Mac 0S X 104
“Tiger”

What's New for UNIX Users?



General Highlights

* Pervasive Searching
* Autowmator

* VoiceOver

* Parental Controls
* SyncServices



New and Upgraded Apps

* Pashboard
* iChat AV conferencing
* Safari RSS

* QuickTime 7 with H.264
* Mail.app now uses SQlite



UNIX Highlights

* Filesystewm fun (indexing and attributes)
* 04 bit libSystem

* Performance Performance Performance!
* [eveloper Tools update

* ASL “Apple System Logger”

* launchd ‘one daewmon to rule them all”



Kernel

* fine grain locking SMP
* KPlwork
* FS locking is no longer per filesystem
* lmproved Unix Conformance
* 64 bit userland support
* Performance



File Systewms

* Extended attributes (POSIXy superset)

* EAs are emulated on non supporting FS types
* ACLs (favoring NT behavior)

* Higher level Spotlight search APls

* UDF closer t0 2.9

* HFS improved built-in de-fragmentation



File System commands

* ¢p, mv and friends are EA aware
* rsyne requires the -E flag
* ¢vs is not EA aware



Networking

* Wide Area Bonjour using UNS updates

* Ethernet channel bonding/failover

* |PSec support for certificates

* Firewall logging, ipfw2 and IPv6 firewalling
* site o site VPN and support for Kerberos

* duvmwmynet



Drivers

* lmproved Power Management APls

* 64 bit shimming for ABl reasons

* Addinga 802.11 fawmily

* Support for persistent disk device nodes
* GPT support



Userland

* Perl 5.8.6

* Python 2.3.9

* Ruby 1.8.2

* Tel 84

* Wait for the Q&A and | can check other tools.



Apple Systewm Logger
ASL’

* A system database of log messages
* Easy searching

* Advanced pruning

* More flexable logging APl

* Powerful “mixer” like filter control



Service Management
in Mac 0S X




Terminology

* Paewmons
A long running background processes
* Super-daewmons

A daemon that proxies some execution for other
daemons

* Agents

Daemons that operate during and only for a given
login session

* Comwunication handle
A Unix socket or Mach port



Assumptions

* Prior experience writing a daewmon in the Mach or
Unix world

* Fawiliarity with Mach IPC or Unix systewm calls



Introducing launchd

* launchd is all about background processes
* Work directly on behalf of a user
* Work indirectly on behalf of a user or users

* You need to get your code running at some point in
the system



What’s Wrong With the
Status Quo?

* Paemons deserve better treatment

* ln both Unix and Mac 0S, daemons were just
processes which disassociated them from user input

* “Faceless background applications” in Mac 0S 9
parlance



The Solution:

* A new super-daemon to manage them
* Pesigned to do work for you
* Pesigned to be flexible
* Designed to support messaging and control



Launchd Is Open Source

* A critical Parwin component
* We want all Unix daemons to adopt this technology
* Open Sourcing it encourages adoption



What will be covered

* The issues that a modern daemon writer faces
* What launchd does

* What launchd doesn’t do

* How to port an existing daemon to launchd

* How to write a savvy launchd daemon



Unix History

* inetd
* Launches IP based daemons on demand at run-time
* Assumes only one FU handle per daemon

* init
* Maintains login daemons on t1ys at run-time

* /ete/re*

* A shell seript that runs to configure a Unix systew.
It of ten runs other scripts which in turn launch
daemons

* Poor support for run-time control
* cron/at/bateh:
* Time centric



Mach History

* mach_init

% h;\émches daemons on demand based on Mach port



Today’s Problems

* Missing functionality:
* Unix local domain socket support

* File system based events to frigger a daemon
launch

* init and inetd dont support user supplied jobs
* Multiple event sources:

* Networking daemons commonly listen on multiple
ports these days

* Sowe daemons use both Mach and Unix based IPC

* Ultimately, time, file system, and IPC events need to
be supported in the same “super-daemon”

* The ability fo restart a daewon is important



The Future

* One daemon to rule thew all
* Support for transferable based event sources
* Most file descriptors
* Mach ports
% Support for user supplied jobs



So What Does this
Mean?

