
Comparison-based File Server Verification
Yuen-Lin Tan�, Terrence Wong, John D. Strunk, Gregory R. Ganger

Carnegie Mellon University

Abstract
Comparison-based server verification involves testing a
server by comparing its responses to those of a refer-
ence server. An intermediary, called a “server Tee,” in-
terposes between clients and the reference server, syn-
chronizes the system-under-test (SUT) to match the ref-
erence server’s state, duplicates each request for the SUT,
and compares each pair of responses to identify any dis-
crepancies. The result is a detailed view into any differ-
ences in how the SUT satisfies the client-server proto-
col specification, which can be invaluable in debugging
servers, achieving bug compatibility, and isolating per-
formance differences. This paper introduces, develops,
and illustrates the use of comparison-based server veri-
fication. As a concrete example, it describes a NFSv3
Tee and reports on its use in identifying interesting dif-
ferences in several production NFS servers and in debug-
ging a prototype NFS server. These experiences confirm
that comparison-based server verification can be a useful
tool for server implementors.

1 Introduction
Debugging servers is tough. Although the client-server
interface is usually documented in a specification, there
are often vague or unspecified aspects. Isolating speci-
fication interpretation flaws in request processing and in
responses can be a painful activity. Worse, a server that
works with one type of client may not work with another,
and testing with all possible clients is not easy.
The most common testing practices are RPC-level test
suites and benchmarking with one or more clients. With
enough effort, one can construct a suite of tests that exer-
cises each RPC in a variety of cases and verifies that each
response conforms to what the specification dictates.
This is a very useful approach, though time-consuming
to develop and difficult to perfect in the face of specifi-
cation vagueness. Popular benchmark programs, such as
SPEC SFS [15] for NFS servers, are often used to stress-
test servers and verify that they work for the clients used
in the benchmark runs.
This paper proposes an additional tool for server testing:
comparison-based server verification. The idea is sim-

�Currently works for VMware.

Unmodified

Clients

SUT

Reference

Server

Server

Tee

RPC Requests

Responses

Figure 1: Using a server Tee for comparison-based verification.
The server Tee is interposed between unmodified clients and the un-
modified reference server, relaying requests and responses between
them. The Tee also sends the same requests to the system-under-test
and compares the responses to those from the reference server. With
the exception of performance interference, this latter activity should be
invisible to the clients.

ple: each request is sent to both the system-under-test
(SUT) and a reference server, and the two responses are
compared. This can even be done in a live environment
with real clients to produce scenarios that artificial test
suites may miss. The reference server is chosen based on
the belief that it is a valid implementation of the relevant
interface specification. For example, it might be a server
that has been used for some time by many user commu-
nities. The reference server thus becomes a “gold stan-
dard” against which the SUT’s conformity can be eval-
uated. Given a good reference server, comparison-based
server verification can assist with debugging infrequent
problems, achieving “bug compatibility,” and isolating
performance differences.
This paper specifically develops the concept of
comparison-based verification of file servers via use of
a file server Tee (See Figure 1).1 A file server Tee in-
terposes on communication between clients and the ref-
erence server. The Tee automatically sets and maintains
SUT state (i.e., directories, files, etc.) to match the ref-
erence server’s state, forwards client requests to the ref-
erence server, duplicates client requests for the SUT, and
compares the two responses for each request. Only the
reference server’s responses are sent to clients, which

1The name, “server Tee,” was inspired by the UNIX tee command,
which reads data from standard input and writes it to both standard
output and one or more output files.

2005 USENIX Annual Technical Conference USENIX Association 121

makes it possible to perform comparison-based verifica-
tion even in live environments.
The paper details the design and implementation of a
NFSv3 Tee. To illustrate the use of a file server Tee,
we present the results of using our NFSv3 Tee to com-
pare several popular production NFS servers, including
FreeBSD, a Network Appliance box, and two versions
of Linux. A variety of differences are identified, includ-
ing some discrepancies that would affect correctness for
some clients. We also describe experiences using our
NFSv3 Tee to debug a prototype NFS server.
The remainder of this paper is organized as follows. Sec-
tion 2 puts comparison-based server verification in con-
text and discusses what it can be used for. Section 3 dis-
cusses how a file server Tee works. Section 4 describes
the design and implementation of our NFSv3 Tee. Sec-
tion 5 evaluates our NFSv3 Tee and presents results of
several case studies using it. Section 6 discusses addi-
tional issues and features of comparison-basedfile server
verification. Section 7 discusses related work.

2 Background
Distributed computing based on the client-server model
is commonplace. Generally speaking, this model con-
sists of clients sending RPC requests to servers and re-
ceiving responses after the server finishes the requested
action. For most file servers, for example, system calls
map roughly to RPC requests, supporting actions like file
creation and deletion, data reads and writes, and fetching
of directory entry listings.
Developing functional servers can be fairly straightfor-
ward, given the variety of RPC packages available and
the maturity of the field. Fully debugging them, how-
ever, can be tricky. While the server interface is usu-
ally codified in a specification, there are often aspects
that are insufficiently formalized and thus open to inter-
pretation. Different client or server implementors may
interpret them differently, creating a variety of de facto
standards to be supported (by servers or clients).
There are two common testing strategies for servers. The
first, based on RPC-level test suites, exercises each indi-
vidual RPC request and verifies proper responses in spe-
cific situations. For each test case, the test scaffolding
sets server state as needed, sends the RPC request, and
compares the response to the expected value. Verify-
ing that the RPC request did the right thing may involve
additional server state checking via follow-up RPC re-
quests. After each test case, any residual server state
is cleaned up. Constructing exhaustive RPC test suites
is a painstaking task, but it is a necessary step if seri-
ous robustness is desired. One challenge with such test

suites, as with almost all testing, is balancing coverage
with development effort and test completion time. An-
other challenge, related to specification vagueness, is ac-
curacy: the test suite implementor interprets the specifi-
cation, but may not do so the same way as others.
The second testing strategy is to experiment with appli-
cations and benchmarks executing on one or more client
implementation(s).2 This complements RPC-level test-
ing by exercising the server with specific clients, ensur-
ing that those clients work well with the server when ex-
ecuting at least some important workloads; thus, it helps
with the accuracy issue mentioned above. On the other
hand, it usually offers much less coverage than RPC-
level testing. It also does not ensure that the server will
work with clients that were not tested.

