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Abstract
Applications that use large data sets frequently exhibit

poor performance because the size of their working set
exceeds the real memory, causing excess page faults, and
ultimately exhibit thrashing behavior.

This paper describes a memory compression solution
to this problem that adapts the allocation of real memory
between uncompressed and compressed pages and also
manages fragmentation without user involvement. The
system manages its resources dynamically on the basis
of the varying demands of each application and also on
the situational requirements that are data dependent. The
technique used to localize page fragments in the com-
pressed area allows the system to reclaim or add space
easily if it is advisable to shrink or grow the size of the
compressed area.

The design is implemented in Linux, runs on both 32-
bit and 64-bit architectures, and has been demonstrated
to work in practice under complex workload conditions
and memory pressure. The benefits from our approach
depend on the relationship between the size of the com-
pressed area, the application’s compression ratio, and the
access pattern of the application. For a range of bench-
marks and applications, the system shows an increase in
performance by a factor of 1.3 to 55.

1 Introduction

Many applications require more main memory to hold
their data than a typical workstation contains. Although
the amount of main memory in a workstation has in-
creased with declining prices for semiconductor memo-
ries, application developers have even more aggressively
increased their demands. Unfortunately, an application
must resort to swapping (and eventually, thrashing) when
the amount of physical memory is less than what the ap-
plication (resp. its working set) requires. Substantial disk
activity eliminates any benefit that is obtained from in-
creased processor speed. Since the access time of a disk

continues to improve more slowly than the cycle time
of processors, techniques to improve the performance of
the memory system are of great interest to many applica-
tions.

Compression has been used in many settings to in-
crease the effective size of a storage device or to increase
the effective bandwidth, and other researchers have pro-
posed to integrate compression into the memory hierar-
chy. The basic idea of a compressed-memory system is
to reserve some memory that would normally be used di-
rectly by an application and use this memory region in-
stead to hold pages in compressed form. By compressing
some of the data space, the effective memory size avail-
able to the applications is made larger and disk accesses
are avoided. However, since some of the main mem-
ory holds compressed data, the applications have effec-
tively less uncompressed memory than would be avail-
able without compression.

The potential benefits of main memory compression
depend on the relationship between the size of the
compressed area, an application’s compression ratio,
and an application’s access pattern. Because accesses to
compressed pages take longer than accesses to uncom-
pressed pages, compressing too much data decreases an
application’s performance. If an application accesses
its data set such that compression does not save enough
accesses to disk, or if its pages do not compress well,
compression will show no benefit. Therefore, building
the core of a system that adaptively finds the size of
the compressed area that can improve an application’s
performance is difficult, and despite its potential to
improve the performance of many applications, main
memory compression is considered only by few applica-
tion developers.

This paper presents an adaptive compressed-memory
system designed to improve the performance of applica-
tions with very large data sets (compression affects only
the data area). The adaptive resizing scheme finds the op-
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timal size of the compressed area automatically. Because
the system must be effective under memory pressure, it
uses a simple resizing scheme, which is a function of the
number of free blocks in the compressed area (this factor
captures an application’s access pattern as well). For a
set of benchmarks and large applications, measurements
show that the compressed area size found by our resiz-
ing scheme is among those that improve performance the
most.

We allocate and manage the compressed area such that
it can be resized easily, without paying a lot to move live
fragments around. The key idea is to keep compressed
pages in zones; the use of zones impose some locality
on the blocks of a compressed page, such that the system
can easily reclaim or add a zone if it is advisable to shrink
or grow the compressed area size.

We examine three simulators that have different access
patterns: a model checker, a network simulator, and a
car traffic simulator. Depending on their input, the sim-
ulators allocate between a few MB and several GB. In
this paper, we experiment with inputs that allocate be-
tween 164 MB and 2.6 GB. The measurements show that
memory compression provides enough memory to these
classes of applications to finish their execution on a sys-
tem with a physical memory smaller than is required to
execute without thrashing, and execution proceeds sig-
nificantly faster than if no compression was used.

Because most of the application developers are mainly
interested in a design that works with a stock processor
and a commodity PC, we restrict the changes to the soft-
ware system. The compressed-memory system described
here is implemented as a kernel module and patches that
hook into the Linux kernel to monitor system activity
and control the swap-in and swap-out operations. By re-
stricting the changes to the software system, we can use
compression only for those applications that benefit from
it. The compressed-memory prototype runs on 32-bit as
well as on 64-bit architectures.

Integrating transparent adaptive memory into an op-
erating system raises a number of questions. The de-
sign presented here has been demonstrated to work in
practice. By choosing a suitable system structure, it is
possible to allow the memory system to adapt its size in
response to application requirements (an essential prop-
erty for a transparent system), and by choosing a sim-
ple interface to the base operating system, it is possible
to limit kernel interaction (essential for acceptance by a
user community).

2 Related Work

Several researchers have investigated the use of com-
pression to reduce paging by introducing a new level
into the memory hierarchy. The key idea, first sug-

gested by Wilson [15], is to hold evicted pages in com-
pressed form in a compressed area, and intercept page
faults to check whether the requested page is available
in compressed form before a disk access is initiated.
The compressed-memory systems can be classified in
software- and hardware-based approaches. Since we
want our solution to work with stock hardware, we con-
sider only software-based approaches. For a description
of the hardware-based approaches, we refer the inter-
ested reader to a study by Alameldeen and Wood [3].

