
Itanium — A System Implementor’s Tale

Charles Gray† Matthew Chapman†‡ Peter Chubb†‡ David Mosberger-Tang§

Gernot Heiser†‡
† The University of New South Wales, Sydney, Australia

‡ National ICT Australia, Sydney, Australia
§ HP Labs, Palo Alto, CA

cgray@cse.unsw.edu.au

Abstract

Itanium is a fairly new and rather unusual architecture.
Its defining feature is explicitly-parallel instruction-set
computing (EPIC), which moves the onus for exploiting
instruction-level parallelism (ILP) from the hardware to
the code generator. Itanium theoretically supports high
degrees of ILP, but in practice these are hard to achieve,
as present compilers are often not up to the task. This is
much more a problem for systems than for application
code, as compiler writers’ efforts tend to be focused on
SPEC benchmarks, which are not representative of op-
erating systems code. As a result, good OS performance
on Itanium is a serious challenge, but the potential re-
wards are high.

EPIC is not the only interesting and novel feature of
Itanium. Others include an unusual MMU, a huge reg-
ister set, and tricky virtualisation issues. We present a
number of the challenges posed by the architecture, and
show how they can be overcome by clever design and
implementation.

1 Introduction
Itanium [7] (also known as IA64) was introduced in
2000. It had been jointly developed by Intel and HP as
Intel’s architecture for the next decades. At present, Ita-
nium processors are used in high-end workstations and
servers.

Itanium’s strong floating-point performance is widely
recognised, which makes it an increasingly popular plat-
form for high-performance computing. Its small-scale
integer performance is so far less impressive. This is
partially a result of integer performance being very de-
pendent on the ability of the hardware to exploit any
instruction-level parallelism (ILP) available in the code.

Most high-end architectures detect ILP in hardware,
and re-order the instruction stream in order to maximise
it. Itanium, by contrast, does no reordering, but instead
relies on the code generator to identify ILP and repre-
sent it in the instruction stream. This is called explicitly-
parallel instruction-set computing (EPIC), and is based
on the established (but to date not overly successful)

very-long instruction word (VLIW) approach. EPIC is
based on the realisation that the ILP that can be usefully
exploited by reordering is limited, and aims at raising
this limit.

The performance of an EPIC machine is highly de-
pendent on the quality of the compiler’s optimiser.
Given the novelty of the architecture, it is not surpris-
ing that contemporary compilers are not quite up to the
challenge [22]. Furthermore, most work on compil-
ers is focusing on application code (in fact, mostly on
SPEC benchmarks), so compilers tend to perform even
worse on systems code. Finally, of the various compilers
around, by far the weakest, GCC, is presently the default
for compiling the Linux kernel. This poses a number of
challenges for system implementors who strive to obtain
good OS performance on Itanium.

Another challenge for the systems implementor is pre-
sented by Itanium’s huge register file. This helps to
keep the pipelines full when running CPU-bound ap-
plications, but if all those registers must be saved and
restored on a context switch, the costs will be signifi-
cant, Itanium’s high memory bandwidth notwithstand-
ing. The architecture provides a register stack engine
(RSE) which automatically fills/spills registers to mem-
ory. This further complicates context switches, but has
the potential for reducing register filling/spilling over-
head [21]. The large register set, and the mechanisms
for dealing with it, imply trade-offs that lead to different
implementation strategies for a number of OS services,
such as signal handling.

Exceptions are expensive on processors with high ILP
and deep pipelines, as they imply a break in the execu-
tion flow that requires flushing the pipeline and wast-
ing many issue slots. For most exceptions this is un-
avoidable but irrelevant if the exceptions are relatively
infrequent (like interrupts) or a result of program faults.
System calls, however, which are treated as exceptions
on most architectures, are not faults nor necessarily in-
frequent, and must be fast. Itanium deals with this is-
sue by providing a mechanism for increasing the priv-
ilege level without an exception and the corresponding

2005 USENIX Annual Technical Conference USENIX Association 265



pipeline flush, but it is subject to limitations which make
it tricky to utilise.

Itanium’s memory-management unit (MMU) also has
some unusual properties which impact on OS design.
Not only does it support a wide range of page sizes
(which is nothing unusual), it also supports the choice
of two different hardware page-table formats, a virtual
linear array (called short VHPT format) and a hash ta-
ble (called the long VHPT format). As the names imply,
they have different size page table entries, and different
performance and feature tradeoffs, including the support
for superpages and the so-called protection keys. The
hardware page-table walker can even be disabled, effec-
tively producing a software-loaded TLB.

Protection keys loosen the usual nexus between pro-
tection and translation: access rights on pages are not
only determined by access bits on page-table entries, but
also by an orthogonal mechanism which allows group-
ing sets of pages for access-control purposes. This
mechanism also supports sharing of a single entry in the
translation lookaside buffer (TLB) between processes
sharing access to the page, even if their access rights dif-
fer.

The original architecture is disappointing in a rather
surprising respect: it is not fully virtualisable. Virtual-
machine monitors (VMMs) have gained significant pop-
ularity in recent years, and Itanium is almost, but not
quite, virtualisable. This creates a significant challenge
for anyone who wants to develop an Itanium VMM. For-
tunately, Intel recognised the deficiency and is address-
ing it with an architecture-extension called Vanderpool
Technology [10], which is to be implemented in future
CPUs.

This paper presents a discussion of the features of the
Itanium architecture which present new and interesting
challenges and design tradeoffs to the system implemen-
tor. We will discuss the nature of those challenges, and
how they can be dealt with in practice. First, however,
we present an overview of the Itanium architecture in
the next section. In Section 3 we discuss the most in-
teresting features of the Itanium’s memory-management
unit and the design tradeoffs it implies. In Section 4 we
discuss issues with virtualisation of Itanium, while Sec-
tion 5 presents a number of case studies of performance
tradeoffs and micro-optimisation. Section 6 concludes
the paper.

2 Itanium Architecture Overview

2.1 Explicitly-parallel instruction-set com-
puting

As stated in the Introduction, Itanium’s EPIC approach
is based on VLIW principles, with several instructions
contained in each instruction word. Scheduling of in-

Issue
Window

2
Bundles

Inst 2 Inst 1 Inst 0 Templ.

Instruction Buffer

Bundle

Backend Pipelines

B

I

M

F

Figure 1: Instruction Issue

structions, and specification of ILP, becomes the duty
of the compiler (or assembly coder). This means that
details of the processor pipelines and instruction laten-
cies must be exposed in the architecture, so the compiler
can emit correct code without the processor needing to
scoreboard instruction dependencies.

The Itanium approach to EPIC aims at achieving this
without overly limiting the design space of future pro-
cessors, i.e., by describing ILP in a way that does not
depend on the actual number of pipelines and func-
tional units. The compiler is encouraged to maximise
ILP in the code, in order to optimise performance for
processors regardless of pipeline structure. The result
is a greatly simplified instruction issue, with only a
few pipeline stages dedicated to the processor front-end
(two front-end and six back-end stages, ignoring float-
ing point, for Itanium 2). The shorter pipeline helps to
reduce exception and mis-prediction penalties.

Itanium presents a RISC-like load/store instruction
set. Instructions are grouped into 128-bit bundles, which
generally hold three instructions each. Several bundles
form an instruction group delimited by stops. Present
Itanium processors use a two-bundle issue window (re-
sulting in an issue of six instructions per cycle). By def-
inition, all instructions in a group are independent and
can execute concurrently (subject to resource availabil-
ity).