2.1 Comparison-based verification
Comparison-based verification complements these test-
ing approaches. It does not eliminate the coverage prob-
lem, but it can help with the accuracy issue by conform-
ing to someone elseís interpretation of the specification.
It can help with the coverage issue, somewhat, by expos-
ing problem ìtypesî that recur across RPCs and should
be addressed en masse.
Comparison-based verification consists of comparing the
server being tested to a ìgold standard,î a reference
server whose implementation is believed to work cor-
rectly. Specifically, the state of the SUT is set up tomatch
that of the reference server, and then each RPC request
is duplicated so that the two serversí responses to each
request can be compared. If the server states were syn-
chronized properly, and the reference server is correct,
differences in responses indicate potential problems with
the SUT.
Comparison-based verification can help server develop-
ment in four ways: debugging client-perceivedproblems,
achieving bug compatibility with existing server imple-
mentations, testing in live environments, and isolating
performance differences.
1. Debugging: With benchmark-based testing, in par-
ticular, bugs exhibit themselves as situations where the
benchmark fails to complete successfully. When this
happens, significant effort is often needed to determine
exactly what server response(s) caused the client to
fail. For example, single-stepping through client actions
might be used, but this is time-consuming and may alter
client behavior enough that the problem no longer arises.
Another approach is to sniff network packets and inter-
pret the exchanges between client and server to identify
the last interactions before problems arise. Then, one

2Research prototypes are almost always tested only in this way.

2005 USENIX Annual Technical Conference USENIX Association122

can begin detailed analysis of those RPC requests and
responses.
Comparison-based verification offers a simpler solution,
assuming that the benchmark runs properly when using
the reference server. Comparing the SUTís responses to
the problem-free responses produced by the reference
server can quickly identify the specific RPC requests
for which there are differences. Comparison provides
the most benefit when problems involve nuances in re-
sponses that cause problems for clients (as contrasted
with problems where the server crashes)óoften, these
will be places where the server implementors interpreted
the specification differently. For such problems, the ex-
act differences between the two serversí responses can be
identified, providing detailed guidance to the developer
who needs to find and fix the implementation problem.
2. Bug compatibility: In discussing vagueness in speci-
fications, we have noted that some aspects are often open
to interpretation. Sometimes, implementors misinterpret
them even if they are not vague. Although it is tempting
to declare both situations ìthe other implementorís prob-
lem,î that is simply not a viable option for those seeking
to achieve widespread use of their server. For example,
companies attempting to introduce a new server product
into an existing market must make that server work for
the popular clients. Thus, deployed clients introduce de
facto standards that a server must accommodate. Further,
if clients (existing and new) conform to particular ìfea-
turesî of a popular serverís implementation (or a previ-
ous version of the new server), then that again becomes
a de facto standard. Some use the phrase, ìbug compat-
ibility,î to describe what must be achieved given these
issues.
As a concrete example of bug compatibility, consider
the following real problem encountered with a previ-
ous NFSv2 server we developed: Linux clients (at the
time) did not invalidate directory cookies when manipu-
lating directories, which our interpretation of the speci-
fication (and the implementations of some other clients)
indicated should be done. So, with that Linux client, an
ìrm -rfî of a large directory would read part of the di-
rectory, remove those files, and then do another READ-
DIR with the cookie returned by the first READDIR.
Our server compressed directories when entries were re-
moved, and thus the old cookie (an index into the direc-
tory) would point beyond some live entries after some
files were removedóthe ìrm -rfî would thus miss some
files. We considered keeping a table of cookie-to-index
mappings instead, but without a way to invalidate en-
tries safely (there are no definable client sessions in
NFSv2), the table would have to be kept persistently; we
finally just disabled directory compression. (NFSv3 has
a ìcookie verifier,î which would allows a server to solve

this problem, even when other clients change the direc-
tory.)
Comparison-based verification is a great tool for achiev-
ing bug compatibility. Specifically, one can compare
each response from the SUT with that produced by a
reference server that implements the de facto standard.
Such comparisons expose differences that might indi-
cate differing interpretations of the specification or other
forms of failure to achieve bug compatibility. Of course,
one needs an input workload that has good coverage to
fully uncover de facto standards.
3. In situ verification: Testing and benchmarking allow
offline verification that a server works as desired, which
is perfect for those developing a new server. These ap-
proaches are of less value to IT administrators seeking
comfort before replacing an existing server with a new
one. In high-end environments (e.g., bank data centers),
expensive service agreements and penalty clauses can
provide the desired comfort. But, in less resource-heavy
environments (e.g., university departments or small busi-
nesses), administrators often have to take the plunge with
less comfort.
Comparison-based verification offers an alternative,
which is to run the new server as the SUT for a period
of time while using the existing server as the reference
server.3 This requires inserting a server Tee into the live
environment, which could introduce robustness and per-
formance issues. But, because only the reference serverís
responses are sent to clients, this approach can support
reasonably safe in situ verification.
4. Isolating performance differences: Performance
comparisons are usually done with benchmarking. Some
benchmarks provide a collection of results on different
types of server operations, while others provide overall
application performance for more realistic workloads.
Comparison-based verification could be adapted to per-
formance debugging by comparing per-request response
times as well as response contents. Doing so would allow
detailed request-by-request profiles of performance dif-
ferences between servers, perhaps in the context of appli-
cation benchmark workloads where disappointing over-
all performance results are observed. Such an approach
might be particularly useful, when combined with in situ
verification, for determining what benefits might be ex-
pected from a new server being considered.