The software-based approaches can be either adap-
tive or static. The adaptive approaches vary the
size of the compressed area dynamically, and are ei-
ther implementation- or simulation-based investigations.
Douglis’ early paper [7] adapts the compressed area size
based on a global LRU scheme. However, as Kaplan [10]
shows latter, Douglis’ adaptive scheme might have been
maladaptive. Douglis implemented his adaptive scheme
in Sprite and showed that compression can both improve
(up to 62.3%) and decrease (up to 36.4%) an applica-
tion’s performance. Castro et al. [6] adapt the com-
pressed area size depending on whether the page would
be uncompressed or on disk if compression was not used.
The main drawback of their scheme is that it must ana-
lyze every access to the compressed area, and although
the approach may work well for small applications, it
may not be feasible for large applications with frequent
data accesses. The authors implemented their scheme
in Linux and report performance improvements of up to
171% for small applications. Wilson and Kaplan [16, 10]
resize the compressed area based on recent program be-
havior. The authors maintain a queue of referenced pages
ordered by their recency information. The main draw-
back of their scheme is that it is based on information
(about all pages in the system) that cannot be obtained
on current systems; the authors use only simulations to
validate their solution. Moreover, as the physical mem-
ory size increases, the size of the page queue increases
as well, making this approach unsuitable for applications
running on systems with large memories.

Static approaches use fixed sizes of the compressed
area. Although these studies are useful to assess the ben-
efits of memory compression, they fail to provide a so-
lution that works for different system settings and appli-
cations. Cervera et al. [4] present a design implemented
in Linux that increases an application’s performance by
a factor of up to 2 relative to an uncompressed swap sys-
tem. Nevertheless, on a system with 64 MB physical
memory, only 4 MB are allocated to the compressed data,
and this small area may not suffice for programs with
large working sets. Kjelso et al. [11, 12] use simulations
to demonstrate the efficacy of main memory compres-
sion. The authors develop a performance model to quan-
tify the performance impact of a software- and hardware-
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based compression system for a number of DEC-WRL
workloads. Their results show that software-based com-
pression improves system performance by a factor of 2
and hardware-based compression improves performance
by up to an order of magnitude.

RAM Doubler is a technology that expands the mem-
ory size for Mac OS [2]. It locates small chunks of
RAM that applications aren’t actively using and makes
that memory available to other applications. Moreover,
RAM Doubler finds RAM that isn’t likely to be accessed
again, and compresses it. Finally, if all else fails, the
system swaps seldom accessed data to disk. Although
RAM Doubler allows the user to open more applications
together, the user cannot run applications with memory
footprints that exceed the physical memory size. Our
work tries to provide enough memory to large applica-
tions so that they can run to completion when their mem-
ory requirements exceed the physical memory size.

3 Design

A compressed-memory system divides the main mem-
ory into two areas: one area holds uncompressed pages
and the other area (compressed area) holds pages in com-
pressed form. When an application’s working set ex-
ceeds the uncompressed area size, parts of the data set
are compressed and stored in the compressed area. When
even the compressed area becomes filled, parts of the
compressed data are swapped to disk. On a page fault,
the system checks for the faulted page in the compressed
area before going to the disk, servicing the page from
that area if it is there and saving the cost of a disk access.

The key idea of our compressed-memory design is to
organize the compressed area in zones of the same size
that are linked in a zone chain, as shown in Figure 1.
As the size of the compressed area grows and shrinks,
zones are added and removed from the chain. The system
uses a hash table for tracking all pages that are stored
in the compressed area. If a page is in the compressed
area, its entry in the hash table points to the zone that
stores its compressed data. Moreover, the system uses
a global double-linked LRU list for storing the recency
information of all compressed pages. LRU first and LRU
last identify the first and last page in the LRU list.

A zone has physical memory to store compressed data
and structures to manage the physical memory. A zone’s
physical data and its structures are allocated/deallocated
when a zone is added/deleted. To keep fragmentation as
low as possible, a zone’s physical memory is divided in
blocks of the same size. A compressed page is stored as
a list of blocks that are all within the same zone. Each
zone uses a block table for keeping track of its blocks and
their usage information. Furthermore, each zone uses a
comp page table for mapping compressed pages to their
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Figure 1: Birdseye view of the compressed-memory sys-
tem design.

data blocks, as shown in Figure 2. The number of entries
in comp page table gives the maximum number of com-
pressed pages that can be stored in a zone, and is equal
with a compression factor multiplied with the number of
pages that can be stored in a zone if no compression is
used. The following subsections elaborate on how pages
are stored and found in the compressed area, as well as
how the compressed area is resized.

3.1 Page Insert and Delete

When a page is evicted from the uncompressed area, it
is compressed and stored in a compression buffer. The
system searches for the first zone that has enough blocks
to store the compressed page (the allocation is basically
the first-fit algorithm). The system selects a zone from
the zone chain and uses the used field of the zone struc-
ture to check the number of free blocks in that zone (see
Figure 2). If the number of free blocks is insufficient to
store the compressed page, another zone is selected and
the test is repeated. If the zone has sufficient free blocks,
the system uses the free entry field of the zone structure
to select an entry in the comp page table. All free en-
tries are linked using the next field and the free entry field
identifies the first element in the list. The selected entry
will store information about the new compressed page.

After a zone to store the compressed page is found,
the system selects as many blocks as needed to store the
compressed data. The system traverses the list of free
blocks (whose beginning is identified by the free block
field) and selects the necessary number of free blocks.
All free blocks are linked in a chain by their next field in
the block table. The value of the free block field of the
zone structure is updated to point to the block follow-
ing the last block selected. The compressed page is now
copied into the selected blocks, and the first field of the
selected entry is set to point to the first block that stores
the compressed page. The selected blocks are still linked
by their next field, and therefore all the blocks that store a
compressed page are linked in a chain. The values of the
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swap handle and the size of the compressed page are also
set. The LRU next and previous fields of the selected en-
try are now set, and LRU first and LRU last are updated.

The system computes the index of the new compressed
page in the hash table. All entries that map to the same
index (hash value) are linked in a chain stored in the next
field of their entries in the comp page table. The first el-
ement in the chain is identified by the value stored in the
hash table. The new compressed page is inserted at the
beginning of the chain and its hash table entry is updated.