Figure 1 shows the first few stages of the Itanium
pipeline. Bundles are placed into the instruction buffer
speculatively and on demand. Each clock cycle, all in-
structions in the issue window are dispersed into back-
end pipelines (branch, memory, integer and floating-
point) as directed by the template, unless a required
pipeline is stalled or a stop is encountered in the instruc-
tion stream.

Each bundle has a 5-bit template field which speci-
fies which instructions are to be dispersed into which
pipeline types, allowing the instruction dispersal to be
implemented by simple static logic. If there are not
enough backend units of a particular type to disperse an
instruction, split issue occurs; the preceding instructions

2005 USENIX Annual Technical Conference USENIX Association266



are issued but that instruction and subsequent instruc-
tions must wait until the next cycle — Itanium issues
strictly in order. This allows a compiler to optimise for a
specific processor based on the knowledge of the number
of pipelines, latencies etc., without leading to incorrect
execution on earlier or later processors.

One aspect of EPIC is to make even data and con-
trol speculation explicit. Itanium supports this through
speculative load instructions, which the compiler can
move forward in the instruction stream without know-
ing whether this is safe to do (the load could be through
an invalid pointer or the memory location overwritten
through an alias). Any exception resulting from a specu-
lative load is deferred until the result is consumed. In or-
der to support speculation, general registers are extended
by an extra bit, the NaT (“not a thing”) bit, which is used
to trap mis-speculated loads.

2.2 Register stack engine
Itanium supports EPIC by a huge file of architected reg-
isters, rather than relying on register renaming in the
pipeline. There are 128 user-mode general registers
(GRs), the first 32 of which are global; 16 of these
are banked (i.e., there is a separate copy for privileged
mode). The remaining 96 registers are explicitly re-
named by using register windows, similar to the SPARC
[23].

Unlike the SPARC’s, Itanium’s register windows are
of variable size. A function uses an alloc instruction
to allocate local and output registers. On a function call
via the br.call instruction, the window is rotated up
past the local registers leaving only the caller’s output
registers exposed, which become the callee’s input reg-
isters. The callee can then use alloc to widen the win-
dow for new local and output registers. On executing
the br.ret instruction, the caller’s register window is
restored.

The second, and most important, difference to the
SPARC is the Itanium’s register stack engine (RSE),
which transparently spills or fills registers from memory
when the register window overflows or underflows the
available registers. This not only has the advantage of
freeing the program from dealing with register-window
exceptions. More importantly, it allows the processor
designers to transparently add an arbitrary number of
windowed registers, beyond the architected 96, in order
to reduce memory traffic from register fills/spills. It also
supports lazy spilling and pre-filling by the hardware.

Internally, the stack registers are partitioned into four
categories — current, dirty, clean and invalid. Current
registers are those in the active procedure context. Dirty
registers are those in a parent context which have not yet
been written to the backing store, while clean registers
are parent registers with valid contents that have been

written back (and can be discarded if necessary). Invalid
registers contain undefined data and are ready to be allo-
cated or filled.

The RSE operation is supported by a number of spe-
cial instructions. The flushrs instruction is used to
force the dirty section of registers to the backing store,
as required on a context switch. Similarly, the loadrs
instruction is used to reload registers on a context switch.
The cover instruction is used to allocate an empty reg-
ister frame above the previously allocated frame, ensur-
ing any previous frames are in the dirty or clean parti-
tions.

There is another form of register renaming: register
rotation, which rotates registers within the current regis-
ter window. This is used for so-called software pipelin-
ing and supports optimisations of tight loops. As this
is mostly relevant at application level it is not discussed
further in this paper.

2.3 Fast system calls
Traditionally, a system call is implemented by some
form of invalid instruction exception that raises the priv-
ilege level, saves some processor state and diverts to
some handler code. This is essentially the same mecha-
nism as an interrupt, except that it is synchronous (trig-
gered by a specific instruction) and therefore often called
a software interrupt.

Such an exception is inherently expensive, as the
pipeline must be flushed, and speculation cannot be used
to mitigate that cost. Itanium provides a mechanism for
raising the privilege level without an exception, based on
call gates. The MMU supports a special permission bit
which allows designating a page as a gate page. If an
epc instruction in such a page is executed, the privilege
level is raised without any other side effects. Code in
the call page (or any code jumped to once in privileged
mode) can access kernel data structures and thus imple-
ment system calls. (Other architectures, such as IA-32,
also provide gates. The Itanium version is more tricky
to use, see Section 5.2).

2.4 Practical programming issues
The explicit management of ILP makes Itanium per-
formance critically dependent on optimal scheduling of
instructions in the executable code, and thus puts a
stronger emphasis on compiler optimisation (or hand-
optimised assembler) than other architectures. In this
section we discuss some of these issues.

2.4.1 Bundling and latencies
The processor may issue less than a full (six instruction)
issue window in a number of cases (split issue). This
can happen if the instructions cannot be issued concur-
rently due to dependencies, in which case the compiler

2005 USENIX Annual Technical Conference USENIX Association 267



inserts stops which instruct the processor to split issue.
Additionally, split issue will occur if the number of in-
structions for a particular functional unit exceeds the
(processor-dependent) number of corresponding back-
end units available. Split issue may also occur in a num-
ber of processor-specific cases. For example, the Ita-
nium 2 processor splits issue directly after serialisation
instructions (srlz and sync).

Optimum scheduling also depends on accurate knowl-
edge of instruction latency, defined as the number of cy-
cles of separation needed between a producing instruc-
tion and a consuming instruction. Scheduling a consum-
ing instruction within less than the producing instruc-
tion’s latency does not lead to incorrect results, but stalls
execution not only of this instruction, but also of all in
the current and subsequent instruction-groups.

ALU instructions as well as load instructions that hit
in the L1 cache have single-cycle latencies. Thus the
great majority of userspace code can be scheduled with-
out much consideration of latencies — one simply needs
to ensure that consumers are in instruction groups sub-
sequent to producers.

However, the situation is different for system instruc-
tions, particularly those accessing control registers and
application registers. On the Itanium 2 processor, many
of these have latencies of 2–5 cycles, a few (processor-
state register, RSE registers and kernel registers) have la-
tencies of 12 cycles, some (timestamp counter, interrupt
control and performance monitoring registers) have 36
cycle latencies. This makes scheduling of systems code
difficult, and the performance cost of getting it wrong
very high.

2.4.2 Other pipeline stalls
Normally latencies can be dealt with by overlapping
execution of several bundles (Itanium supports out-of-
order completion). However, some instructions can-
not be overlapped, producing unconditional stalls. This
naturally includes the various serialisation instructions
(srlz, sync) but also instructions that force RSE ac-
tivity (flushrs, loadrs). Exceptions and the rfi
(return from exception) instruction also produce un-
avoidable stalls, but these can be avoided for system
calls by using epc.

There also exist other constraints due to various re-
source limitations. For example, while stores do not
normally stall, they consume limited resources (store
buffers and L2 request queue entries) and can therefore
stall if too many of them are in progress. Similarly,
the high-latency accesses to privileged registers are nor-
mally queued to avoid stalls and allow overlapped ex-
ecution. However, this queue is of limited size (8 en-
tries on Itanium 2); only one result can be returned per
cycle, and the results compete with loads for writeback

resources. Moreover, accesses to the particularly slow
registers (timestamp counter, interrupt control and per-
formance monitoring registers) can only be issued every
6 cycles.

A case study of minimising stalls resulting from la-
tencies in system code is given in Section 5.3.