3Although not likely to be its most popular use, this was our orig-
inal reason for exploring this idea. We are developing a large-scale
storage service to be deployed and maintained on the Carnegie Mellon
campus as a research expedition into self-managing systems [4]. We
wanted a way to test new versions in the wild before deploying them.
We also wanted a way to do live experiments safely in the deployed
environment, which is a form of the fourth item.

2005 USENIX Annual Technical Conference USENIX Association 123

3 Components of a file system Tee
Comparison-based server verification happens at an in-
terposition point between clients and servers. Although
there are many ways to do this, we believe it will often
take the form of a distinct proxy that we call a ìserver
Teeî. This section details what a server Tee is by de-
scribing its four primary tasks. The subsequent section
describes the design and implementation of a server Tee
for NFSv3.
Relaying traffic to/from reference server: Because it
interposes, a Tee must relay RPC requests and responses
between clients and the reference server. The work in-
volved in doing so depends on whether the Tee is a pas-
sive or an active intermediary. A passive intermediary
observes the client-server exchanges but does not ma-
nipulate them at allóthis minimizes the relaying effort,
but increases the effort for the duplicating and compar-
ing steps, which now must reconstruct RPC interactions
from the observed packet-level communications. An ac-
tive intermediary acts as the server for clients and as the
only client for the serveróit receives and parses the RPC
requests/responses and generates like messages for the fi-
nal destination. Depending on the RPC protocol, doing
so may require modifying some fields (e.g., request IDs
since all will come from one system, the Tee), which is
extra work. The benefit is that other Tee tasks are simpli-
fied.
Whether a Tee is an active intermediary or a passive one,
it must see all accesses that affect server state in order
to avoid flagging false positives. For example, an un-
seen file write to the reference server would cause a sub-
sequent read to produce a mismatch during comparison
that has nothing to do with the correctness of the SUT.
One consequence of the need for complete interposing is
that tapping the interconnect (e.g., via a network card in
promiscuous mode or via a mirrored switch port) in front
of the reference server will not workósuch tapping is
susceptible to dropped packets in heavy traffic situations,
which would violate this fundamental Tee assumption.
Synchronizing state on the SUT: Before RPC requests
can be productively sent to the SUT, its state must be
initialized such that its responses could be expected to
match the reference serverís. For example, a file readís
responses wonít match unless the fileís contents are the
same on both servers. Synchronizing the SUTís state
involves querying the reference server and updating the
SUT accordingly.
For servers with large amounts of state, synchronizing
can take a long time. Since only synchronized objects
can be compared, few comparisons can be done soon
after a SUT is inserted. Requests for objects that have
yet to be synchronized produce no useful comparison

data. To combat this, the Tee could simply deny client
requests until synchronization is complete. Then, when
all objects have been synchronized, the Tee could relay
and duplicate client requests knowing that they will all
be for synchronized state. However, because we hope
for the Tee to scale to terabyte- and petabyte-scale stor-
age systems, complete state synchronization can take so
long that denying client access would create significant
downtime. To maintain acceptable availability, if a Tee
is to be used for in situ testing, requests must be handled
during initial synchronization even if they fail to yield
meaningful comparison results.
Duplicating requests for the SUT: For RPC requests
that can be serviced by the SUT (because the relevant
state has been synchronized), the Tee needs to duplicate
them, send them, and process the responses. This is of-
ten not as simple as just sending the same RPC request
packets to the SUT, because IDs for the same object on
the two servers may differ. For example, our NFS Tee
must deal with the fact that the two file handles (refer-
ence serverís and SUTís) corresponding to a particular
file will differ; they are assigned independently by each
server. During synchronization, any such ID mappings
must be recorded for use during request duplication.
Comparing responses from the two servers: Compar-
ing the responses from the reference server and SUT in-
volves more than simple bitwise comparison. Each field
of a response falls into one of three categories: bitwise-
comparable, non-comparable, or loosely-comparable.
Bitwise-comparable fields should be identical for any
correct server implementation. Most bitwise-comparable
fields consist of data provided directly by clients, such as
file contents returned by a file read.
Most non-comparable fields are either server-chosen val-
ues (e.g., cookies) or server-specific information (e.g.,
free space remaining). Differences in these fields do not
indicate a problem, unless detailed knowledge of the in-
ternal meanings and states suggest that they do. For ex-
ample, the disk space utilized by a file could be com-
pared if both serverís are known to use a common inter-
nal block size and approach to space allocation.
Fields are loosely-comparable if comparing them re-
quires more analysis than bitwise comparisonóthe refer-
ence and SUT values must be compared in the context of
the fieldís semantic meaning. For example, timestamps
can be compared (loosely) by allowing differences small
enough that they could be explained by clock skew, com-
munication delay variation, and processing time varia-
tion.

2005 USENIX Annual Technical Conference USENIX Association124

Unmodified

Clients

SUT

Reference

Server

RPC

Request

Response

(reference's)

Relay

NFS
Plugin

SynchronizationComparisonDuplication

Server Tee

Figure 2: Software architecture of an NFS Tee. To minimize potential impact on clients, we separate the relaying functionality from the other
three primary Tee functions (which contain the vast majority of the code). One or more NFS plug-ins can be dynamically initiated to compare a
SUT to the reference server with which clients are interacting.