* Hopefully less work for you
* No need to daemonize
* fork() and have the parent exit()
* setsid()
* closing stray file descriptors
* reopening stdio as /dev/null
* eftc.



Launch on Pemand

* Helping you help us save system resources

* We support keeping your communication handles
alive even when youre not running

* This saves system resources
* |t also improves the system boot-up speed



Parallel Load at Boot

* Making boot-up even more dynawic
* We register all daemons configuration handles first
* Then we let daemons run

* This lets us remove the need for externally specified
dependancies



User-Agents

* Users have their own special needs too!
* Standardizes the way we launch user-agents

* Allows us to launch thewm on demand too, thus
improving login performance



Case Studies

* The real world is what matters

* cupsd
* Uses mach APls to enable automatic restarting
* with launchd, no extra code is needed

* MUNSResponder
* Uses both Mach ports and Unix file descriptors
* launchd handles both, nothing else does for

launch-on-demand



More Case Studies

* User examples
* ssh-agent
* Cowplicated to automate the managewment of
* Most users only want one per session

* launchd makes this trivial with small
modifications to ssh-agent



What Doesn’t Launchd
Do?

* Monitor non kernel fundamental event sources:
* configd’s database key/values
* configd’s events
* Netlnfo's database key/values
* Bonjour service advertisements
* 10 Kit’s namespace (which is built upon mach ports)
* 10 Kit events (e.g. power management)
* efte.



Wait! Not XYZ71?

* This is subject to change
* We have our own internal needs too



Porting

* The high level overview
* A simple IPC API

* A simple RTTI based object system to support
message passing



The IPC API

* Kinda-sorta-CoreFoundation
* Sowhy not CF?
* Portability

* Mach port and file deseriptor passing is not
supported by CoreFoundation at the moment

* All we need is RTTI, dictionaries and arrays



C APls

#inelude <launch.hy

launch_data_t launch_msgllaunch_data_t);

int launch_get _fd(void):



C APl Semantics

* launch_data_f represents an object graph

* launch_wmsg() is a synchronous APl for the common
case

* Returns NULL and sets errno on failure
* |f you request asynchronous messages be sent back:

* Call launch_msg(NULL) to get an asynchronous
message

* Keep calling until you get NULL back

* |f errno == 0, then no more asyncrhonous messages
are available for reading



launch_data _t

* RTTI and container classes are fun!
* PDictionaries
* Arrays
* File Descriptors
* Mach Ports
* [ntegers
* Real numbers
* Booleans
* Strings
* Opaque Data



launch_data_t APls

* “Just enough for IPC, and no more”
* Get/set operations for basic types
* Pictionaries:

* insert
* lookup
* remove
* interate
* Arrays:
* set index
* gef index
* get count



XML plist keys

* UserName

* GroupName

* ProgramNawme

* Root

* Uwmask

* Workinglirectory

* Servicelescription

* ProgramArguments
* EnvironmentVariables
* EventSources



What Are EventSources?

* Details, details, details...
* How to setup a given mach port or socket
* Who to connect to...
* Where to listen...
* efe.



XML plist —
launch_data _t

* Data distillation
* UserNames — UlDs
* GroupNawmes — GIDs
* ‘stuff” — file descriptors and mach ports



Example Messages

* Pictionaries where the key is the command
* SubmitJob
* Rewmovedob
* GetJobs
* Checkln
* SetUserkEnvironment
* UnsetUserknvironment
* GetUserknvironment



Rehash

* launchd is the future

* Less work for you
* pre-daewmonized when mainl) is called
* Just check-in and go
* Automatic restarting

* More flexibility in what event sources you react fo
* Multiple Unix file deseriptors
* Multiple Mach ports

* User agents

* A powerful concept for per session background
processes






For More Information

* Apple’s Open Source Web Site
* http:/developer.apple.com/darwin/



Q&A