3 Memory-Management Unit

3.1 Address translation and protection

As mentioned earlier, the memory-management unit
(MMU) of the Itanium has a number of unusual features.
The mechanics of address translation and access-right
lookup are schematically shown in Figure 2. The top
three bits of the 64-bit virtual address form the virtual
region number, which is used to index into a set of eight
region registers (RRs) which contain region IDs.

The remaining 61 bits form the virtual page num-
ber (VPN) and the page offset. Itanium 2 supports a
wide range of page sizes, from 4kB to 4GB. The VPN
is used together with the region ID to perform a fully-
associative lookup of the translation lookaside buffer
(TLB). The region ID serves as a generalisation of the
address-space ID (ASID) tags found on many RISC pro-
cessors.

Like an ASID, the region ID supports the co-existence
of mappings from different contexts without causing
aliasing problems, but in addition allows for simple shar-
ing of pages on a per-region basis: if two processes have
the same region ID in one of their RRs, they share all
mappings in that region. This provides a convenient
way for sharing text segments, if one region is reserved
for program code and a separate region ID is associated
with each executable. Note that if region IDs are used
for sharing, the processes not only share pages, but ac-
tually share the TLB entries mapping those pages. This
helps to reduce TLB pressure.

A more unusual feature of the Itanium TLB is the pro-
tection key tag on each entry (which is a generalisation of
the protection-domain identifiers of the PA-RISC [24]).
If protection keys are enabled, then the key field of the
matching TLB entry is used for an associative lookup of
another data structure, a set of protection key registers
(PKRs). The PKR contains a set of access rights which
are combined with those found in the TLB to determine
the legality of the attempted access. This can be used to
implement write-only mappings (write-only mode is not
supported by the rights field in the TLB).

Protection keys can be used to share individual (or sets
of) pages with potentially different access rights. For ex-
ample, if two processes share a page, one process with
read-write access, the other read-only, then the page can
be marked writable in the TLB, and given a protection
key. In the one process’s context, the rights field in the

2005 USENIX Annual Technical Conference USENIX Association268



Region ID Key Virtual Page # (VPN) Rights Physical Page # (PPN)

Translation Lookaside Buffer (TLB)

Region ID

Region Registers

Key Rights Protection
Key Registers

Virtual Address

Physical Page # (PPN)

Physical Address

Offset

Search Search

Search

Index Virtual
Page # (VPN)Virtual Region # (VRN)

Figure 2: Itanium address translation and memory protection.

corresponding PKR would be set to read-write, while for
the other process it would be set to read-only. The pro-
cesses again share not only the page but also the actual
TLB entries. The OS can even use the rights field in
the TLB to downgrade access rights for everybody, e.g.
for implementing copy-on-write, or for temporarily dis-
abling all access to the page.

3.2 Page tables
The Itanium has hardware support for filling the TLB by
walking a page table called the virtual hashed page ta-
ble (VHPT). There are actually two hardware-supported
page-table formats, called the short-format and long-
format VHPT respectively. The hardware walker can
also be completely turned off, requiring all TLB reloads
to be done in software (from an arbitrary page table
structure).

Turning off the hardware walker is a bad idea. We
measured the average TLB refill cost in Linux to be
around 45 cycles on an Itanium 2 with the hardware
walker enabled, compared to around 160 cycles with the
hardware walker disabled. A better way of supporting
arbitrary page table formats is to use the VHPT as a
hardware-walked software TLB [2] and reload from the
page table proper on a miss.

Figure 3 shows the format and access of the two types
of page table. The short-format VHPT is, name notwith-
standing, a linear virtual array page table [5, 12] that
is indexed by the page number and maps a single re-
gion, hence up to eight are required per process, and the
size of each is determined by the page size. Each page
table entry (PTE) is 8 bytes (one word) long. It con-
tains a physical page number, access rights, caching at-

tributes and software-maintained present, accessed and
dirty bits, plus some more bits of information not rele-
vant here. A region ID need not be specified in the short
VHPT, as it is implicit in the access (each region uses a
separate VHPT).

The page size is also not specified in the PTE, instead
it is taken from the preferred page size field contained
in the region register. This implies that when using the
short VHPT, the hardware walker can be used for only
one page size per region. Non-default page-sizes within
a region would have to be handled by (slower) software
fills.

The PTE also contains no protection key, instead the
architecture specifies that the protection key is taken
from the corresponding region register (and is therefore
the same as the region ID, except that the two might be
of different length). This makes it impossible to specify
different protection keys in a region if the short-format
VHPT is used. Hence, sharing TLB entries of selected
(shared) pages within a region is not possible with this
page table format.

The long VHPT is a proper hashed page table, indexed
by a hash of the page number. Its size can be an arbitrary
power of two (within limits), and a single table can be
used for all regions. Its entries are 32 bytes (4 words)
long and contain all the information of the short VHPT
entries, plus a page-size specification, a protection key,
a tag and a chain field. Hence, the long VHPT supports
a per-page specification of page size and protection key.
The tag field is used to check for a match on a hashed ac-
cess and must be generated by specific instructions. The
chain field is ignored by the hardware and can be used
by the operating system to implement overflow chains.

2005 USENIX Annual Technical Conference USENIX Association 269



VPN

64 bits

VPN

Hash

PPN PPN

Tag

PKEY psize

Chain

4 x 64 bits

Short Format Long Format

Global VHPTPer−region VHPT

Figure 3: Short and long VHPT formats.

3.3 VHPT tradeoffs

The advantage of the short VHPT is that its entries are
compact and highly localised. Since the Itanium’s L1
cache line size is 64 bytes, a cache line can hold 8 short
entries, and as they form a linear array, the mappings for
neighbouring pages have a high probability of lying in
the same cache line. Hence, locality in the page working
set translates into very high locality in the PTEs, and the
number of data cache lines required for PTEs is small.

In contrast, a long VHPT entry is four times as big,
and only two fit in a cache line. Furthermore, hashing
destroys locality, and hence the probability of two PTEs
sharing a cache line is small, unless the page table is
small and the page working set large (a situation which
will result in collisions and expensive software walks).
Hence, the long VHPT format tends to be less cache-
friendly than the short format.

The long-format VHPT makes up for this by being
more TLB friendly. For the short format, at least three
TLB entries are generally required to map the page ta-
ble working set of each process, one for code and data,
one for shared libraries and one for the stack. Linux in
fact, typically uses three regions for user code, and thus
will require at least that many entries for mapping a sin-
gle process’s page tables. In contrast, a process’s whole
long-format VHPT can be mapped with a single large
superpage mapping. Furthermore, a single long-format
VHPT can be shared between all processes, reducing
TLB entry consumption for page tables from ≥ 3 per
process to one per CPU.

This tradeoff is likely to favour the short-format
VHPT in cases where TLB pressure is low, i.e., where
the total page working set is smaller than the TLB ca-
pacity. This is typically the case where processes have
mostly small working sets and context switching rates
are low to moderate. Many systems are likely to operate
in that regime, which is the reason why present Linux
only supports the short VHPT format.

The most important aspect of the two page table for-
mats is that the short format does not support many of
the Itanium’s MMU features, in particular hardware-
loaded mixed page sizes (superpages) within a region.
Superpages have been shown to lead to significant per-
formance improvements [17] and given the overhead of
handling TLB-misses in software, it is desirable to take
advantage of the hardware walker. As Linux presently
uses the short-format VHPT, doing so would require a
switch of the VHPT format first. This raises the question
whether the potential performance gain might be offset
by a performance loss resulting from the large page-table
format.