4 A NFSv3 Tee
This section describes the design and implementation of
an NFSv3 Tee. It describes how components performing
the four primary Tee tasks are organized and explains
the architecture in terms of our design goals. It details
nuanced aspects of state synchronization and response
comparison, including some performance enhancements.

4.1 Goals and architecture
Our NFSv3 Tee’s architecture is driven by Þve design
goals. First, we want to be able to use the Tee in live en-
vironments, which makes the reliability of the relay task
crucial. Second, we want to be able to dynamically add a
SUT and initiate comparison-based veriÞcation in a live
environment.4 Third, we want the Tee to operate using
reasonable amounts of machine resources, which pushes
us to minimize runtime state and perform complex com-
parisons off-line in a post-processor. Fourth, we are more
concerned with achieving a functioning, robust Tee than
with performance, which guides us to have the Tee run
as application-level software, acting as an active inter-
mediary. Fifth, we want the comparison module to be
ßexible so that a user can customize of the rules to in-
crease efÞciency in the face of server idiosyncrasies that
are understood.
Figure 2 illustrates the software architecture of our
NFSv3 Tee, which includes modules for the four pri-
mary tasks. The four modules are partitioned into two

4On a SUT running developmental software, developers may wish
to make code changes, recompile, and restart the server repeatedly.

processes. One process relays communication between
clients and the reference server. The other process (a
“plug-in”) performs the three tasks that involve interac-
tion with the SUT. The relay process exports RPC re-
quests and responses to the plug-in process via a queue
stored in shared memory. This two-process organization
was driven by the Þrst two design goals: (1) running the
relay as a separate process isolates it from faults in the
plug-in components, which make up the vast majority
of the Tee code; (2) plug-ins can be started and stopped
without stopping client interactions with the reference
server.
When a plug-in is started, it attaches to the shared mem-
ory and begins its three modules. The synchronization
module begins reading Þles and directories from the ref-
erence server and writing them to the SUT. As it does so,
it stores reference server-to-SUT Þle handle mappings.
The duplication module examines each RPC request ex-
ported by the relay and determines whether the relevant
SUT objects are synchronized. If so, an appropriate re-
quest for the SUT is constructed. For most requests, this
simply involves mapping the Þle handles. The SUT’s re-
sponse is passed to the comparison module, which com-
pares it against the reference server’s response.
Full comparison consists of two steps: a conÞgurable
on-line step and an off-line step. For each mismatch
found in the on-line step, the request and both responses
are logged for off-line analysis. The on-line compari-
son rules are speciÞed in a conÞguration Þle that de-
scribes how each response Þeld should be compared.
Off-line post-processing prunes the log of non-matching

2005 USENIX Annual Technical Conference USENIX Association 125

responses that do not represent true discrepancies (e.g.,
directory entries returned in different orders), and then
assists the user with visualizing the ìproblemî RPCs.
Off-line post-processing is useful for reducing on-line
overheads as well as allowing the user to refine compar-
ison rules without losing data from the real environment
(since the log is a filtered trace).

4.2 State synchronization
The synchronization module updates the SUT to enable
useful comparisons. Doing so requiresmaking the SUTís
internal state match the reference serverís to the point
that the two serversí responses to a given RPC could be
expected to match. Fortunately, NFSv3 RPCs generally
manipulate only one or two file objects (regular files, di-
rectories, or links), so some useful comparisons can be
made long before the entire file system is copied to the
reference server.
Synchronizing an object requires establishing a point
within the stream of requests where comparison could
begin. Then, as long as RPCs affecting that object are
handled in the same order by both servers, it will remain
synchronized. The lifetime of an object can be viewed
as a sequence of states, each representing the object as it
exists between two modifications. Synchronizing an ob-
ject, then, amounts to replicating one such state from the
reference server to the SUT.
Performing synchronization offline (i.e., when the ref-
erence server is not being used by any clients) would
be straightforward. But, one of our goals is the abil-
ity to insert a SUT into a live environment at runtime.
This requires dealing with object changes that are con-
current with the synchronization process. The desire not
to disrupt client activity precludes blocking requests to
an object that is being synchronized. The simplest solu-
tion would be to restart synchronization of an object if a
modification RPC is sent to the reference server before it
completes. But, this could lead to unacceptably slow and
inefficient synchronization of large, frequently-modified
objects. Instead, our synchronization mechanism tracks
changes to objects that are being synchronized. RPCs are
sent to the reference server as usual, but are also saved in
a changeset for later replay against the SUT.
Figure 3 illustrates synchronization in the presence of
write concurrency. The state S1 is first copied from the
reference server to the SUT. While this copy is taking
place, a write (Wr1) arrives and is sent to the reference
server. Wr1 is not duplicated to the SUT until the copy of
S1 completes. Instead, it is recorded at the Tee. When the
copy of S1 completes, a new write, Wr1í, is constructed
based on Wr1 and sent to the SUT. Since no further con-
current changes need to be replayed, the object is marked

reference
object
lifetime

SUT
object
lifetime

S2

Wr1

Copy S1

S1
Wr1'

Time

S2S1

Figure 3: Synchronization with a concurrent write. The top
series of states depicts a part of the lifetime of an object on the reference
server. The bottom series of states depicts the corresponding object on
the SUT. Horizontal arrows are requests executed on a server (reference
or SUT), and diagonal arrows are full object copies. Synchronization
begins with copying state S1 onto the SUT. During the copy of S1, write
Wr1 changes the object on the reference server. At the completion of
the copy of S1, the objects are again out of synchronization. Wr1í is
the write constructed from the buffered version of Wr1 and replayed on
the SUT.

