updates enabled by the
functionality introduced in Section 4. We also present
performance results of applying one of those updates.

File sync patch

When a file is closed, or when its last mapping is re-
moved, the kernel initiates a sync operation. This is
known as an unforced sync, as opposed to the operation
that occurs when a program explicitly invokes the sync
or fsync system calls. Because processes block on forced
syncs, but unforced syncs only delay the destruction of
some buffers, the implementation was changed to priori-
tise forced syncs over unforced sync. This involved sig-
nificant changes to the structure of the kernel’s FCMFile
object, with queues of waiting threads and IO operations
now maintained differently.

We converted this patch to a dynamic update, by im-
plementing state-transfer functions for FCMFile that re-
structured the internal queues. In total, 53 lines of state
transfer code were written.

Figure 3 shows the result of applying this update dur-
ing a ReAIM benchmarking run. ReAIM incrementally
tests higher numbers of clients, so wall-clock time in this
graph runs from left to right. We initiated the update
when there were eight clients active, and during the next
second the overall system throughput dropped, while 170
instances of the FCMFile object had their data struc-
tures converted on access. Once the benchmark reached
the run with nine clients, all affected instances had been
transformed, and the update was complete. This can be
seen on the graph as a dip in throughput.

While this update was applied, we used a hardware
cycle counter to measure the time required for individ-
ual phases of the process. Once the update process was
started, it took 7ms to instantiate an updated factory ob-

USENIX Association

2007 USENIX Annual Technical Conference

345

ject and convert the existing factory, and then 487us to
mark all the object instances to be lazily updated. At no
point was the whole system’s execution blocked.

We also used this update to time our module loader.
The module loader is unoptimised, but because the dy-
namic update process starts once the module has been
loaded, this is not of concern. It required 241ms to load
the update into the kernel and start executing its initiali-
sation code.

Use of adaptors in large page change

As part of a change made to improve support for multi-
ple page sizes, K42’s root page manager (PMRoot) class
was modified. The getFrame and freeFrame methods
had an argument added specifying the frame size. In
this case, there is an obvious default value that can be
used for un-updated callers of the interface: the standard
page size of 4 kilobytes. Hence, an adaptor object that
modifies calls to the PMRoot object can be used. If the
method number of a call matches either the getFrame or
freeFrame methods, the relevant argument register is set
to 4096.

As part of the overall update for such a change, once
the PMRoot object has been updated and an adaptor in-
stalled, it is then possible to update the other objects that
call PMRoot. This example shows how, in our model,
one logical change is implemented as a series of updates,
allowing the system to continue making progress.

Interface change to base classes

We provide an example of a dynamic update that is pos-
sible with the use of adaptor objects, but has an impact
on many objects of different classes due to inheritance.
As part of an experiment with new page-allocation poli-
cies to avoid fragmentation, a method was added to the
page manager (PM) class. This class is subclassed by a
number of other K42 objects that inherit the new method
but also define their own methods. Because a method
is added, an adaptor object must be implemented that
rewrites the calls made by old callers of the object. Ev-
ery call made to the old interface with a method number
greater than or equal to the newly-added method must
have the method number incremented.

The adaptor implementation itself is quite simple, as it
only adjusts the virtual function number. However, this
example illustrates a scenario where K42’s heavy use of
C++ and implementation inheritance increases the com-
plexity of updates. Because a method was added to a
base class, it was effectively added to all the subclasses,
changing their own interfaces, even though the source
files did not change. As a result of a single class change,
we need to prepare an update for each of the subclasses.

A single adaptor implementation suffices, but identify-
ing the affected classes is presently a manual process;
we would anticipate a real system automating it, as we
will discuss in Section 7.

6 Lessons learned

If we had intended K42 to be dynamically updatable
from the beginning, there are several ways in which we
would have structured it differently. In this section we
discuss solutions to some of the problems we encoun-
tered adding dynamic update support to K42.