On a page fault, the system uses the hash table to
check whether the faulted page is in the compressed area.
If the page is compressed, it is decompressed, its blocks
are added to the free list of blocks, its entry in the comp
page table can be reused, the zone structure and the hash
table entry are updated. If the page is not in the com-
pressed area (does not have an entry in the hash table), it
is brought from disk into the uncompressed memory.

Because pages are not scattered over multiple zones,
when a page is inserted or deleted, the system does not
have to keep track of multiple zones that store a page’s
data. Moreover, when a zone is deleted, the system
must not deal with pages that are partially stored in other
zones. Therefore, by storing all the blocks of a com-
pressed page within a single zone, we avoid the scat-
ter/gather problem encountered by Douglis [7].

3.2 Interface to the Backing Store

When the compressed area becomes (almost) filled, its
LRU pages are sent to disk, and the number of free com-
pressed pages is kept above a configurable threshold. Al-
though it is possible to transfer variable-size compressed
pages to and from disk, implementing variable-size I/O
transfers requires many changes to the OS [7]. To take
advantage of the swap mechanism implemented in the
OS, we choose to store uncompressed pages on the disk.
Moreover, if the page is stored in compressed form, the
next time this page is swapped in, it must be first decom-
pressed before it can be used. Therefore, to lower the
latency of a future access and to employ the OS swap-
ping services, we decompress a page before sending it to
disk.

3.3 Resizing the Compressed Area

The system presented here grows and shrinks the com-
pressed area while applications execute. The resizing de-
cision is based on the amount of data in the compressed
area. The system monitors the compressed area utiliza-
tion. When the amount of memory in the compressed
area is above a high threshold, the compressed region
is grown by adding a zone. When the amount of mem-
ory used is below a low threshold, the compressed area

is shrunk by deleting a zone. As long as the amount of
memory used is above the low threshold and bellow the
high threshold, the size of the compressed area remains
the same.

All the zones in the system are linked in the zone
chain, and new zones are added at the end of the chain.
When a page is inserted in the compressed area, it is
stored in the first zone from the beginning of the zone
chain that has enough space to store the compressed data.
To shrink the compressed area, the system deletes the
zone with the smallest number of blocks used (to keep
the overhead as low as possible). The compressed pages
within the zone to be deleted are relocated within other
zones (using again the first-fit algorithm). When the free
space within other zones is too small to store the pages
to be relocated, some compressed pages are swapped to
disk. To grow the compressed area, the system allo-
cates space for a new zone. Because the OS may not
have enough free space for the new zone, some uncom-
pressed pages will be compressed and stored in com-
pressed form. At that time, some compressed pages may
be swapped to disk to make room for the newly com-
pressed pages. (The LRU order is always preserved.)

4 Implementation

In this section, we give an overview of our implementa-
tion of the compressed-memory system in Linux. We use
Yellow Dog Linux 3.0.1 (YDL) that is built on the 2.6.3
Linux kernel and provides 64-bit support for the Apple
G5 machines. The prototype works on both 32-bit and
64-bit architectures, and we installed it on a Pentium 4
PC and on a G5 machine. Although the discussion of our
solution is necessarily OS-specific, the issues are gen-
eral.

Our design is implemented as a loadable module,
along with hooks in the operating system to call module
functions at specific points. These points are swapping
in pages, swapping out pages, and deactivating a swap
area. We use a hierarchy of locks and semaphores to
protect our code against race conditions. The prototype
implements four de/compression algorithms commonly
used to de/compress in-memory data: WKdm, WK4x4,
LZRW1, and LZ0 [16]. The implementation comprises
of about 5,000 lines of C code.

We implemented a performance monitor that collects
information about large applications and decides whether
to turn on compression. The tool resizes the compressed
area dynamically. This tool is implemented in user-space
and uses a small library to interact with the kernel mod-
ule. The implementation of the monitor and library com-
prises of about 1,200 lines of C code.
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Figure 2: Detailed view of the compressed-memory system design.

4.1 Compressed-Memory Allocation

A kernel module can allocate only kernel memory and is
not involved in handling segmentation and paging (since
the kernel offers a unified memory management inter-
face to drivers). In Linux, the kmalloc() function
allocates a memory region that is contiguous in physi-
cal memory. Nevertheless, the maximum memory size
that can be allocated by kmalloc() is 128 KB [13].
Therefore, when dealing with large amounts of memory
a module uses the vmalloc() function to allocate non-
contiguous physical memory in a contiguous virtual ad-
dress space. Unfortunately, also the memory size that
can be allocated by vmalloc() is limited, as discussed
in the next paragraph.

The Linux kernel splits its address space in two parts:
user space and kernel space [8]. On x86 and SPARC
architectures, 3 GB are available for processes and the
remaining of 1 GB is always mapped by the kernel. (The
kernel space limit is 1 GB because the kernel may di-
rectly address only memory for which it has set up a
page table entry.) From this 1 GB, the first 8 MB are
reserved for loading the kernel image to run, as shown
in Figure 3. After the kernel image, the mem map ar-
ray is stored and its size depends on the amount of avail-
able memory. In low-memory systems (systems with less
than 896 MB), the remaining amount of virtual address
space (minus a 2 page gap) is used by the vmalloc()
function, as shown in Figure 3.a. For illustration, on a
Pentium 4 with 512 MB of DRAM, a module can al-
locate about 400 MB. In high-memory systems, which
are systems with more than 896 MB, the vmalloc re-
gion is followed by the kmap region (an area reserved
for the mapping of high-memory pages into low mem-
ory) and the area for fixed virtual address mappings, as
shown in Figure 3.b. On a system with a lot of memory,
the size of the mem map array can be significant, and
not enough memory is left for the other regions. As the
kernel needs these regions, on x86 the vmalloc area, the

kmap area, and the area for fixed virtual address map-
ping is defined to be at least 128 MB; this area is denoted
by VMALLOC RESERVE at minimum. For illustration,
on a Pentium 4 with 1 GB of DRAM, a module can al-
locate 100 MB. Nevertheless, for applications with large
memory footprints, a compressed area of 10% is insuf-
ficient. 64-bit architectures aren’t as limited in memory
usage as 32-bit architectures; a module can allocate 2TB
on a 64-bit PowerPC that runs Linux in 64-bit mode.