synchronized and all subsequent requests referencing it
are eligible for duplication and comparison.
Even after initial synchronization, concurrent and over-
lapping updates (e.g., Wr1 and Wr2 in Figure 4) can
cause a file object to become unsynchronized. Two re-
quests are deemed overlapping if they both affect the
same state. Two requests are deemed concurrent if the
second one arrives at the relay before the first oneís re-
sponse. This definition of concurrency accounts for both
network reordering and server reordering. Since the Tee
has no reliable way to determine the order in which con-
current requests are executed on the reference server, any
state affected by both Wr1 and Wr2 is indeterminate.
Resynchronizing the object requires re-copying the af-
fected state from the reference server to the SUT. Since
overlapping concurrency is rare, our Tee simply marks
the object unsynchronized and repeats the process en-
tirely.
The remainder of this section provides details regarding
synchronization of files and directories, and describes
some synchronization ordering enhancements that allow
comparisons to start more quickly.
Regular file synchronization: A regular fileís state is
its data and its attributes. Synchronizing a regular file
takes place in three steps. First, a small unit of data and
the fileís attributes are read from the reference server and
written to the SUT. If a client RPC affects the object dur-
ing this initial step, the step is repeated. This establishes
a point in time for beginning the changeset. Second, the
remaining data is copied. Third, any changeset entries
are replayed.
A fileís changeset is a list of attribute changes and
written-to extents. A bounded amount of the written data

2005 USENIX Annual Technical Conference USENIX Association126

reference
object
lifetime

SUT
object
lifetime

Time

X

S2

S2

Copy S2

S1

S1
Wr1, Wr2

Figure 4: Re-synchronizing after write concurrency. The ex-
ample begins with a synchronized object, which has state S1 on both
servers. When concurrent writes are observed (Wr1 and Wr2 in this
example), the Tee has no way of knowing their execution order at the
reference server. As a consequence, it cannot know the resulting ref-
erence server state. So, it must mark the object as unsynchronized and
repeat synchronization.

is cached. If more data was written, it must be read from
the reference server to replay changes. As the changeset
is updated, by RPCs to reference server, overlapping ex-
tents are coalesced to reduce the work of replaying them;
so, for example, two writes to the same block will result
in a single write to the SUT during the third step of file
synchronization.
Directory synchronization: A directoryís state is its
attributes and the name and type of each of its chil-
dren.5 This definition of state allows a directory to be
synchronized regardless of whether its children are syn-
chronized. This simplifies the tracking of a directoryís
synchronization status and allows the comparison of re-
sponses to directory-related requests well before the chil-
dren are synchronized.
Synchronizing a directory is done by creating missing
directory entries and removing extraneous ones. Hard
links are created as necessary (i.e., when previously dis-
covered file handles are found). As each unsynchro-
nized child is encountered, it is enqueued for synchro-
nization. When updates occur during synchronization,
a directoryís changeset will include new attribute values
and two lists: entries to be created and entries to be re-
moved. Each list entry stores the name, file handle, and
type for a particular directory entry.
Synchronization ordering: By default, the synchro-
nization process begins with the root directory. Each un-
known entry of a directory is added to the list of files to
be synchronized. In this way, the synchronization pro-
cess works its way through the entire reference file sys-
tem.
One design goal is to begin making comparisons as

5File type is not normally considered to be part of a directoryís con-
tents. We make this departure to facilitate the synchronization process.
During comparison, file type is a property of the file, not of the parent
directory.

quickly as possible. To accomplish this, our Tee synchro-
nizes the most popular objects first. The Tee maintains
a weighted moving average of access frequency for each
object it knows about, identifying accesses by inspect-
ing the responses to lookup and create operations. These
quantities are used to prioritize the synchronization list.
Because an object cannot be created until its parent di-
rectory exists on the SUT, access frequency updates are
propagated from an object back to the file system root.

4.3 Comparison
The comparison module compares responses to RPC re-
quests on synchronized objects. The overall comparison
functionality proceeds in two phases: on-line and post-
processed. The on-line comparisons are performed at
runtime, by the Teeís comparison module, and any non-
matching responses (both responses in their entirety) are
logged together with the associated RPC request. The
logged information allows post-processing to eliminate
false non-matches (usually with more detailed examina-
tion) and to help the user to explore valid non-matches in
detail.
Most bitwise-comparable fields are compared on-line.
Such fields include file data, file names, soft link con-
tents, access control fields (e.g., modes and owner IDs),
and object types. Loosely-comparable fields include
time values and directory contents. The former are com-
pared on-line, while the latter (in our implementation)
are compared on-line and then post-processed.
Directory contents require special treatment, when com-
parison fails, because of the looseness of the NFS pro-
tocol. Servers are not required to return entries in any
particular order, and they are not required to return any
particular number of entries in a single response to a
READDIR or READDIRPLUS RPC request. Thus, en-
tries may be differently-ordered and differently-spread
across multiple responses. In fact, only when the Tee
observes complete listings from both servers can some
non-matches be definitively declared. Rather than deal
with all of the resulting corner cases on-line, we log the
observed information and leave it for the post-processor.
The post-processor can linkmultiple RPC requests iterat-
ing through the same directory by the observed file han-
dles and cookie values. It filters log entries that cannot
be definitively compared and that do not represent mis-
matches once reordering and differing response bound-
aries are accounted for.