In our manual analysis described in Sections 3.3
and 4.4, we recorded comments noting why a change
couldn’t be converted to a dynamic update. The prob-
lems generally fell into one of the following categories:

1. changes to static code and data structures, such as
low-level code in our exception handlers, general
debugging services like our GDB stub functions and
in-kernel test system, and system initialisation code;

2. specific services that were developed using static
structures and enumerations, primarily K42’s trac-
ing service, where each trace point has a unique
dense trace identifier, but also glue code used to
wrap parts of Linux that run in our kernel;

3. very large cross-cutting changes due to fundamental
restructuring of code.

While the third category is probably unavoidable in a
research system, it would be unlikely for such changes
to occur in the maintenance process of a released sys-
tem. These include mass changes to interfaces that are
not backwards compatible, for example, a number of
changes were analysed in which a new argument was
added throughout deep call chains across multiple ob-
jects. This argument cannot be set by an adaptor, and
rewriting the code to support invocation either with or
without the argument would be very complex and prob-
ably introduce bugs. Similarly, if an interface changes
such that the functionality formerly provided by one ob-
ject is now split across two or more objects, it is very
difficult to hide this complexity behind an adaptor and
still maintain compatibility for un-updated callers of the
interface.

There are however some problems from the other two
categories for which we have designed solutions.

6.1 Restructure of initialisation code

The most common example of a static code problem is
the kernel initialisation sequence. This code executes
once at boot, consists mainly of calls to class-specific

346

2007 USENIX Annual Technical Conference

USENIX Association

initialisation functions, and cannot be updated. It makes
no sense to update the code itself, as once the system has
booted any changes will have no effect. However, an up-
date often does need to include initialisation code, for ex-
ample when introducing a new class into the system, and
in many cases this code is the same as the corresponding
boot code.

We envision adding a mechanism that allows program-
mers to annotate initialisation functions in class header
files, and automatically calls those functions in a pre-
dictable order at boot time, or when the class is loaded
as a dynamic update. This is similar to Linux’s initcall
mechanism [29], which uses annotations on functions to
be called at boot.

Another related problem is testing code accessed from
the kernel console. Currently this is implemented as
static functions, and thus is not dynamically updatable.
Although test and debugging code is not important for
dynamic update in a production system, we would re-
design the K42 test system to allow test functions to be
registered dynamically, enabling dynamic update as well
as dramatically improving the source.

6.2 Exception handlers

Parts of the K42 kernel are not implemented as
dynamically-updatable objects, and thus cannot be dy-
namically updated by our system. This includes low-
level exception-handling code, parts of the scheduler,
and the implementation of K42’s message-passing IPC
mechanism. Changes to such code account for the re-
maining non-updatable maintenance changes in our CVS
analysis.

In some cases it is possible to achieve a dynamic up-
date by rewriting other code. For example, on the page-
fault path, by implementing a change at a higher level
inside the memory management system’s dynamically-
updatable objects rather than the exception handlers. In
other cases, because it is rare for such changes to al-
ter data structures, it may be possible to use indirection
available in the exception vectors, or binary rewriting
techniques [27] to update the code without the need to
achieve quiescence. If data structures were changed, and
thus quiescence was required, one could either disable
interrupts or run the OS inside a virtual-machine moni-
tor (VMM) [8].

6.3 Dynamic tracing support

K42’s tracing service generates a binary log from trace
points inserted throughout the system, where each trace
point has a unique identifier. To simplify the original
implementation, and because we had not considered dy-
namic update at that time, a static enumeration was used

to identify and allocate trace point numbers. To sup-
port dynamic updates that add or remove trace points, we
could change the static enumeration to a dynamic struc-
ture, or use a totally dynamic tracing service [7,27].

6.4 Conclusion

In general, increased dynamic update coverage can be
achieved by minimising statically-bound code, and wher-
ever possible, using structures created at run-time rather
than compile-time. This has other advantages: it makes
a system more modular, leading to simpler code, better
maintainability, and better extensibility.

Our experience shows that when dynamic update is
desired, it is usually possible to modify the relevant sys-
tem structures to enable it. Dynamic update was an addi-
tion to K42 after years of development, so it is encourag-
ing that we were able to add it without major structural
changes.