Because vmalloc() is a flexible mechanism to al-
locate large amounts of data in kernel space, we use
vmalloc() to allocate memory for the entire com-
pressed area: for the hash table, physical memory, zone
structure, comp page table, and block table.

To allow off-line configuration, we have also imple-
mented a compressed-memory system that uses the big-
physarea patch [1] to allocate very large amounts of
memory to the compressed data. This unofficial patch
has been floating around the Net for years; it is so
renowned and useful that some distributions apply it to
the kernel images they install by default. The patch basi-
cally allocates memory at boot time and makes it avail-
able to device drivers at runtime. Although boot-time
allocation is inelegant and inflexible, it is the only way to
bypass the limits imposed by the 32-bit architecture on
the size of the vmalloc region [13].

4.2 Compressed-Memory Page Daemon

The compressed-memory page daemon (kcmswapd)
is responsible for swapping out pages, so that we
have some free memory in the compressed area. The
kcmswapd kernel thread is started when memory com-
pression is enabled and is activated on compressed-
memory pressure. kcmswapd is started after the deci-
sion to shrink the compressed area is taken. The dae-
mon swaps out enough compressed pages to make space
for the pages stored within the zone to be deleted (these
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pages have to be relocated within and/or outside the com-
pressed area). Moreover, kcmswapd makes space for
the uncompressed pages that have to be swapped out to
make space for the new zone when the compressed area
grows.

5 Evaluation

We select a set of benchmarks and applications that have
different memory requirements and access patterns. We
conduct a set of experiments to determine how much
can a system win from employing memory compression,
how much can it lose, and how good the adaptive resizing
scheme is.

We use Yellow Dog Linux 3.0.1 (YDL) in 32-bit mode
to experiment with benchmarks and applications that run
on 32-bit architectures. The system used is a Pentium
4 at 2.6 GHz with a 8 KB L1 data cache, 512 KB L2
cache and 1 GB DRAM; this PC has its swap partition
on a IC35L060AVV207-0 ATA disk. Given the mem-
ory usage limitations of the 32-bit architectures, to ex-
periment with applications that need compressed areas
larger than 100 MB we use an Apple G5 machine that
runs YDL in 64-bit mode. The Apple G5 has a dual
64-bit PowerPC 970 microprocessor at 1.8 GHz with a
32 KB L1 data cache, 512 KB L2 cache (per processor)
and 1 GB or 1.5 GB DRAM, and has its swap partition
on a ST3160023AS ATA disk. For all experiments, we
use the WKdm compression algorithm as it shows supe-
rior performance over other algorithms [16]. The sys-
tems have a block size of 128 bytes, a zone size of 4 MB,
and a compression factor of 4. (A compression factor of
4 means that the system can store 4 times more pages
within a zone than if no compression was used.)

5.1 Synthetic Benchmarks

The first benchmark shows how much can memory com-
pression degrade system performance. The benchmark,
called thrasher, pays the cost of compressing pages with-

out gaining any benefit. The benchmark cycles linearly
through its working set reading and writing the whole
data space. Because Linux uses an LRU algorithm for
page replacement, if thrasher’s working set doesn’t fit in
memory, it takes a page fault on each page each time it
iterates through the working set. Moreover, each page
fault requires a disk read as well as a page write to make
room for the faulted page, and we have also the overhead
of compressing pages. Because of its access pattern,
thrasher will always require pages from disk and will
never fault on compressed pages. We set the thrasher’s
working set size to 1.2 GB and we measure its execution
time when the size of the physical memory is 1 GB and
the compressed area has fixed sizes between 50 MB and
100 MB; thrasher has a compression ration of 50% (or
1:2), which is common for many applications. For this
set-up the benchmark executes up to 3 times slower than
without compression on the Apple G5 and up to 2 times
slower on the Pentium 4 PC.

Programs that use dynamic memory allocation access
their data through pointers, and hence have irregular ac-
cess patterns. To investigate the performance of such an
application (e.g., written in C++) we use a second bench-
mark, called rand. The advantage of the benchmark over
a real application is that its memory footprint and number
of data accesses can be changed easily. The benchmark
reads and writes its data set randomly and has a compres-
sion ration of 50%. We consider three variants that allo-
cate 1.2 GB, 1.4 GB, and 1.8 GB and access their data
sets 200,000, 1,200,000, and 6,000,000 times; we exe-
cute the benchmark on an Apple G5 with 1 GB physical
memory. The three variants finish execution in 538.62
sec, 5,484.75 sec, and 47,617.38 sec. When we apply our
adaptive compression technique to these variants their
performance improves by a factor of 3.66, 11.88, and
18.96; the compressed area size found by the resizing
scheme is 64 MB, 96 MB, and 140 MB.
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Memory W/o compr. W/ compr.
available sec slowdown sec speedup

100% 6 - 6 -
97% 10 1.66 16 0.62
92% 16 2.66 65 0.24
87% 403 67.16 391 1.03
85% 1,307 217.83 450 3.22
82% 2,431 405.16 791 3.07
80% 3,601 600.16 1,175 3.06
78% 4,645 774.16 1,433 3.24
75% 5,649 941.50 1,609 3.51
73% 8,789 1,464.83 2,177 4.03

Table 1: Execution time of nodes 2 4 3 model on a Pen-
tium 4 PC at 2.6 GHz.