3.4 Evaluation
We did a comparison of page-table formats by imple-
menting the long-format VHPT in the Linux 2.6.6 ker-
nel. We ran the lmbench [15] suite as well as Suite IX
of the aim benchmark [1], and the OSDL DBT-2 bench-
mark [18]. Tests were run on a HP rx2600 server with
dual 900MHz Itanium-2 CPUs. The processors have
three levels of on-chip cache. The L1 is a split instruc-
tion and data cache, each 16kB, 4-way associative with a
line size of 64 bytes and a one-cycle hit latency. The L2
is a unified 256kB 8-way associative cache with 128B
lines and a 5 cycle hit latency. The L3 is 1.5MB large,
6-way associative, with a 128B line size and 12 cycles
hit latency. The memory latency with the HP zx1 chipset
is around 100 cycles.

The processors have separate fully-associative data
and instruction TLBs, each structured as two-level
caches with 32 L1 and 128 L2 entries. Using 16kB
pages, the per-CPU long-format VHPT was sized at
16MB in our experiments, being four times the size
needed to map the entire 2G physical memory.

The results for the lmbench process and file-
operation benchmarks are uninteresting. They show that
the choice of page table has little impact on performance.
This is not very surprising, as for these benchmarks there
is no significant space pressure on either the CPU caches
or the TLB.

Somewhat more interesting are the results of the lm-
bench context-switching benchmarks, shown in Ta-
ble 1. Here the long-format page table shows some no-
ticeable performance advantage with a large number of
processes but small working sets (and consequently high
context-switching rates). This is most likely a result of
the long-format VHPT reducing TLB pressure. The per-
formance of the two systems becomes equal again when
the working sets increase, probably a result of the bet-
ter cache-friendliness of the short-format page table, and
the reduced relative importance of TLB miss handling
costs.

The other lmbench runs as well as the aim bench-

2005 USENIX Annual Technical Conference USENIX Association270



Context switching with 0K
2proc 4proc 8proc 16proc 32proc 64proc 96proc

U 0.98 1.00 0.95 0.88 0.98 1.44 1.34
M 0.94 0.96 0.95 0.96 1.23 1.30 1.27

Context switching with 4K
2proc 4proc 8proc 16proc 32proc 64proc 96proc

U 0.97 0.99 0.97 0.95 1.17 1.20 1.09
M 0.95 0.61 0.78 0.87 1.11 1.13 1.09

Context switching with 8K
2proc 4proc 8proc 16proc 32proc 64proc 96proc

U 0.99 0.98 0.96 0.97 1.31 1.17 1.08
M 0.95 0.91 0.96 1.00 1.29 1.15 1.06

Context switching with 16K
2proc 4proc 8proc 16prc 32prc 64prc 96prc

U 0.99 0.98 0.96 0.97 1.31 1.17 1.08
M 0.95 0.91 0.96 1.00 1.29 1.15 1.06

Context switching with 32K
2proc 4proc 8proc 16prc 32prc 64prc 96prc

U 0.98 0.99 1.04 1.30 1.04 1.03 1.00
M 0.94 0.96 1.00 1.01 0.87 1.00 1.00

Context switching with 64K
2proc 4proc 8proc 16prc 32prc 64prc 96prc

U 1.00 0.98 0.94 0.94 1.00 1.00 1.00
M 0.97 0.98 1.06 1.22 0.94 0.99 0.98

Table 1: Lmbench context-switching results. Numbers
indicate performance with a long-format VHPT relative
to the short-format VHPT: a figure > 1.0 indicates bet-
ter, < 1.0 worse performance than the short-format page
table. Lines marked “U” are for a uniprocessor kernel,
while “M” is the same for a multiprocessor kernel (on a
two-CPU system).

mark results were similarly unsurprising and are omit-
ted for space reasons. Complete results can be found in
a technical report [4].

The SPEC CPU2000 integer benchmarks, AIM7 and
lmbench show no cases where the long-format VHPT
resulted in significantly worse performance than the
short-format VHPT, provided the long-format VHPT is
sized correctly (with the number of entries equal to four
times the number of page frames).

We also ran OSDL’s DBT-2 benchmark, which em-
ulates a warehouse inventory system. This benchmark
stresses the virtual memory system — it has a large res-
ident set size, and has over 30 000 TLB misses per sec-
ond. The results show no significant performance differ-
ence at an 85% confidence level — for five samples, the
long format VHPT gave 400(6) transactions per minute,
and the short format page table gave 401(4) transactions
per minute (standard deviation in the parentheses).

We also investigated TLB entry sharing, but found no
significant benefits with standard benchmarks [4].

Based on these experiments, we conclude that long-
format VHPT can provide performance as good or better
than short-format VHPT. Given that long-format VHPT
also enables hardware-filled superpages and TLB-entry-
sharing across address-spaces, we believe it may very
well make sense to switch Linux to the long-format
VHPT in the future.

4 Virtualisation
Virtualisability of a processor architecture [20] generally
depends on a clean separation between user and system
state. Any instructions that inspect or modify the sys-
tem state (sensitive instructions) must be privileged, so
that the VMM can intervene and emulate their behaviour
with respect to the simulated machine. Some exceptions
to this may be permissible where the virtual machine
monitor can ensure that the real state is synchronised
with the simulated state.

In one sense Itanium is simpler to virtualise than
IA-32, since most of the instructions that inspect or
modify system state are privileged by design. It seems
likely that the original Itanium designers believed in this
clear separation of user and system state which is nec-
essary for virtualisation. Sadly, a small number of non-
virtualisable features have crept into the architecture, as
we discovered in our work on the vNUMA distributed
virtual machine [3]. Some of these issues were also en-
countered by the authors of vBlades [14], a recent virtual
machine for the Itanium architecture.

The cover instruction creates a new empty regis-
ter stack frame, and thus is not privileged. However,
when executed with interruption collection off (inter-
ruption collection controls whether execution state is
saved to the interruption registers on an exception), it
has the side-effect of saving information about the previ-
ous stack frame into the privileged interruption function
state (IFS) register. Naturally, it would not be wise for a
virtual machine monitor to actually turn off interruption
collection at the behest of the guest operating system,
and when the simulated interruption collection bit is off,
there is no way for it to intercept the cover instruction
and perform the side-effect on the simulated copy of IFS.
Hence, cover must be replaced with an instruction that
faults to the VMM, either statically or at run time.

The thash instruction, given an address, calculates
the location of the corresponding hashtable entry in the
VHPT. The ttag instruction calculates the correspond-
ing tag value. These instructions are, for some reason,
unprivileged. However, they reveal processor memory
management state, namely the pagetable base, size and
format. When the guest OS uses these instructions, it
obtains information about the real pagetables instead of
its own pagetables. Therefore, as with cover, these in-
structions must be replaced with faulting versions.

2005 USENIX Annual Technical Conference USENIX Association 271



Virtual memory semantics also need to be taken into
account, since for a virtual machine to have reasonable
performance, the majority of virtual memory accesses
need to be handled by the hardware and should not trap
to the VMM. For the Itanium architecture, most features
can be mapped directly. However, a VMM will need to
reserve some virtual address space (at least for excep-
tion handlers). One simple way to do this is to report a
smaller virtual address space than implemented on the
real processor, thereby ensuring that the guest operating
system will not use certain portions. On the other hand,
the architecture defines a fixed number of privilege lev-
els (0 to 3). Since the most privileged level must be re-
served for the VMM, this means that the four privilege
levels in the guest must be mapped onto three real priv-
ilege levels (a common technique known as ring com-
pression). This means there may be some loss of protec-
tion, though most operating systems do not use all four
privilege levels.