7 Future work

7.1 Update preparation

The process of preparing updates for K42 is currently
manual. Besides changing the code for a class, state-
transfer functions and adaptor objects must be imple-
mented, and programmers must determine the dependen-
cies between updates. Although, as we have shown, it
is possible to dynamically update a system using our de-
sign, the ideal update system would also automate update
preparation from source code changes.

This is not a problem that we are addressing, but it is
not unique to operating systems. Other work in the dy-
namic update field has developed tools to ease the con-
struction of dynamic patches [2, 19] and investigated the
semi-automatic creation of state transformers [14, 19],
and it would be possible to generate common adaptor ob-
jects from source code analysis.

7.2 Reverting updates

In some cases, an administrator may wish to revert or roll
back an update after it has been applied. We expect this
to occur rarely, since we are considering maintenance up-
dates that have undergone testing by the vendor before
their release. Nevertheless, given the data transfer func-
tions and adaptors (which would be developed as part
of the update), a reversal update that had the effect of
reverting to the previous version could be created. How-
ever, in any system where updated code runs in the kernel
unprotected, if an update has bugs that cause it to corrupt
data structures, recovery may be impossible.

USENIX Association

2007 USENIX Annual Technical Conference

347

7.3 Arbitrary interface changes

As currently designed, our system cannot support inter-
face changes in which the changes cannot be hidden be-
hind an adaptor. While this is not a problem for all but
the most substantial new features and code restructuring
changes, for completeness we would like to support all
dynamic updates.

As explained previously, support for arbitrary inter-
face changes requires blocking all objects affected by
a change, and potentially the whole kernel. We would
block kernel events at a lower level, such as exception
handlers or underlying VMM, before updating the sys-
tem. Although this precludes servicing requests while
the update is applied, it preserves the system’s full state,
and thus offers significant advantages over rebooting.

7.4 Updates outside the kernel

Many OS updates change user-level code such as sys-
tem libraries. Although we have targeted kernel changes,
a complete dynamic update system would also require
support for user-level updates. There is nothing prevent-
ing our update mechanism from operating at user-level.
However, depending upon the structure of the relevant li-
braries or applications, general-purpose dynamic update
systems [2, 19,24] may be more suitable or practical.

7.5 Implementation in other systems

As our approach has been to implement dynamic update
within an existing OS with the aim of developing a de-
sign suitable for commodity operating systems, one goal
for future work would be to apply it to a commodity OS.
In previous work [5], we described how dynamic update
may be implemented in Linux. Although it does not pro-
vide the same consistent mechanisms, modular parts of
Linux such as the VFS layer and device driver interfaces
are effectively object-oriented, providing data hiding and
indirection. For example, filesystem drivers are invoked
through a table of function pointers held in the inode
structures, and device drivers are called similarly. This
provides the same indirection as K42’s object translation
table, although at a coarser granularity. It would result in
a lower overhead for indirection and state tracking, but
potentially higher update costs. The design’s other re-
quirements, such as state tracking, can also be achieved
within Linux, albeit not so consistently as in K42 [5].
One significant difference between K42 and Linux
is blocking threads. K42 kernel threads are short-lived
and non-blocking, allowing us to block access to an ob-
ject and simply wait until existing threads terminate to
achieve quiescence. In Linux, however, system call han-
dlers may block for IO or other long-running operations,

that we cannot wait for. Our current solution when apply-
ing an update in Linux is, when possible, to abort system
calls with EINTR (interrupted call) or EAGAIN (resource
temporarily unavailable) errors, from which an applica-
tion can recover by retrying the call. If a blocking call
cannot be interrupted, we must delay and retry the update
until it completes. This could be avoided by a wrapper
that converts blocking system calls into restartable vari-
ants such as select.

The main limitation in applying this approach to Linux
is the current extent of modularity. Unlike K42, core
parts of Linux such as the scheduler and virtual mem-
ory system are not modular. Despite this, we believe
that dynamic update for Linux is feasible. In particular,
it is not necessary to apply modularisation and dynamic
update infrastructure throughout the kernel. Rather, dy-
namic update can be enabled incrementally for specific
subsystems, by adding indirection and state tracking (or
subverting existing structures). Along with other projects
[26,28], this provides motivation for increasing the mod-
ularity of the Linux kernel.