5.2 Applications

5.2.1 Symbolic Model Verifier

SMV is a method based on Binary Decision Diagrams
(BDDs) used for formal verification of finite state sys-
tems. We use Yang’s SMV implementation since it
demonstrated superior performance over other imple-
mentations [17]. We choose different SMV inputs that
model the FireWire protocol [14]. SMV’s working set is
equal to its memory footprint (SMV uses all the mem-
ory it allocates during its execution rather than a small
subset) and has a compression ratio of 52% on average.

We consider an SMV model, nodes 2 4 3, with a
small memory footprint of 164 MB, to explore the lim-
itations of compressed memory. An application with
such a small footprint is unlikely to require compres-
sion but allows us to perform many experiments. We
conduct the first set of experiments on the Pentium 4
PC at 2.6 GHz. We configure the system such that the
amount of memory available is 97% to 73% of mem-
ory allocated. The measurements are summarized in Ta-
ble 1, column “W/o compr.” and show that when physi-
cal memory is smaller than SMV’s working set, SMV’s
performance is degraded substantially. In the next set of
experiments, SMV executes on the adaptive compressed-
memory system. The measurements are summarized in
Table 1, column “W/ compr.”, and indicate that when the
amount of memory available is 87% to 73% of memory
allocated, our adaptive compression technique increases
performance by a factor of up to 4. The measurements
also show that for this small application when the mem-
ory shortage is not big enough (memory available is 97%
to 92% of memory allocated), taking away space from
the SMV model for the compressed area will slowdown
the application.

We repeat the experiments on the Apple G5 that has
a different architecture and a 1.8 GHz processor, and

Memory W/o compr. W/ compr.
available sec slowdown sec speedup

100% 10 - 10 -
97% 37 3.7 32 1.15
92% 47 4.7 71 0.66
87% 290 29 1,045 0.27
85% 1,212 121 1,270 0.95
82% 2,165 216 1,382 1.56
80% 3,290 329 1,508 2.18
78% 4,900 490 1,670 2.93
75% 5,650 565 1,931 2.92
73% 6,780 678 2,233 3.03

Table 2: Execution time of nodes 2 4 3 model on an Ap-
ple G5 at 1.8 GHz.

we summarize the results in Table 2. (Different DRAM
chips we use have a negligible influence of 0.02% on
an application’s performance.) The results for the adap-
tive set-up, summarized in column “W/ compr.”, indi-
cate that when SMV executes on the G5 machine with
the compressed-memory system described here, SMV’s
performance improves by a factor of up to 3. Overall,
the results indicate that on a slow machine (Apple G5),
compression improves performance for a smaller range
of configurations than on a fast machine (Pentium 4 at
2.6 GHz). The measurements confirm other researchers’
results: on older machines memory compression can in-
crease system performance by a factor of up to 2 relative
to an uncompressed swap system [4, 12, 6]. Moreover,
our measurements show that memory compression be-
comes more attractive as the processor speed increases.

5.2.2 NS2 Network Simulator

NS2 is a network simulator used to simulate different
protocols over wired and wireless networks. We choose
different inputs that simulate the AODV protocol over a
wireless network. NS2’s working set is smaller than its
memory footprint (it uses only a small subset of its data
at any one time) and has a compression ratio of 20% (or
1:5) on average. The amount of memory allocated by a
NS2 simulation is determined by the number of nodes
simulated, and the size of the memory used is given by
the number of traffic connections that are simulated.

We consider two simulations that allocate 880 MB and
1.5 GB. We configure the system such that the amount
of memory provided is less than memory allocated, and
we measure the simulations’ execution time and com-
pute their slowdown. The results are summarized in Ta-
ble 3, column “W/o compr.”, and show that when mem-
ory available is 68% to 43% of memory allocated, NS2
executes slightly slower than normal. When we apply
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Working Memory W/o compr. W/ compr.
set size available sec sec speedup

Pentium 4 at 2.6 GHz
730 MB 70% 145 128 1.13
880 MB 58% 205 168 1.22
990 MB 51% 275 197 1.39

G5 at 1.8 GHz
730 MB 70% 243 226 1.07
880 MB 58% 345 252 1.36
990 MB 51% 398 319 1.23

Table 4: NS2 execution time on an adaptive compressed-
memory system.

our compression technique to NS2 executing with the
same reduced memory allocation, its performance im-
proves by a factor of up to 1.4. The measurements for the
adaptive set-up are summarized in Table 3, column “W/
compr.”. The results show that because NS2 allocates a
large amount of data but uses only a small subset of its
data at any one time, compression does not improve per-
formance much, but fortunately, compression does not
hurt either.

The second set of experiments uses inputs that allo-
cate 730 MB, 880 MB, and 990 MB. We execute the
selected simulations on a system with and without com-
pression when memory available is 70%, 68%, and 51%
of memory allocated, and we summarize the results in
Table 4. The data in column “W/ compr.” show that
because NS2’s working set is small (smaller than mem-
ory allocated) and fits into small memories, compression
does not improve NS2’s performance much. Overall, the
measurements show that on the faster Pentium 4 PC com-
pression improvements are slightly bigger than on the
slower G5 machine.

5.2.3 qsim Traffic Simulator

qsim [5] is a motor vehicle traffic simulator that employs
a queue to model the behavior of varying traffic condi-
tions. Although a simulation can be distributed on many
computers (e.g., a cluster), the simulation requires hosts
with memory sizes bigger than 1 GB. For a geographic
region, the number of travelers (agents) simulated deter-
mine the amount of memory allocated to the simulation
and the number of (real) traffic hours being simulated
gives the execution time of the simulation.