4.4 Implementation
We implemented our Tee in C++ on Linux. We used the
State Threads user-level thread library. The relay runs

2005 USENIX Annual Technical Conference USENIX Association 127

as a single process that communicates with clients and
the reference server via UDP and with any plug-ins via
a UNIX domain socket over which shared memory ad-
dresses are passed.
Our Tee is an active intermediary. To access a file sys-
tem exported by the reference server, a client sends its re-
quests to the Tee. The Tee multiplexes all client requests
into one stream of requests, with itself as the client so
that it receives all responses directly. Since the Tee be-
comes the source of all RPC requests seen by the refer-
ence server, it is necessary for the relay to map client-
assigned RPC transaction IDs (XIDs) onto a separate
XID space. This makes each XID seen by the reference
server unique, even if different clients send requests with
the same XID, and it allows the Tee to determine which
client should receive which reply. This XID mapping is
the only way in which the relay modifies the RPC re-
quests.
The NFS plug-in contains the bulk of our Teeís func-
tionality and is divided into four modules: synchroniza-
tion, duplication, comparison, and the dispatcher. The
first three modules each comprise a group of worker
threads and a queue of lightweight request objects. The
dispatcher (not pictured in Figure 2) is a single thread
that interfaces with the relay, receiving shared memory
buffers.
For each file system object, the plug-in maintains some
state in a hash table keyed on the objectís reference server
file handle. Each entry includes the objectís file han-
dle on each server, its synchronization status, pointers to
outstanding requests that reference it, and miscellanous
book-keeping information. Keeping track of each object
consumes 236 bytes. Each outstanding request is stored
in a hash table keyed on the requestís reference server
XID. Each entry requires 124 bytes to hold the request,
both responses, their arrival times, and various miscel-
lanous fields. The memory consumption is untuned and
could be reduced.
Each RPC received by the relay is stored directly into
a shared memory buffer from the RPC header onward.
The dispatcher is passed the addresses of these buffers
in the order that the RPCs were received by the relay.
It updates internal state (e.g., for synchronization order-
ing), then decides whether or not the request will yield a
comparable response. If so, the request is passed to the
duplication module, which constructs a new RPC based
on the original by replacing file handles with their SUT
equivalents. It then sends the request to the SUT.
Once responses have been received from both the refer-
ence server and the SUT, they are passed to the compar-
ison module. If the comparison module finds any dis-
crepancies, it logs the RPC and responses and optionally

alerts the user. For performance and space reasons, the
Tee discards information related to matching responses,
though this can be disabled if full tracing is desired.

5 Evaluation
This section evaluates the Tee along three dimensions.
First, it validates the Teeís usefulness with several case
studies. Second, it measures the performance impact of
using the Tee. Third, it demonstrates the value of the
synchronization ordering optimizations.

5.1 Systems used
All experiments are run with the Tee on an Intel P4
2.4GHz machine with 512MB of RAM running Linux
2.6.5. The client is either a machine identical to the
Tee or a dual P3 Xeon 600MHz with 512MB of RAM
running FreeBSD 4.7. The servers include Linux and
FreeBSD machines with the same specifications as the
clients, an Intel P4 2.2GHz with 512MB of RAM run-
ning Linux 2.4.18, and a Network Appliance FAS900
series filer. For the performance and convergence bench-
marks, the client and server machines are all identical to
the Tee mentioned above and are connected via a Gigabit
Ethernet switch.

5.2 Case studies
An interesting use of the Tee is to compare popular de-
ployed NFS server implementations. To do so, we ran
a simple test program on a FreeBSD client to compare
the responses of the different server configurations. The
short test consists of directory, file, link, and symbolic
link creation and deletion as well as reads and writes of
data and attributes. No other filesystem objects were in-
volved except the root directory in which the operations
were done. Commands were issued at 2 second intervals.
Comparing Linux to FreeBSD: We exercised a setup
with a FreeBSD SUT and a Linux reference server to
see how they differ. After post-processing READDIR and
READDIRPLUS entries, and grouping like discrepancies,
we are left with the nineteen unique discrepancies sum-
marized in Table 1. In addition to those nineteen, we
observed many discrepancies caused by the Linux NFS
serverís use of some undefined bits in the MODE field
(i.e., the field with the access control bits for owner,
group, and world) of every file objectís attributes. The
Linux server encodes the objectís type (e.g., directory,
symlink, or regular file) in these bits, which causes the
MODE field to not match FreeBSDís values in every re-
sponse. To eliminate this recurring discrepancy, we mod-
ified the comparison rules to replace bitwise-comparison

2005 USENIX Annual Technical Conference USENIX Association128

Field Count Reason
EOF flag 1 FreeBSD server failed to return EOF at the end of a read reply
Attributes follow flag 10 Linux sometimes chooses not to return pre-op or post-op attributes
Time 6 Parent directory pre-op ctime and mtime are set to the current time on

FreeBSD
Time 2 FreeBSD does not update a symbolic linkís atime on READLINK

Table 1: Discrepancies when comparing Linux and FreeBSD servers. The fields that differ are shown along with the number of distinct RPCs
for which they occur and the reason for the discrepancy.