The Itanium architecture provides separate control
over instruction translation, data translation and register-
stack translation. For example, it is possible to have
register-stack translation on (virtual) and data translation
off (physical). There is no way to efficiently replicate
this in virtual mode, since register-stack references and
data references access the same virtual address space.

Finally, if a fault is taken while the register-stack en-
gine is filling the current frame, the RSE is halted and the
exception handler is executed with an incomplete frame.
As soon as the exception handler returns, the RSE re-
sumes trying to load the frame. This poses difficulties if
the exception handler needs to return to the guest kernel
(at user-level) to handle the fault.

Future Itanium processors will have enhanced virtual-
isation support known as Vanderpool Technology. This
provides a new processor operating mode in which sen-
sitive instructions are properly isolated. Additionally,
this mode is designed so as to allow the guest operat-
ing system to run at its normal privilege level (0) with-
out compromising protection, negating the need for ring
compression. Vanderpool Technology also provides fa-
cilities for some of the virtualisation to be handled in
hardware or firmware (virtualisation acceleration). In
concert these features should provide for simpler and
more efficient virtualisation. Nevertheless, there remain
some architectural features which are difficult to virtu-
alise efficiently and require special treatment, in partic-
ular the translation modes and the RSE issue described
above.

5 Case studies
In this section we present three implementation studies
which we believe are representative of the approaches
that need to be taken to develop well-performing sys-

tems software on Itanium. The first example, implemen-
tation of signals in Linux, illustrates that Itanium fea-
tures (in this case, the large register file) lead to differ-
ent tradeoffs from these on other architectures. The sec-
ond example investigates the use of the fast system-call
mechanism in Linux. The third, micro-optimisation of a
fast system-call path, illustrates the challenges of EPIC
(and the cost of insufficient documentation).

5.1 Efficient signal delivery
In this section we explore a technique to accelerate sig-
nal delivery in Linux. This is an exercise in intelli-
gent state-management, necessitated by the large regis-
ter file of the Itanium processor, and relies heavily on
exploiting the software conventions established for the
Itanium architecture [8]. The techniques described here
not only improved signal-delivery performance on Ita-
nium Linux, but also simplified the kernel.

In this section we use standard Itanium terminology.
We use scratch register to refer to a caller-saved register,
i.e., a register whose contents is not preserved across a
function-call. Analogously, we use preserved register
to refer to a callee-saved register, i.e., a register whose
contents is preserved across a function-call.

5.1.1 Linux signal delivery
The canonical way for delivering a signal in Linux con-
sists of the following steps:

• On any entry into the kernel (e.g., due to system
call, device interrupt, or page-fault), Linux saves
the scratch registers at the top of the kernel-stack in
a structure called pt regs.

• Right before returning to user level, the kernel
checks whether the current process has a signal
pending. If so, the kernel:

1. saves the contents of the preserved regis-
ters on the kernel-stack in a structure called
switch stack (on some architectures, the
switch stack structure is an implicit part
of pt regs but for the discussion here, it’s
easier to treat it as separate);

2. calls the routine to deliver the signal, which
may ignore the signal, terminate the process,
create a core dump, or arrange for a signal
handler to be invoked.

The important point here is that the combination
of the pt regs and switch stack structures con-
tain the full user-level state (machine context). The
pt regs structure obviously contains user-level state,
since it is created right on entry to the kernel. For the
switch stack structure, this is also true but less ob-
vious: it is true because at the time the switch stack
structure is created, the kernel stack is empty apart from

2005 USENIX Annual Technical Conference USENIX Association272



preserved
registers

(user state)

user stack

kernel stack

1

4

sigcontext

switch_stack

prepare for
signal delivery

return
to user 2

invoke
signal

handler

3
return
from

signal

pt_regs

Figure 4: Steps taken during signal delivery

the pt regs structure. Since there are no intermediate
call frames, the preserved registers must by definition
contain the original user-level state.

Signal-delivery requires access to the full user-level
state for two reasons:

1. if the signal results in a core dump, the user-level
state needs to be written to the core file;

2. if the signal results in the invocation of a signal han-
dler, the user-level state needs to be stored in the
sigcontext structure.

5.1.2 Performance Considerations

The problem with the canonical way of delivering a sig-
nal is that it entails a fair amount of redundant moving
of state between registers and memory. For example, as
illustrated in Figure 4, the preserved registers:

1. get saved on the kernel stack in preparation for sig-
nal delivery

2. get copied to the user-level stack in preparation for
invoking a signal handler

3. get copied back to the kernel stack on return from a
signal-handler

4. need to be restored from the kernel-stack upon re-
turning execution to user level.

On architectures with small numbers of architected reg-
isters, redundant copying of registers is not a big issue,
particularly since their contents is likely to be hot in the
cache anyway. However, with Itanium’s large register
file, the cost of copying registers can be high.

When faced with this challenge, we decided that
rather than trying to micro-optimise the moving of the
state, a better approach would be to avoid the redundant
moves in the first place. This was helped by the follow-
ing observations:

• For a core dump, the preserved registers can be re-
constructed after the fact with the help of a kernel-
stack unwinder. Specifically, when the kernel needs
to create a core dump, it can take a snapshot of
the current registers and then walk the kernel stack.
In each stack frame, it can update the snapshot
with the contents of the registers saved in that stack
frame. When reaching the top of the kernel-stack,
the snapshot contains the desired user-level state.

• There is no inherent reason for saving the preserved
registers in the sigcontext structure. While
it is customary to do so, there is nothing in the
Single-UNIX Specification [19] or the POSIX stan-
dard that would require this. The reason it is not
necessary to include the preserved registers in the
sigcontext structure is that the signal handler
(and its callees) automatically save preserved regis-
ters before using them and restore them before re-
turning. Thus, there is no need to create a copy of
these registers in the sigcontext structure. In-
stead, we can just leave them alone.

In combination, these two observations make it possible
to completely eliminate the switch stack structure
from the signal subsystem.

We made this change for Itanium Linux in Decem-
ber 2000. At that time, there was some concern about
the existence of applications which rely on having the
full machine-state available in sigcontext and for
this reason, we left the door open for a user-level
compatibility-layer which would make it appear as if the
kernel had saved the full state [16]. Fortunately, in the
four years since making the change, we have not heard
of a need to activate the compatibility layer.

To quantify the performance effect of saving only the
minimal state, we forward-ported the original signal-
handling code to a recent kernel (v2.6.9-rc3) and found
it to be 23–34% slower. This relative slowdown var-
ied with kernel-configuration (uni- vs. multi-processor)
and chip generation (Itanium vs. Itanium 2). The abso-
lute slowdown was about 1,400 cycles for Itanium and
700 cycles for Itanium 2. We should point out that, had
it not been for backwards-compatibility, sigcontext
could have been shrunk considerably and fewer cache-
lines would have to be touched during signal delivery.
In other words, in a design free from compatibility con-
cerns, the savings could be even bigger.

Table 2 shows that saving the minimal state yields
signal-delivery performance that is comparable to other
architectures: even a 1GHz Itanium 2 can deliver signals
about as fast as a 2.66GHz Pentium 4.

Apart from substantially speeding up signal delivery,
this technique (which is not Itanium-specific) simplified
the kernel considerably: it eliminated the need to main-
tain the switch stack in the signal subsystem and

2005 USENIX Annual Technical Conference USENIX Association 273



SMP UP
Chip cycles µs cycles µs

Itanium 2 1.00 GHz 3,087 3.1 2,533 2.5
Pentium 4 2.66 GHz 8,320 3.2 6,500 2.4

Table 2: Signalling times with Linux kernel v2.6.9-rc3.
(SMP = multiprocessor kernel, UP = uniprocessor kernel)

Dynamic Static
System Call break epc break epc
getpid() 294 18 287 12
getppid() 299 77 290 54
gettimeofday() 442 174 432 153

Table 3: Comparison of system call costs (in cycles) us-
ing the standard (break) and fast (epc) mechanism,
both with dynamically and statically linked binaries

removed all implicit dependencies on the existence of
this structure.