We consider simulations that allocate 1.3 GB, 1.7 GB,
1.9 GB, and 2.6 GB and simulate the traffic on the road
network of Switzerland. We measure the execution time
of these simulations on the G5 machine without com-
pression and with adaptive compression, and we summa-
rize the results in Table 5. The system has a block size

of 128 bytes, a zone size of 4 MB, and a compression
factor of 9. The results in column “W/ compr.” show that
when qsim executes on our compressed-memory system,
its performance improves by a factor of 20 to 55. qsim’s
working set is equal to its memory footprint (during its
execution, qsim uses all the memory it allocates), and has
a compression ratio of 10% (or 1:10) on average. Be-
cause qsim compresses so well, even when the amount
of memory provided is much smaller than memory al-
located, the simulation fits into the uncompressed and
compressed memory and finishes its execution in a rea-
sonable time. For instance, although the last simulation
listed in Table 5 allocates 2.6 GB, it succeeds to finish its
execution on a system with only 1 GB physical memory,
and this would not be possible without compression.

We repeat the simulation that allocates 1.9 GB on the
Pentium 4 PC with 1 GB physical memory. On an Ap-
ple G5 with 1 GB physical memory the system allocates
140 MB to the compressed data, but on the Pentium 4 PC
the compressed area can be 100 MB at most. The mea-
surements show that because the Pentium 4 PC fails to
allocate enough memory to the compressed data, the sim-
ulation executes 8.5 times slower than on the Apple G5
(although the Pentium 4 processor is faster than the Pow-
erPC processor). This experiment shows the importance
of a flexible OS support: if the amount of memory that
can be allocated in kernel mode was not limited, main
memory compression would improve the performance of
this large application considerably.

5.3 Discussion

Our analysis examines the performance of three applica-
tions and shows that compression improves the perfor-
mance for all these applications, but varies according to
the memory access behavior and also to the compression
ratio employed.

SMV and qsim use their entire working set during the
execution. When the amount of memory provided is less
than memory allocated by 10% or more, SMV executes
approximately 600 times slower than without swapping.
The measurements show that when the amount of mem-
ory available is 15% smaller than SMV’s working set,
our compression technique provides an increase in per-
formance by a factor of 3 to 4 depending on the processor
used (a factor 3 for a G5 and 4 for a Pentium 4). When
we apply our compression techniques to qsim its execu-
tion is improved by a factor of 20 to 55.

The NS2 simulator allocates a large amount of data
but uses only a small subset of its data at any one time,
and thus provides an example that is much different from
SMV. Under normal execution (without the aid of our
compression techniques) when physical memory is 40%
smaller than memory allocated, NS2’ execution is slow-

2005 USENIX Annual Technical Conference USENIX Association244



Working Memory W/o compr. W/ compr.
set size available sec slowdown sec speedup
880 MB 58% 345 1.36 252 1.36

50% 426 1.69 313 1.36
43% 586 2.32 425 1.37

1.5 GB 68% 1,335 1.11 1,275 1.04
62% 1,351 1.12 1,215 1.11

Table 3: NS2 execution time on an Apple G5 at 1.8 GHz.

Working Physical W/o compr. W/ compr.
set size memory sec sec speedup
1.3 GB 1 GB 3,993 135.45 29.47
1.7 GB 1 GB 24,580 513.66 47.85

1.5 GB 2,900 141.53 20.49
1.9 GB 1 GB 46,049 825.72 55.76

1.5 GB 11,456 277.91 41.22
2.6 GB 1 GB 51,569 988.01 52.19

1.5 GB 13,319 332.50 40.05

Table 5: qsim execution time on an Apple G5 at 1.8 GHz.

down by a factor of up to 2. When we apply our compres-
sion techniques to NS2 executing with the same reduced
memory allocation its performance improves by a factor
of up to 1.4.

5.4 Adaptivity

Previous work determines the amount of data to be com-
pressed by monitoring every access to the compressed
data [10, 16, 6]. The system keeps track of the pages that
would be anyway in memory (with and without compres-
sion) and pages that are in (compressed) memory only
because compression is turned on. The decision to shrink
or grow the compressed area is based on the number of
accesses to these two types of (compressed) pages. This
approach succeeds to detect when the size of the com-
pressed area should be zero, which is not the case with
our resizing scheme (see Table 1, column “W/ compr.”
when memory available is 97% and 92% of memory al-
located and Table 2, column “W/ compr.” when memory
available is 92%, 87%, and 85% of memory allocated).
Nevertheless, for each access to the compressed data, the
system has to check whether the page would be in mem-
ory if compression was turned off. To check this, the
system has to find the position of the page in the (LRU)
list of all compressed pages. Because to search a list of n
pages takes O(n) time in the worse case, this approach is
not feasible for applications with large data sets. We ex-
perimented with schemes that monitor each access to the
compressed data, and we found that the check operations

decrease system’s performance by a factor of 20 to 30.
To summarize, although previous resizing schemes suc-
ceed to detect when compression should be turned off,
they cannot be used for applications with large data sets.

We take a different approach and adapt the compressed
area size such that the uncompressed and compressed
memory contain most of an application’s working set.
(For this scenario most of the application’s disk accesses
are avoided.) Our approach is based on the observation
that when the compressed area is larger than an appli-
cation’s memory footprint, some space within the com-
pressed area is unused. By default, compression is turned
off and the system checks the size of memory available
periodically. If an application’s memory needs exceed a
certain threshold, compression is turned on for that appli-
cation and a zone is added to the compressed area. From
now on, the system checks the amount of compressed
data periodically and decides whether to change the size
of the compressed area.