8 Related work

Many dynamic update systems exist for high-level lan-
guages [3, 10, 14, 20, 25], however these are inapplica-
ble to an OS implemented in C or C++. A small num-
ber of general-purpose dynamic update systems for C
have been described in the literature [2, 12, 19]. These
focus on application code, however an OS kernel is a
fundamentally different environment, and features con-
straints such as a high level of concurrency, and com-
pletely event-driven execution and control flow. Also,
operating systems offer extremely limited runtime envi-
ronments. These constraints result in different trade-offs
and a different design for dynamic update.

Most general-purpose dynamic update systems for C
do not support threading [12,19]. One that does is OPUS
[2], that uses Linux’s ptrace facility to update C pro-
grams at function boundaries, with the goal of enabling
dynamic security patches. OPUS waits for updated func-
tions to be off the stack of all threads. Unlike our system,
which blocks new invocations to achieve quiescence, it is
possible for OPUS never to achieve quiescence, and thus
for an update to be delayed indefinitely. Because OPUS
relies on stopping all threads to examine their stacks, it
would be difficult to apply the design to an operating sys-
tem kernel, where thousands of threads may be present,
and where blocking the whole system’s execution is not
feasible. OPUS does not handle changes to data struc-
tures nor function interfaces. Despite these limitations, it
was able to apply many real security patches, suggesting
that our system is also suitable for security patches.

LUCOS [8] is a dynamic update system for Linux built

348

2007 USENIX Annual Technical Conference

USENIX Association

upon the Xen virtual-machine monitor. To apply updates,
LUCOS enforces quiescence by using the VMM to stop
the system’s execution; it then dynamically patches func-
tions. In contrast, in K42 we block and quiesce only
objects affected by an update, allowing the rest of the
system to continue. Similarly to OPUS, LUCOS does
not support changes to function interfaces, that are im-
portant even for bug fixes, as we have shown. If a LU-
COS patch changes data structures, pages containing old
and new versions of the affected data are marked read-
only; on a write fault the kernel is single-stepped, and a
data-transfer function is used to keep the versions consis-
tent. K42 avoids such two-way data conversions by up-
dating all code that accesses a data structure along with
the data itself. For LUCOS to detect when functions us-
ing old data structures have returned, it must examine
every stack frame of every kernel thread in the system,
a large scalability problem on modern systems that com-
monly run thousands of threads. Because it only consists
of passive modules, LUCOS’ performance overhead is
negligible at the expense of higher update costs, espe-
cially when data structures are changed. Our system in-
curs constant overhead from indirection and state track-
ing, although, as we have shown, this overhead is very
low (less than 1%). Furthermore, our system’s overhead
compares favourably with virtualisation, and enables a
simpler and more scalable update process.

DynAMOS [15] is another recent dynamic update sys-
tem for Linux. Like LUCOS, it uses function-level bi-
nary patching, which occurs while interrupts are dis-
abled. DynAMOS supports limited updates to data struc-
tures through the use of shadow structures, that must be
maintained separately to the original structure. Like LU-
COS, DynAMOS may need to walk the stack of every
kernel thread to detect quiescence. As a loadable mod-
ule that requires no modifications to the base kernel, Dy-
nAMOS does not impace base performance, however
because every updated function incurs an extra indirect
branch, the performance impact of updates is significant.
Micro-benchmark results show overheads higher than
40% for some functions, but the overall performance im-
pact of an update is not reported.

The main advantages of LUCOS and DynAMOS over
our approach are that they do not require changes to the
kernel, are able to update almost any function, and do
not incur any base performance impact. However, due
to the use of binary function patching as the underlying
mechanism, the impact of applying updates in these sys-
tems is significantly higher. Although our approach has
not yet been applied to Linux, the comparison between
it and these systems is primarily a trade-off between ap-
plicability, in terms of the parts of the kernel that can be
updated, and performance and complexity, in terms of
the cost of applying updates, the difficulty in developing

them, and the complexity of changes that are supported.