5.2 Fast system-call implementation

5.2.1 Fast system calls in Linux
As discussed in Section 2.3, Itanium provides gate pages
and the epc instruction for getting into kernel mode
without a costly exception. Here we discuss the prac-
ticalities of using this mechanism in Linux.

After executing the epc instruction, the program is
executing in privileged mode, but still uses the user’s
stack and register-backing store. These cannot be trusted
by the kernel, and therefore such a system call is very
limited, until it loads a sane stack and RSE backing-store
pointer. This is presently not supported in Linux, and
thus the fast system-call mechanism is restricted by the
following conditions:

• the code cannot perform a normal function call
(which would create a new register stack frame and
could lead to a spill to the RSE backing store);

• the code must not cause an exception, because nor-
mal exception handling spills registers. This means
that all user arguments must be carefully checked,
including checking for a possible NaT consumption
exception (which could normally be handled trans-
parently).

As a result, fast system calls are presently restricted
to handcrafted assembly language code, and function-
ality that is essentially limited to passing data between
the kernel and the user. System calls fitting those re-
quirements are inherently short, and thus normally dom-
inated by the exception overhead, so good candidates for
implementing in an exception-less way.

So far we implemented the trivial system
calls getpid() and getppid(), and the

somewhat less trivial gettimeofday(), and
rt sigprocmask(). The benefit is significant,
as shown in Table 3: we see close to a factor of
three improvement for the most complicated system
call. The performance of rt sigprocmask()
is not shown. Currently glibc does not implement
rt sigprocmask(), so it is not possible to make a
meaningful comparison.

5.3 Fast message-passing implementation

Linux, owing to its size and complexity, is not the best
vehicle for experimenting with fast system calls. The
L4 microkernel [11] is a much simpler platform for
such work, and also one where system-call performance
is much more critical. Message-passing inter-process
communication (IPC) is the operation used to invoke
any service in an L4-based system, and the IPC oper-
ation is therefore highly critical to the performance of
such systems. While there is a generic (architecture-
independent) implementation of this primitive, for the
common (and fastest) case it is usually replaced in each
port by a carefully-optimised architecture-specific ver-
sion. This so-called IPC fast path is usually written
in assembler and tends to be of the order of 100 in-
structions. Here we describe our experience with micro-
optimising L4’s IPC operation.

5.3.1 Logical control flow

The logical operation of the IPC fast path is as follows,
assuming that a sender invokes the ipc() system call
and the receiver is already blocked waiting to receive:

1. enter kernel mode (using epc);
2. inspect the thread control blocks (TCBs) of source

and destination threads;
3. check that fast path conditions hold, otherwise call

the generic “slow path” (written in C++);
4. copy message (if the whole message does not fit in

registers);
5. switch the register stack and several other registers

to the receiver’s state (most registers are either used
to transfer the message or clobbered during the op-
eration);

6. switch the address space (by switching the page ta-
ble pointer);

7. update some state in the TCBs and the pointer to
the current thread;

8. return (in the receiver’s context).

The original implementation of this operation (a com-
bination of C++ code, compiled by GCC 3.2, and some
assembly code to implement context switching) exe-
cuted in 508 cycles with hot caches on an Itanium-2 ma-
chine. An initial assembler fast path to transfer up to 8
words, only loosely optimised, brought this down to 170

2005 USENIX Annual Technical Conference USENIX Association274



56 BACK_END_BUBBLE.ALL
30 BE_EXE_BUBBLE.ALL

16 BE_EXE_BUBBLE.GRALL
14 BE_EXE_BUBBLE.ARCR

15 BE_L1D_FPU_BUBBLE.ALL
10 BE_L1D_FPU_BUBBLE.L1D_DCURECIR
5 BE_L1D_FPU_BUBBLE.L1D_STBUFRECIR

11 BE_RSE_BUBBLE.ALL
4 BE_RSE_BUBBLE.AR_DEP
6 BE_RSE_BUBBLE.LOADRS
1 BE_RSE_BUBBLE.OVERFLOW

Figure 5: Breakdown of bubbles provided by the PMU.

cycles. While this is a factor of three faster, it is still on
the high side; on RISC architectures the operation tends
to take 70–150 cycles [13].1

5.3.2 Manual optimisation
An inspection of the code showed that it consisted of
only 83 instruction groups, hence 87 cycles were lost to
bubbles. Rescheduling instructions to eliminate bubbles
would potentially double performance!

An attempt at manual scheduling resulted not only in
an elimination of bubbles, but also a reduction of the
number of instruction groups (mostly achieved by rear-
ranging the instructions to make better use of the avail-
able instruction templates). The result was 39 instruc-
tion groups executing in 95 cycles. This means that there
were still 56 bubbles, accounting for just under 60% of
execution time.

The reason could only be that some instructions had
latencies that were much higher than expected. Unfortu-
nately, Intel documentation contains very little informa-
tion on instruction latencies, and did not help us further.

Using the perfmon utility [6] to access Itanium’s per-
formance monitoring unit (PMU) we obtained the break-
down of the bubbles summarised in Figure 5. The data
in the figure is to be read as follows: 56 bubbles were
recorded by the counter back end bubble.all.
This consists of 30 bubbles for be exe bubble.all,
15 bubbles for be l1d fpu bubble.all and 11
bubbles for be rse bubble.all. Each of these is
broken down further as per the figure.

Unfortunately, the Itanium 2 Processor Reference
Manual [9] is not very helpful here, it typically gives a
one-line summary for each PMU counter, which is insuf-
ficient to understand what is happening. What was clear,
however, was the register stack engine was a significant
cause of latency.

5.3.3 Fighting the documentation gap
Register-stack-engine stalls In order to obtain the in-
formation required to optimise the code further, we saw

no alternative to systematically measuring the latencies
between any two instructions which involve the RSE.
The results of those measurements are summarised in
Table 4. Some of those figures are surprising, with some
seemingly innocent instructions having latencies in ex-
cess of 10 cycles. Thus attention to this table is impor-
tant when scheduling RSE instructions.

Using Table 4 we were able to reschedule in-
structions such that almost all RSE-related bub-
bles were eliminated, that is, all of the ones
recorded by counters be exe bubble.arcr
and be rse bubble.ar dep, plus most of
be rse bubble.loadrs. In total, 23 of the 25
RSE-related bubbles were eliminated, resulting in a
total execution time of 72 cycles. The remaining 2
bubbles (from loadrs and flushrs instructions) are
unavoidable (see Section 2.4.2).

System-instruction latencies Of the re-
maining 31 bubbles, 16 are due to counter
be exe bubble.grall. These relate to gen-
eral register scoreboard stalls, which in this case result
from accesses to long-latency registers such as the
kernel register that is used to hold the current thread
ID. Hence we measured latencies of system instructions
and registers. For this we used a modified Linux kernel,
where we made use of gate pages to execute privileged
instructions from a user-level program. The modified
Linux kernel allows user-space code to create gate pages
using mprotect(). Executing privileged instructions
from user-level code greatly simplified taking the
required measurements.