If the amount of free memory in the compressed area
is bigger than the size of four zones, the compressed area
is shrunk by deleting a zone. If not, the system checks
whether the size of the free memory is smaller than the
size of a zone; if so, a new zone is added to the com-
pressed area. As long as the size of free compressed
memory is between the size of a zone and four zones
the compressed area size remains the same; using this
strategy we avoid resizing the compressed area too of-
ten. The values of the shrink and grow threshold are sen-
sitive to the size of an application’s working set: small
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applications that execute on systems with small memo-
ries require small threshold values (the compressed ar-
eas they require are small). For the (large) applications
we selected, we experimented with values of the shrink
threshold of three and four zones, and we found that the
performance improvements are the same. Furthermore,
when the value of the shrink threshold is bigger than the
size of four zones, the degree at which performance is
improved decreases. The decrease in performance is be-
cause the size of the compressed area found by the adap-
tive scheme grows due to the increase in free compressed
memory.

To assess the accuracy of our adaptation scheme, we
examine the performance of the qsim simulator and rand
benchmark on a system with fixed sizes of the com-
pressed area and on an adaptive compressed-memory
system. We choose these two applications because they
have different memory access behavior, different com-
pression ratio, require large sizes of the compressed area,
and finish execution in a reasonable time. We run the ex-
periments on the G5 machine that has a block size of
128 bytes and a zone size of 4 MB; the value of the
compression factor is 9 for qsim and 14 for rand. The
measurements for the qsim simulations and for the rand
benchmarks are summarized in Figure 4 and Figure 5,
and show that the size found by our resizing scheme is
among those that improve performance the most.

To sum up, our design and adaptation scheme min-
imize the number of resizing operations: the memory
system usage is checked periodically (and not at every
access to the compressed data), the compressed area is
not resized every time the system usage is checked, and
the compressed area is grown and shrunk by adding and
removing zones (and not single pages).

6 Design Tradeoffs

System performance often depends upon more than one
factor. In this section we isolate the performance effects
of each factor that influence the compressed-memory
overhead. We use the 2k design to determine the effect of
k factors, each of which has two design alternatives. We
use the 2k design because it is easy to analyze and helps
sorting out factors in the order of impact [9].

As previously described, the compressed area is based
on zones that are self contained consisting of all nec-
essary overhead data structures required to manage the
compressed memory within a zone. Because a zone
uses the block table and comp page table to manage
its compressed data (see Figure 2), the compressed-
memory overhead is the sum of the sizes of these
two data structures: overhead = sizeo f (BlockTable)+
sizeo f (CompPageTable). (Because all zones are equal
in size, all block tables and comp page tables have the

Factor Level -1 Level 1
Compr factor 4 14
Block size 64 B 1024 B
Zone size 2 MB 8 MB

Table 6: Factors and levels.

same size.) Formally, the memory overhead is given by
Eq. 1. (The number of entries in the comp page table
gives the maximum number of compressed pages that
can be stored within a zone, and can be changed by
changing the compression factor parameter.)

Eq. 1 shows that the three factors that affect the
compressed-memory overhead and need to be studied
are the compression factor (ComprFactor), block size
(BlockSize), and zone size (ZoneSize); the page size fac-
tor (PageSize) is fixed. We use the 2k factorial design
to determine the effect of the three factors (k=3) on an
application’s execution time [9]. The factors and their
level assignments for the qsim simulations are shown
in Table 6. The 2k design and the measured perfor-
mance in sec is shown in Table 7. We use the sign ta-
ble method to compute the portion of variation explained
by the three factors and their interaction, and we sum-
marize the computations in Table 8, column “qsim sim-
ulations”. The results show that most of the variation
in the performance of the qsim application is explained
by the compression factor (column “ComprFactor”) and
the interaction between the compression factor and block
size (column “ComprFactor+BlockSize”). Moreover, for
the large simulations, the measurements indicate that a
compressed-memory system with a small zone size de-
creases the performance considerably (the zone size ex-
plains more than 30% of the variation). We use the same
2k design to determine the effect of the three factors on
rand benchmark performance; the only difference is that
the two levels of the compression factor are 4 and 20.
The measurements summarized in Table 8, column “rand
benchmark”, show again that the most important factors
are the compression factor (column “ComprFactor”) and
the interaction between the compression factor and block
size (column “ComprFactor+BlockSize”). The results
also show that large applications require large zone sizes.

Let us consider an application with a high compression
ratio that executes on a system with a small compression
factor. Because the number of entries in the comp page
table is smaller than the number of compressed pages
that can be stored in a zone, some memory remains un-
used. On the other hand, a high value of the compression
factor increases the size of the comp page table unnec-
essarily. The measurements summarized in Figure 6(a)
show that a compressed-memory system improves an ap-
plication’s performance when its compression factor is
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Figure 4: qsim execution time on an Apple G5 with 1 GB physical memory for fixed sizes of the compressed area.
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Figure 5: rand execution time on an Apple G5 with 1 GB physical memory for fixed sizes of the compressed area.

overhead = 2 · sizeo f (int) · ZoneSize
BlockSize

+ sizeo f (comp page entry) ·ComprFactor · ZoneSize
PageSize

(1)
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Compr 2 MB 8 MBTest
factor 64 B 1024 B 64 B 1024 B

4 245.30 258.30 688.96 165.641.33 GB
14 147.38 253.49 144.51 152.63

4 2,229.04 1,796.98 2,803.01 552.471.77 GB
14 595.96 1,980.51 551.54 660.04

4 7,351.71 5,479.42 4,395.01 888.601.99 GB
14 954.99 6,354.63 872.34 973.74

4 7,721.11 6,340.01 3,688.07 1,055.762.66 GB
14 1,116.68 7,380.94 981.45 1,092.29

Table 7: Results of the 2k experiment. The performance of different qsim simulations is measured in sec on an Apple
G5 with 1 GB physical memory.

