
Mac OS X 10.4 
“Tiger”

What's New for UNIX Users?



General Highlights

Pervasive Searching
Automator
VoiceOver
Parental Controls
SyncServices



New and Upgraded Apps

Dashboard
iChat AV conferencing
Safari RSS
QuickTime 7 with H.264
Mail.app now uses SQLite



UNIX Highlights

Filesystem fun (indexing and attributes)
64 bit libSystem
Performance Performance Performance!
Developer Tools update
ASL “Apple System Logger”
launchd “one daemon to rule them all”



Kernel

fine grain locking SMP
KPI work

FS locking is no longer per filesystem
Improved Unix Conformance
64 bit userland support
Performance



File Systems

Extended attributes (POSIXy superset)
EAs are emulated on non supporting FS types
ACLs (favoring NT behavior)
Higher level Spotlight search APIs
UDF closer to 2.5
HFS improved built-in de-fragmentation



File System commands

cp, mv and friends are EA aware
rsync requires the -E flag
cvs is not EA aware



Networking

Wide Area Bonjour using DNS updates
Ethernet channel bonding/failover
IPSec support for certificates
Firewall logging, ipfw2 and IPv6 firewalling
site to site VPN and support for Kerberos
dummynet



Drivers

Improved Power Management APIs
64 bit shimming for ABI reasons
Adding a 802.11 family
Support for persistent disk device nodes
GPT support



Userland

Perl 5.8.6
Python 2.3.5
Ruby 1.8.2
Tcl 8.4
Wait for the Q&A and I can check other tools.



Apple System Logger 
“ASL”

A system database of log messages
Easy searching
Advanced pruning
More flexable logging API
Powerful “mixer” like filter control



Service Management
in Mac OS X



Daemons 
A long running background processes
Super-daemons
A daemon that proxies some execution for other 
daemons
Agents
Daemons that operate during and only for a given 
login session
Communication handle
A Unix socket or Mach port

Terminology



Assumptions

Prior experience writing a daemon in the Mach or 
Unix world
Familiarity with Mach IPC or Unix system calls



Introducing launchd

launchd is all about background processes
Work directly on behalf of a user
Work indirectly on behalf of a user or users
You need to get your code running at some point in 
the system



What’s Wrong With the 
Status Quo?

Daemons deserve better treatment
In both Unix and Mac OS, daemons were just 
processes which disassociated them from user input
“Faceless background applications” in Mac OS 9 
parlance



The Solution:

A new super-daemon to manage them
Designed to do work for you
Designed to be flexible
Designed to support messaging and control



Launchd Is Open Source

A critical Darwin component
We want all Unix daemons to adopt this technology
Open Sourcing it encourages adoption



The issues that a modern daemon writer faces
What launchd does
What launchd doesn’t do
How to port an existing daemon to launchd
How to write a savvy launchd daemon

What will be covered



Unix History
inetd

Launches IP based daemons on demand at run-time
Assumes only one FD handle per daemon

init
Maintains login daemons on ttys at run-time

/etc/rc*
A shell script that runs to configure a Unix system. 
It often runs other scripts which in turn launch 
daemons
Poor support for run-time control

cron/at/batch:
Time centric



Mach History

mach_init
Launches daemons on demand based on Mach port 
IPC



Today’s Problems
Missing functionality:

Unix local domain socket support
File system based events to trigger a daemon 
launch
init and inetd don’t support user supplied jobs

Multiple event sources:
Networking daemons commonly listen on multiple 
ports these days
Some daemons use both Mach and Unix based IPC
Ultimately, time, file system, and IPC events need to 
be supported in the same “super-daemon”

The ability to restart a daemon is important



The Future

One daemon to rule them all
Support for transferable based event sources

Most file descriptors
Mach ports

Support for user supplied jobs



So What Does this 
Mean?

Hopefully less work for you
No need to daemonize

fork() and have the parent exit()
setsid()
closing stray file descriptors
reopening stdio as /dev/null
etc.



Launch on Demand

Helping you help us save system resources
We support keeping your communication handles 
alive even when you’re not running
This saves system resources
It also improves the system boot-up speed



Parallel Load at Boot

Making boot-up even more dynamic
We register all daemons configuration handles first
Then we let daemons run
This lets us remove the need for externally specified 
dependancies



User-Agents

Users have their own special needs too!
Standardizes the way we launch user-agents
Allows us to launch them on demand too, thus 
improving login performance



Case Studies

The real world is what matters
cupsd

Uses mach APIs to enable automatic restarting
with launchd, no extra code is needed

mDNSResponder
uses both Mach ports and Unix file descriptors
launchd handles both, nothing else does for 
launch-on-demand



More Case Studies

User examples
ssh-agent

Complicated to automate the management of
Most users only want one per session
launchd makes this trivial with small 
modifications to ssh-agent



What Doesn’t Launchd 
Do?

Monitor non kernel fundamental event sources:
configd’s database key/values
configd’s events
NetInfo’s database key/values
Bonjour service advertisements
IO Kit’s namespace (which is built upon mach ports)
IO Kit events (e.g. power management)
etc.



Wait! Not XYZ?!?

This is subject to change
We have our own internal needs too



Porting

The high level overview
A simple IPC API
A simple RTTI based object system to support 
message passing



The IPC API

Kinda-sorta-CoreFoundation
So why not CF?

Portability
Mach port and file descriptor passing is not 
supported by CoreFoundation at the moment

All we need is RTTI, dictionaries and arrays



C APIs

#include <launch.h>

launch_data_t launch_msg(launch_data_t);

int launch_get_fd(void);



C API Semantics

launch_data_t represents an object graph
launch_msg() is a synchronous API for the common 
case

Returns NULL and sets errno on failure
If you request asynchronous messages be sent back:

Call launch_msg(NULL) to get an asynchronous 
message
Keep calling until you get NULL back
If errno == 0, then no more asyncrhonous messages 
are available for reading



launch_data_t

RTTI and container classes are fun!
Dictionaries
Arrays
File Descriptors
Mach Ports
Integers
Real numbers
Booleans
Strings
Opaque Data



launch_data_t APIs

“Just enough for IPC, and no more”
Get/set operations for basic types
Dictionaries:

insert
lookup
remove
interate

Arrays:
set index
get index
get count



XML plist keys
Label
UserName
GroupName
ProgramName
Root
Umask
WorkingDirectory
ServiceDescription
ProgramArguments
EnvironmentVariables
EventSources



What Are EventSources?

Details, details, details…
How to setup a given mach port or socket
Who to connect to…
Where to listen…
etc.



XML plist → 
launch_data_t

Data distillation

UserNames → UIDs

GroupNames → GIDs

“stuff” → file descriptors and mach ports



Example Messages

Dictionaries where the key is the command
SubmitJob
RemoveJob
GetJobs
CheckIn
SetUserEnvironment
UnsetUserEnvironment
GetUserEnvironment



Rehash
launchd is the future

Less work for you
pre-daemonized when main() is called
Just check-in and go
Automatic restarting

More flexibility in what event sources you react to
Multiple Unix file descriptors
Multiple Mach ports

User agents
A powerful concept for per session background 
processes



Demo



Apple’s Open Source Web Site
http://developer.apple.com/darwin/

For More Information



Q&A