Our results are summarised in Table 5. Fortunately,
register latencies are now provided in the latest version
of the Itanium 2 Processor Reference Manual [9], so they
are not included in this table. Unlike the RSE-induced
latencies, our coverage of system-instruction latencies
is presently still incomplete, but sufficient for the case
at hand. Using this information we eliminated the 16
remaining execution-unit-related bubbles, by scheduling
useful work instead of allowing the processor to stall.

Data-load stalls This leaves 15 bubbles
due to data load pipeline stalls, counted as
be l1d fpu bubble.l1d dcurecir and
be l1d fpu bubble.l1d stbufrecir. The
Itanium 2 Processor Reference Manual explains the
former as “back-end was stalled by L1D due to DCU
recirculating” and the latter as “back-end was stalled
by L1D due to store buffer cancel needing recirculate”,
which is hardly enlightening. We determined that the
store buffer recirculation was most likely due to address
conflicts between loads and stores (a load following a
store to the same cache line within 3 cycles), due to the
way we had scheduled loads and stores in parallel. Even

2005 USENIX Annual Technical Conference USENIX Association 275



From To cyc PMU counter
mov ar.rsc= RSE AR 13 BE RSE BUBBLE.AR DEP
mov ar.bspstore= RSE AR 6 BE RSE BUBBLE.AR DEP
mov =ar.bspstore mov ar.rnat= 8 BE EXE BUBBLE.ARCR
mov =ar.bsp mov ar.rnat= 8 BE EXE BUBBLE.ARCR
mov =ar.rnat/ar.unat mov ar.rnat/ar.unat= 6 BE EXE BUBBLE.ARCR
mov ar.rnat/ar.unat= mov =ar.rnat/ar.unat 6 BE EXE BUBBLE.ARCR
mov =ar.unat FP OP 6 BE EXE BUBBLE.ARCR
mov ar.bspstore= flushrs 12 BE RSE BUBBLE.OVERFLOW
mov ar.rsc= loadrs 12 BE RSE BUBBLE.LOADRS
mov ar.bspstore= loadrs 12 BE RSE BUBBLE.LOADRS
mov =ar.bspstore loadrs 2 BE RSE BUBBLE.LOADRS
loadrs loadrs 8 BE RSE BUBBLE.LOADRS

Table 4: Experimentally-determined latencies for all combinations of two instructions involving the RSE. RSE AR
means any access to one of the registers ar.rsc, ar.bspstore, ar.bsp, or ar.rnat.

From To cyc PMU counter
epc ANY 1 -

bsw ANY 6 BE RSE BUBBLE.BANK SWITCH

rfi ANY 13 BE FLUSH BUBBLE.BRU (1),

BE FLUSH BUBBLE.XPN (8),

BACK END BUBBLE.FE (3)

srlz.d ANY 1 -

srlz.i ANY 12 BE FLUSH BUBBLE.XPN (8),

BACK END BUBBLE.FE (3)

sum/rum/mov psr.um= ANY 5 BE EXE BUBBLE.ARCR

sum/rum/mov psr.um= srlz 10 BE EXE BUBBLE.ARCR

ssm/rsm/mov psr.l= srlz 5 BE EXE BUBBLE.ARCR

mov =psr.um/psr srlz 2 BE EXE BUBBLE.ARCR

mov pkr/rr= srlz/sync/fwb/ 14 BE EXE BUBBLE.ARCR

mf/invala M0

probe/tpa/tak/thash/ttag USE 5 BE EXE BUBBLE.GRALL

Table 5: Experimentally-determined latencies for system instructions (incomplete). ANYmeans any instruction, while
USE means any instruction consuming the result.

after eliminating this, there were still DCU recirculation
stalls remaining.

While investigating this we noticed a few other undoc-
umented features of the Itanium pipeline. It seems that
most application register (AR) and control register (CR)
accesses are issued to a limited-size buffer (of apparently
8 entries), with a “DCS stall” occurring when that buffer
is full. No explanation of the acronym “DCS” is given
in the Itanium manuals. It also seems that a DCU recir-
culation stall occurs if a DCS data return coincides with
two L1 data-cache returns, which points to a limitation
in the number of writeback ports. We also found that a
DCU recirculation stall occurs if there is a load or store
exactly 5 cycles after a move to a region register (RR)
or protection-key register (PKR). These facts allowed us
to identify the remaining stalls, but there may be other
cases as well.

We also found a number of undocumented special
split-issue cases. Split issue occurs after srlz, sync
and mov =ar.unat and before mf instructions. It also
occurs between a mov =ar.bsp and any B-unit instruc-
tion, as well as between an M-unit and an fwb instruc-
tion. There may be other cases.

We also found a case where the documentation on
mapping of instruction templates to functional units
is clearly incorrect. The manual says “MAMLI −

MSMAI gets mapped to ports M2 M0 I0 – M3 M1 I1.
If MS is a getf instruction, a split issue will occur.”
However, our experiments show that the mapping is re-
ally M1 M0 I0 – M2 M3 I1, and no split issue occurs
in this case. It seems that in general the load subtype is
allocated first.

2005 USENIX Annual Technical Conference USENIX Association276



Version cycles inst. grps bubbles
C++ generic 508 231 277
Initial asm 170 83 87
Optimised 95 39 56
Final 36 33 3
Optimal 34 32 2
Archit. limit 9 9 0

Table 6: Comparison of IPC path optimisation, starting
with the generic C++ implementation. Optimised refers
to the version achieved using publicly available docu-
mentation, final denotes what was achieved after system-
atically measuring latencies. Optimal is what could be
achieved on the present hardware with perfect instruc-
tion scheduling, while the architectural limit assumes
unlimited resources and only single-cycle latencies.

5.3.4 Final optimisation

Armed with this knowledge we were able to eliminate
all but one of the 15 data-load stalls, resulting in only 3
bubbles and a final execution time of 36 cycles, or 24ns
on a 1.5GHz Itanium 2. This is extremely fast, in fact
unrivalled on any other architecture. In terms of cycle
times this is about a factor of two faster than the fastest
RISC architecture (Alpha 21264) to which the kernel has
been ported so far, and in terms of absolute time it is well
beyond anything we have seen so far. This is a clear
indication of the excellent performance potential of the
Itanium architecture.

The achieved time of 36 cycles (including 3 bubbles)
is actually still slightly short of the optimal solution on
the present Itanium. The optimal solution can be found
by examining the critical path of operations, which turns
out to be 34 cycles (including 2 unavoidable bubbles for
flushrs and loadrs). Significant manual reschedul-
ing the code would (yet again) be necessary to achieve
this 2 cycle improvement.

The bottlenecks preventing optimisation past 34 cy-
cles are the kernel register read to obtain the current
thread ID, which has a 12 cycle latency, and the latency
of 12 cycles between mov ar.bspstore= (chang-
ing the RSE backing store pointer) and the following
loadrs instruction. Also, since many of the instruc-
tions are system instructions which can only execute on
a particular unit (M2), the availability of that unit be-
comes limiting. Additionally, it seems to be impossible
to avoid a branch misprediction on return to user mode,
as the predicted return address comes from the return
stack buffer, but the nature of IPC is that it returns to a
different thread. Eliminating those latencies would get
us close to the architectural limit of Itanium, which is
characterised as having unlimited resources (functional
units) and only single-cycle latencies. This limit is a

mind-boggling 9 cycles! The achieved and theoretical
execution times are summarised in Table 6.

The almost threefold speedup from 95 to 36 cycles
made a significant difference for the performance of
driver benchmarks within our component system. It
would not have been possible without the powerful per-
formance monitoring support on the Itanium processor,
particularly the ability to break down stall events. The
PMU allowed us to discover and explain all of the stalls
involved.