of the entire MODE field with a loose-compare function
that examines only the specification-defined bits.
Perhaps the most interesting discrepancy is the EOF flag,
which is the flag that signifies that a read operation has
reached the end of the file. Our Tee tells us that when a
FreeBSD client is reading data from a FreeBSD server,
the server returns FALSE at the end of the file while
the Linux server correctly returns TRUE. The same dis-
crepancy is observed, of course, when the FreeBSD and
Linux servers switch roles as reference server and SUT.
The FreeBSD client does not malfunction, which means
that the FreeBSD client is not using the EOF value that
the server returns. Interestingly, when running the same
experiment with a Linux client, the discrepancy is not
seen because the Linux client uses different request se-
quences. If a developer were trying to implement a
FreeBSD NFS server clone, the NFS Tee would be an
useful tool in identifying and properly mimicking this
quirk.
The ìattributes followî flag, which indicates whether or
not the attribute structure in the given response contains
data,6 also produced discrepancies. These discrepancies
mostly come from pre-operation directory attributes in
which Linux, unlike FreeBSD, chooses not to return any
data. Of course, the presence of these attributes repre-
sents additional discrepancies between the two serversí
responses, but the root cause is the same decision about
whether to include the optional information.
The last set of interesting discrepancies comes from
timestamps. First, we observe that FreeBSD returns
incorrect pre-operation directory modification times
(mtime and ctime) for the parent directory for RPCs
that create a file, a hard link, or a symbolic link. Rather
than the proper values being returned, FreeBSD returns
the current time. Second, FreeBSD and Linux use dif-
ferent policies for updating the last access timestamp
(atime). Linux updates the atime on the symlink file
when the symlink is followed, whereas FreeBSD only
updates the atime when the symlink file is accessed di-
rectly (e.g., by writing itís value). This difference ex-

6Many NFSv3 RPCs allow the affected objectís attributes to be in-
cluded in the response, at the serverís discretion, for the clientís conve-
nience.

hibits discrepancies in RPCs that read the symlinkís at-
tributes.
We also ran the test with the servers swapped (FreeBSD
as reference and Linux as SUT). Since the client inter-
acts with the reference serverís implementation, we were
interested to see if the FreeBSD clientís interaction with
a FreeBSD NFS server would produce different results
when compared to the Linux server, perhaps due to op-
timizations between the like client and server. But, the
same set of discrepancies were found.
Comparing Linux 2.6 to Linux 2.4: Comparing Linux
2.4 to Linux 2.6 resulted in very few discrepancies. The
Tee shows that the 2.6 Kernel returns file metadata times-
tamps with nanosecond resolution as a result of its up-
dated VFS layer, while the 2.4 kernel always returns
timestamps with full second resolution. The only other
difference we found was that the parent directoryís pre-
operation attributes for SETATTR are not returned in the
2.4 kernel but are in the 2.6 kernel.
Comparing Network Appliance FAS900 to Linux and
FreeBSD: Comparing the Network Appliance FAS900
to the Linux and FreeBSD servers yields a few interest-
ing differences. The primary observation we are able
to make is that the FAS900 replies are more similar to
FreeBSDís that Linuxís. The FAS900 handles its file
MODE bits like FreeBSD without Linuxís extra file type
bits. The FAS900, like the FreeBSD server, also re-
turns all of the pre-operation directory attributes that
Linux does not. It is also interesting to observe that
the FAS900 clearly handles directories differently from
both Linux and FreeBSD. The cookie that the Linux or
FreeBSD server returns in response to a READDIR or
READDIRPLUS call is a byte offset into the directory
file whereas the Network Appliance filer simply returns
an entry number in the directory.
Aside: It is interesting to note that, as an unintended con-
sequence of our initial relay implementation, we discov-
ered an implementation difference between the FAS900
and the Linux or FreeBSD servers. The relay modifies
the NFS callís XIDs so that if two clients happen to use
the same XID, they donít get mixed up when the Tee re-
lays them both. The relay is using a sequence of values

2005 USENIX Annual Technical Conference USENIX Association 129

for XIDs that is identical each time the relay is run. We
found that, after restarting the Tee, requests would often
get lost on the FAS900 but not on the Linux or FreeBSD
servers. It turns out that the FAS900 caches XIDs for
much longer than the other servers, resulting in dropped
RPCs (as seeming duplicates) when the XID numbering
starts over too soon.
Debugging the Ursa Major NFS server: Although the
NFS Tee is new, we have started to use it for debugging
an NFS server being developed in our group. This server
is being built as a front-end to Ursa Major, a storage sys-
tem that will be deployed at Carnegie Mellon as part of
the Self-* Storage project [4]. Using Linux as a refer-
ence, we have found some non-problematic discrepan-
cies (e.g., different choices made about which optional
values to return) and one significant bug. The bug oc-
curred in responses to the READ command, which never
set the EOF flag even when the last byte of the file was
returned. For the Linux clients used in testing, this is not
a problem. For others, however, it is. Using the Tee ex-
posed and isolated this latent problem, allowing it to be
fixed proactively.

5.3 Performance impact of prototype

We use PostMark to measure the impact the Tee would
have on a client in a live environment. We compare two
setups: one with the client talking directly to a Linux
server and one with the client talking to a Tee that uses
the same Linux server as the reference. We expect a sig-
nificant increase in latency for each RPC, but less signif-
icant impact on throughput.
PostMark was designed to measure the performance of
a file system used for electronic mail, netnews, and web
based services [6]. It creates a large number of small
randomly-sized files (between 512 B and 9.77 KB) and
performs a specified number of transactions on them.
Each transaction consists of two sub-transactions, with
one being a create or delete and the other being a read or
append.
The experiments were done with a single client and up
to sixteen concurrent clients. Except for the case of a
single client, two instances of PostMark were run on each
physical client machine. Each instance of PostMark ran
with 10,000 transactions on 500 files and the biases for
transaction types were equal. Except for the increase in
the number of transactions, these are default PostMark
values.
Figure 5 shows that using the Tee reduces client through-
put when compared to a direct NFS mount. The reduc-
tion is caused mainly by increased latency due to the
added network hop and overheads introduced by the fact

0

100

200

300

400

500

600

1 2 4 6 8 10 12 14 16

Po
st

M
ar

k
Tr

an
sa

ct
io

ns
 p

er
 S

ec
on

d

Number of Concurrent Clients

Direct Mount
Through-Tee Mount

Figure 5: Performance with and without the Tee. The perfor-
mance penalty caused by the Tee decreases as concurrency increases,
because higher latency is the primary cost of inserting a Tee between
client and reference serer. Concurrency allows request propagation and
processing to be overlapped, which continues to benefit the Through-
Tee case after the Direct case saturates.. The graph shows average and
standard deviation of PostMark throughput, as a function of the number
of concurent instances.