qsim simulations rand benchmark
1.33 GB 1.77 GB 1.99 GB 2.66 GB 1.2 GB 1.4 GB 1.8 GB

ComprFactor 23.61% 27.91% 18.50% 13.13% 33.34% 17.58% 6.01%
BlockSize 8.51% 3.06% 0.00% 1.08% 24.75% 7.46% 5.84%
ZoneSize 3.31% 8.96% 39.03% 47.99% 2.68% 22.93% 58.38%
ComprFactor+BlockSize 21.14% 37.69% 27.29% 20.90% 28.66% 36.56% 10.42%
ComprFactor+ZoneSize 11.2% 1.04% 1.00% 1.62% 1.20% 3.21% 5.25%
BlockSize+ZoneSize 21.81% 20.70% 11.08% 10.62% 1.78% 8.46% 6.00%
ComprFactor+
+Block+ZoneSize

10.42% 0.64% 3.10% 4.65% 7.58% 3.81% 8.10%

Table 8: The portion of variation explained by the three factors and their interaction.
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Figure 6: The influence of the three factors on the qsim performance. The simulations run on an Apple G5 with 1 GB
physical memory.

2005 USENIX Annual Technical Conference USENIX Association248



1.33GB
1.77GB
1.99GB
2.66GB

7

 100

 50

 150

 200

 250

 300

 350

 400

 0
4 9 14

C
om

pr
es

se
d 

ar
ea

 s
iz

e 
[M

B
]

Compression factor

(a) The compression factor influence.

1.33GB
1.77GB
1.99GB
2.66GB

64B 128B 256B 512B 1024B
 0

 50

 100

 450

 500

 400

 350

 150

 200

 250

 300

C
om

pr
es

se
d 

ar
ea

 s
iz

e 
[M

B
]

Block size [Bytes]

(b) The block size influence.

1.33GB
1.77GB
1.99GB
2.66GB

2MB

 100

 50

 200

 150

 250

 300

4MB 8MB

C
om

pr
es

se
d 

ar
ea

 s
iz

e 
[M

B
]

Zone size [MB]

 0

(c) The zone size influence.

Figure 7: The influence of the three factors on the size of the compressed area. The simulations run on an Apple G5
with 1 GB physical memory.

equal to or bigger than an application’s compression ra-
tio. Furthermore, the data in Figure 7(a) indicates that
when the compression factor is smaller than an applica-
tion’s compression ratio, also the size of the compressed
area is bigger than that which would suffice if enough
entries to address a zone’s memory were available.

The internal fragmentation of the compressed-
memory system is the sum of the unused space in the
last block of each compressed page. Because the per-
centage of unused memory in the last block increases
when the block size increases, the internal fragmenta-
tion increases as well. The measurements summarized in
Figure 6(b) show that block sizes smaller than 512 bytes
yield good performance improvements, and a block size
of 1024 bytes decreases the qsim performance for all in-
put sizes. The data in Figure 7(b) indicate that also the
size of the compressed area is influenced by the degree
of the internal fragmentation.

The results in Figure 6(c) indicate that a zone size of
4 MB improves qsim performance for the simulations
that allocate 1.33 GB and 1.77 GB, but zones larger than
4 MB are required for the simulations with large data
footprints (those that allocate 1.99 GB and 2.66 GB).
Moreover, the data in Figure 7 show that when the com-
pressed area is allocated in zones of big sizes, the amount
of compressed area grows slightly because of the zone
granularity.

To summarize, our analysis shows that a compressed-
memory system that has a high value of the compression
factor will improve performance for a wide range of ap-
plications (with different compression ratio). Measure-
ments indicate that block sizes smaller than 512 bytes
work well for the selected applications. Furthermore, as
the size of an application’ working set increases, also the
zone size should increase for compression to show max-
imum performance improvements.

7 Concluding Remarks

This paper describes a transparent and effective solution
to the problem of executing applications with large data
sets when the size of the physical memory is less than
what is required to run the application without thrash-
ing. Without a compressed-memory level in the mem-
ory hierarchy, such applications experience memory star-
vation. We describe a practical design for an adaptive
compressed-memory system and demonstrate that it can
be integrated into an existing general-purpose operating
system. The key idea is to keep compressed pages in
zones; zones impose some locality on the blocks of a
compressed page so that at a later time, the operating sys-
tem is able to reclaim a zone if it is advisable to shrink
the size of the compressed data.

We evaluated the effectiveness of our system on a
range of benchmarks and applications. For synthetic
benchmarks and small applications we observe a slow-
down up to a factor of 3; further tuning may further re-
duce this penalty. For realistic applications, we observe
an increase in performance by a factor of 1.3 to 55. The
dramatic improvements in performance are directly cor-
related to the memory access patterns of each program.
If the working set and memory footprint are strongly cor-
related, our compression technique is more effective be-
cause the effects of memory starvation are more critical
to the program’s overall performance. If the working set
is a small subset of the memory footprint, memory com-
pression improves performance but since memory star-
vation imposes a smaller impact on program execution,
its benefit is seen only during those periods of memory
starvation. The main memory compression benefits are
sustained under complex workload conditions and mem-
ory pressure, and the overheads are small.

Although the amount of main memory in a worksta-
tion has increased with declining prices for semiconduc-
tor memories, application developers have even more

2005 USENIX Annual Technical Conference USENIX Association 249



aggressively increased their demands. A compressed-
memory level is a beneficial addition to the classical
memory hierarchy of a modern operating system, and
this addition can be provided without significant effort.
The compressed-memory level exploits the tremendous
advances in processor speed that have not been matched
by corresponding increases in disk performance. There-
fore, if access times to memory and disk continue to
improve over the next decade at the same rate as they
did during the last decade (the likely scenario), software-
only compressed-memory systems are an attractive ap-
proach to improve total system performance.
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