A practical approach to general-purpose dynamic up-
date is taken by Ginseng [19]. Ginseng compiles C pro-
grams specially, adding indirections for types and func-
tions, to provide safe, fine-grained dynamic updates for
arbitrary C code. This contrasts to our approach, that
applies updates at the coarser level of objects or mod-
ules, and so suffers lower overheads from indirection
and update support, but relies on the modular structure
of the OS. Ginseng does not support threaded execution,
although the authors are currently investigating ways to
cope with the concurrency requirements of an OS [18].

Several domain-specific approaches to dynamic up-
date appear in the literature, for example in object
databases [6] and distributed systems [1]. These systems
are not necessarily language-based, but are closely tied to
their domain for other reasons. Our approach is similar
in that we have tailored the design of our system to the
structure and environment of the code we update, namely
modular kernel code.

One relevant domain-specific dynamic update system
is Upstart [1], which provides automatic software up-
dates for distributed systems by interposing at the li-
brary level and rewriting remote procedure calls. De-
spite the different focus, a lot of parallels can be drawn
between Upstart and K42. Upstart’s transform functions
are equivalent to our state-transfer functions, simulation
objects play the same role as adaptors, and scheduling
objects are a generalisation of lazy update.

AutoPod [22] is a kernel module for Linux that pro-
vides checkpoint, migration and restart of processes
transparently to the applications and kernel. Combining
AutoPod with an underlying VMM, as long as the kernel
interface is unchanged it is possible to start a new virtual
machine with an updated kernel, checkpoint the user pro-
cesses in the old virtual machine, and migrate and then
restart them on the updated kernel. This represents a rad-
ically different approach to the problem; it avoids signif-
icant changes to the OS, at the cost of runtime overhead
from virtualisation and AutoPod.

9 Conclusions

We have implemented dynamic update for K42, and
found that adding this feature to an existing operating
system is feasible when that system has a sufficiently
modular structure. K42 has the advantage that it is object
oriented with a consistent and pervasive module invoca-
tion mechanism, but as we have discussed, commodity
operating systems such as Linux can provide the same
support, albeit in an less consistent fashion.

We have shown how to design a dynamic update sys-
tem that handles interface changes, which are required
for many bug fixes, and applies updates lazily, which is

USENIX Association

2007 USENIX Annual Technical Conference

349

essential for changes to some data structures because it
mitigates their severe performance impact.

From a study of the K42 revision history, we have
shown that our dynamic update model can support at
least 79% of maintenance changes to an operating sys-
tem, and we expect that for a real system the propor-
tion would be closer to 100%. We have also measured
the performance impact, and found it to be insignificant,
with less than 1% runtime overhead.

Dynamic update is a rich area for future systems re-
search, and will become increasingly important for main-
stream operating systems. We have shown one way to
achieve a dynamic update feature in operating systems.
With dynamic update, the uptime of systems should be
limited by hardware failure, not by software updates.

Acknowledgements

The K42 community provided valuable assistance—
Raymond Fingas developed the arbiter objects used for
lazy update and adaptors, and Jeremy Kerr implemented
the sync changes. Comments and critical feedback were
provided by the participants of the First EuroSys Author-
ing Workshop, Eno Thereska, Iulian Neamtiu, and the
anonymous reviewers.

This work was partially supported by DARPA un-
der contract NBCH30390004. National ICT Australia
is funded by the Australian Government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian
Research Council.

Notes

'We examined the kitch-core and kitch-linux CVS modules.
2In K42 terminology, we are referring to the file cache manager (FCM)
and file representative (FR) objects.

References

[11 S. Ajmani. Automatic Software Upgrades for Distributed Sys-
tems. PhD thesis, Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Sep 2004.
Also as Technical Report MIT-LCS-TR-1012.

[2] G. Altekar, 1. Bagrak, P. Burstein, and A. Schultz. OPUS: On-
line patches and updates for security. In /4th USENIX Security
Symp., pages 287-302, Aug 2005.