This experience also helped us to appreciate the chal-
lenges facing compiler writers on Itanium. Without in-
formation such as that of Tables 4 and 5 it is impossi-
ble to generate truly efficient code. A compiler could
use this information to drive its code optimisation, elim-
inating the need for labour-intensive hand-scheduled as-
sembler code. Present compilers seem to be far away
from being able to achieve this. While we have not anal-
ysed system-call code from other operating systems to
the same degree, we would expect them to suffer from
the same problems, and benefit from the same solutions.
However, system-call performance is particularly criti-
cal in a microkernel, owing to the high frequency of ker-
nel invocations.

6 Conclusion
As has been shown, the Itanium is a very interesting plat-
form for systems programming. It presents a number of
unusual features, such as its approach to address trans-
lation and memory protection, which are creating a new
design space for systems builders.

The architecture provides plenty of challenges too, in-
cluding managing its large register set efficiently, and
overcoming hurdles to virtualisation. However, the most
significant challenge of the architecture to systems im-
plementors is the more mundane one of optimising the
code. The EPIC approach has proven a formidable chal-
lenge to compiler writers, and almost five years after
the architecture was first introduced, the quality of code
produced by the available compilers is often very poor
for systems code. Given this time scale, the situation is
not likely to improve significantly for quite a number of
years.

In the meantime, systems implementors who want to
tap into the great performance potential of the architec-
ture have to resort to hand-tuned assembler code, written
with a thorough understanding of the architecture and
its complex instruction scheduling rules. Performance
improvements by factors of 2–3 are not unusual in this
situation, and we have experienced cases where perfor-
mance could be improved by an order of magnitude over
GCC-generated code.

Such manual micro-optimisation is made harder by
the unavailability of sufficiently detailed documentation.

2005 USENIX Annual Technical Conference USENIX Association 277



This, at least, seems be something the manufacturer
should be able to resolve quickly.

Acknowledgements

This work was supported by a Linkage Grant from the
Australian Research Council (ARC) and a grant from
HP Company via the Gelato.org project, as well as hard-
ware grants from HP and Intel. National ICT Australia
is funded by the Australia Government’s Department of
Communications, Information Technology, and the Arts
and the ARC through Backing Australia’s Ability and the
ICT Research Centre of Excellence programs.

We would also like to thank UNSW Gelato staff Ian
Wienand and Darren Williams for their help with bench-
marking.

Notes

1. The results in [13] were obtained kernels that were not
fully functional and are thus somewhat optimistic. Also
the processors used had shorter pipelines than modern
high-end CPUs and hence lower hardware-dictated con-
text switching costs. The figure of 70–150 cycles reflects
(yet) unpublished measurements performed in our lab on
optimised kernels for ARM, MIPS, Alpha and Power 4.

References
[1] Aim benchmarks. http://sourceforge.net/

projects/aimbench.

[2] Kavita Bala, M. Frans Kaashoek, and William E. Weihl.
Software prefetching and caching for translation looka-
side buffers. In Proc. 1st OSDI, pages 243–253, Mon-
terey, CA, USA, 1994. USENIX/ACM/IEEE.

[3] Matthew Chapman and Gernot Heiser. Implementing
transparent shared memory on clusters using virtual ma-
chines. In Proc. 2005 USENIX Techn. Conf., Anaheim,
CA, USA, Apr 2005.

[4] Matthew Chapman, Ian Wienand, and Gernot Heiser. Ita-
nium page tables and TLB. Technical Report UNSW-
CSE-TR-0307, School Comp. Sci. & Engin., University
NSW, Sydney 2052, Australia, May 2003.

[5] Douglas W. Clark and Joel S. Emer. Performance of the
VAX-11/780 translation buffer: Simulation and measure-
ment. Trans. Comp. Syst., 3:31–62, 1985.

[6] HP Labs. Perfmon. http://www.hpl.hp.com/
research/linux/perfmon/.

[7] Jerry Huck, Dale Morris, Jonathan Ross, Allan Knies,
Hans Mulder, and Rumi Zahir. Introducing the IA-64
architecture. IEEE Micro, 20(5):12–23, 2000.

[8] Intel Corp. Itanium Software Conventions
and Runtime Architecture Guide, May 2001.
http://developer.intel.com/design/
itanium/family.

[9] Intel Corp. Intel Itanium 2 Processor Reference Man-
ual, May 2004. http://developer.intel.com/
design/itanium/family.

[10] Intel Corp. Vanderpool Technology for the Intel Itanium
Architecture (VT-i) Preliminary Specification , Jan 2005.
http://www.intel.com/technology/vt/.

[11] L4Ka Team. L4Ka::Pistachio kernel. http://l4ka.
org/projects/pistachio/.

[12] Henry M. Levy and P. H. Lipman. Virtual memory
management in the VAX/VMS operating system. IEEE
Comp., 15(3):35–41, Mar 1982.

[13] Jochen Liedtke, Kevin Elphinstone, Sebastian
Schönberg, Herrman Härtig, Gernot Heiser, Nay-
eem Islam, and Trent Jaeger. Achieved IPC performance
(still the foundation for extensibility). In Proc. 6th
HotOS, pages 28–31, Cape Cod, MA, USA, May 1997.

[14] Daniel J. Magenheimer and Thomas W. Christian.
vBlades: Optimised paravirtualisation for the Itanium
processor family. In Proc. 3rd Virtual Machine Research
& Technology Symp., pages 73–82, 2004.

[15] Larry McVoy and Carl Staelin. lmbench: Portable tools
for performance analysis. In Proc. 1996 USENIX Techn.
Conf., San Diego, CA, USA, Jan 1996.

[16] David Mosberger and Stéphane Eranian. IA-64 Linux
Kernel: Design and Implementation. Prentice Hall, 2002.

[17] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan
Cox. Practical, transparent operating system support for
superpages. In Proc. 5th OSDI, Boston, MA, USA, Dec
2002.

[18] Open Source Development Labs. Database Test Suite.
http://www.osdl.org/lab_activities/
kernel_testing/osdl_database_test_
suite.

[19] OpenGroup. The Single UNIX Specification
version 3, IEEE std 1003.1-2001. http:
//www.unix-systems.org/single_unix_
specification/, 2001.

[20] Gerald J. Popek and Robert P. Goldberg. Formal re-
quirements for virtualizable third generation architec-
tures. Comm. ACM, 17(7):413–421, 1974.

[21] Ryan Rakvic, Ed Grochowski, Bryan Black, Murali An-
navaram, Trung Diep, and John P. Shen. Performance ad-
vantage of the register stack in Intel Itanium processors.
In 2nd Workshop on EPIC Architectures and Compiler
Technology, Istambul, Turkey, Nov 2002.

[22] John W. Sias, Matthew C. Merten, Erik M. Nystrom,
Ronald D. Barnes, Christopher J. Shannon, Joe D.
Matarazzo, Shane Ryoo, Jeff V. Olivier, and Wen-mei
Hwu. Itanium performance insights from the IMPACT
compiler, Aug 2001.

[23] SPARC International Inc., Menlo Park, CA, USA. The
SPARC Architecture Manual, Version 8, 1991. http:
//www.sparc.org/standards.html.

[24] John Wilkes and Bart Sears. A comparison of protection
lookaside buffers and the PA-RISC protection architec-
ture. Technical Report HPL-92-55, HP Labs, Palo Alto,
CA, USA, Mar 1992.

2005 USENIX Annual Technical Conference USENIX Association278