[3] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Con-
current Programming in ERLANG, chapter 9, pages 121-123.
Prentice Hall, 2nd edition, 1996.

[4] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva, O. Krieger,
R. W. Wisniewski, and J. Kerr. Providing dynamic update in an
operating system. In 2005 Ann. USENIX, pages 279-291, Apr
2005.

[5] A. Baumann, J. Kerr, J. Appavoo, D. Da Silva, O. Krieger, and
R. W. Wisniewski. Module hot-swapping for dynamic update
and reconfiguration in K42. In 6th Linux.Conf.Au, Apr 2005.

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman.
Lazy modular upgrades in persistent object stores. In OOPSLA,
pages 403—417, Oct 2003.

B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
instrumentation of production systems. In 2004 Ann. USENIX,
pages 15-28, Jun 2004.

H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew. Live up-
dating operating systems using virtualization. In 2nd VEE, pages
35-44, Jun 2006.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without dy-
namic types. Technical Report ECS-LFCS-97-378, Department
of Computer Science, The University of Edinburgh, Dec 1997.
P. Gray. Experts question Windows patch policy. ZDNet News,
Nov 2003. http://news.zdnet.com/2100-1009_22-5105454.
html.

D. Gupta and P. Jalote. On-line software version change us-
ing state transfer between processes. Softw.: Pract. & Exp.,
23(9):949-964, Sep 1993.

0. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski,
J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. K42: Building a com-
plete operating system. In EuroSys Conf., pages 133-145, Apr
2006.

I. Lee. DYMOS: A Dynamic Modification System. PhD thesis,
University of Wisconsin-Madison, May 1983.

K. Makris and K. D. Ryu. Dynamic and adaptive updates of non-
quiescent subsystems in commodity operating system kernels.
In EuroSys Conf., Mar 2007.

K. B. Mierle, K. Laven, S. T. Roweis, and G. V. Wilson. CVS
data extraction and analysis: A case study. Technical Report
UTML TR 2004-002, Dept of Computer Science, University of
Toronto, Sep 2004.

I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source
code evolution using abstract syntax tree matching. In 2nd MSR,
pages 2—-6, May 2005.

I. Neamtiu and M. Hicks. Dynamic software updating for the
Linux kernel. OSDI, Work-in-Progress Session, Nov 2006.
Seattle, WA, USA.

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dy-
namic software updating for C. In PLDI, Jun 2006.

A. Orso, A. Rao, and M. J. Harrold. A technique for dynamic
updating of Java software. In Int. Conf. Softw. Maintenance, Oct
2002.

Y. Padioleau, J. L. Lawall, and G. Muller. Understanding collat-
eral evolution in Linux device drivers. In EuroSys Conf., pages
59-71, Apr 2006.

S. Potter and J. Nieh. Reducing downtime due to system main-
tenance and upgrades. In 79th LISA, pages 47-62, Dec 2005.

E. Rescorla. Security holes... who cares? In 12th USENIX
Security Symp., pages 75-90, Aug 2003.

M. E. Segal and O. Frieder. On-the-fly program modification:
Systems for dynamic updating. Softw., 10(2):53-65, Mar 1993.
D. Stewart and M. M. T. Chakravarty. Dynamic applications
from the ground up. In ACM SIGPLAN Haskell WS, Sep 2005.
M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering device drivers. In 6th OSDI, Dec 2004.

A. Tamches and B. P. Miller. Fine-grained dynamic instrumen-
tation of commodity operating system kernels. In 3rd OSDI,
pages 117-130, Feb 1999.

E. Witchel, J. Rhee, and K. Asanovi¢. Mondrix: Memory iso-
lation for Linux using Mondriaan memory protection. In 20th
SOSP, Oct 2005.

T. Woerner. Understanding the Linux kernel initcall mechanism,
Oct 2006. http://geek.vtnet.ca/doc/initcall/.

T. Zimmermann and P. Weiigerber. Preprocessing CVS data for
fine-grained analysis. In /st MSR, May 2004.

350

2007 USENIX Annual Technical Conference

USENIX Association