that the Tee is a user-level process.
The single-threaded nature of PostMark allows us to
evaluate both the latency and the throughput costs of our
Tee. With one client, PostMark induces one RPC request
at a time, and the Tee decreases throughput by 61%. As
multiple concurrent PostMark clients are added, the per-
centage difference between direct NFS and through-Tee
NFS performance shrinks. This indicates that the latency
increase is a more significant factor than the throughput
limitationówith high concurrency and before the server
is saturated, the decrease in throughput drops to 41%.
When the server is heavily loaded in the case of a di-
rect NFS mount, the Tee continues to scale and with 16
clients the reduction in throughput is only 12%.
Although client performance is reduced through the use
of the Tee, the reduction does not prevent us from using it
to test synchronization convergence rates, do offline case
studies, or test in live environments where lower perfor-
mance is acceptible.

5.4 Speed of synchronization convergence
One of our Tee design goals was to support dynamic ad-
dition of a SUT in a live environment. To make such
addition most effective, the Tee should start performing
comparisons as quickly as possible. Recall that opera-
tions on a file object may be compared only if the object
is synchronized. This section evaluates the effectiveness
of the synchronization ordering enhancements described
in Section 4.2. We expect them to significantly increase
the speed with which useful comparisons can begin.

2005 USENIX Annual Technical Conference USENIX Association130

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120%
 re

qu
es

ts
 c

om
pa

ra
bl

e,
 %

 o
bj

ec
ts

 s
yn

ce
d

time (s)

Base case

requests comparable
objects synchronized

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120%
 re

qu
es

ts
 c

om
pa

ra
bl

e,
 %

 o
bj

ec
ts

 s
yn

ce
d

time (s)

With prioritized synchronization ordering

requests comparable
objects synchronized

Figure 6: Effect of prioritized synchronization ordering on speed of convergence. The graph on the left illustrates the base case, with no
synchronization ordering enhancements. The graph on the right illustrates the benefit of prioritized synchronization ordering. Although the overall
speed with which the entire file system is synchronized does not increase (in fact, it goes down a bit due to contention on the SUT), the percentage
of comparable responses quickly grows to a large value.

To evaluate synchronization, we ran an OpenSSH com-
pile (the compile phase of the ssh-build benchmark used
by Seltzer, et al. [12]) on a client that had mounted the
reference server through the Tee. The compilation pro-
cess was started immediately after starting the plugin.
Both reference server and SUT had the same hardware
configuration and ran the same version of Linux. No
other workloads were active during the experiment. The
OpenSSH source code shared a mount point with approx-
imately 25,000 other files spread across many directo-
ries. The sum of the file sizes was 568MB.
To facilitate our synchronization evaluation, we instru-
mented the Tee to periodically write internal counters to
a file. This mechanism provides us with two point-in-
time values: the number of objects that are in a synchro-
nized state and the total number of objects we have dis-
covered thus far. It also provides us with two periodic
values (counts within a particular interval): the number
of requests enqueued for duplication to the SUT and the
number of requests received by the plugin from the relay.
These values allow us to compute two useful quantities.
The first is the ratio of requests enqueued for duplication
to requests received, expressed as a moving average; this
ratio serves as a measure of the proportion of operations
that were comparable in each time period. The second
is the ratio of synchronized objects to the total number
of objects in the file system; this value measures how far
the synchronization process has progressed through the
file system as a whole.
Figure 6 shows how both ratios grow over time for two
Tee instances: one (on the left) without the synchro-
nization ordering enhancements and one with them. Al-
though synchronization of the entire file system requires
over 90 seconds, prioritized synchronization ordering
quickly enables a high rate of comparable responses.

Ten seconds into the experiment, almost all requests
produced comparable responses with the enhancements.
Without the enhancements, we observe that a high rate of
comparable responses is reached at about 40 seconds af-
ter the plugin was started. The rapid increase observed in
the unoptimized case at that time can be attributed to the
synchronization module reaching the OpenSSH source
code directory during its traversal of the directory tree.
The other noteworthy difference between the unordered
case and the ordered case is the time required to syn-
chronize the entire file system. Without prioritized syn-
chronization ordering, it took approximately 90 seconds.
With it, this figure was more than 100 seconds. This
difference occurs because the prioritized ordering allows
more requests to be compared sooner (and thus dupli-
cated to the SUT), creating contention for SUT resources
between synchronization-related requests and client re-
quests. The variation in the rate with which objects are
synchronized is caused by a combination of variation in
object size and variation in client workload (which con-
tends with synchronization for the reference server).

6 Discussion
This section discusses several additional topics related to
when comparison-based server verification is useful.
Debugging FS client code: Although its primary raison
díetre is file server testing, comparison-based FS veri-
fication can also be used for diagnosing problems with
client implementations. Based on prior experiences, we
believe the best example of this is when a client is ob-
served to work with some server implementations and
not others (e.g., a new version of a file server). Detailed
insight can be obtained by comparing server responses to

2005 USENIX Annual Technical Conference USENIX Association 131

request sequences with which there is trouble, allowing
one to zero in on what unexpected server behavior the
client needs to cope with.
Holes created by non-comparable responses:
Comparison-based testing is not enough. Although
it exposes and clarifies some differences, it is not able
to effectively compare responses in certain situations,
as described in Section 4. Most notably, concurrent
writes to the same data block are one such situationóthe
Tee cannot be sure which write was last and, therefore,
cannot easily compare responses to subsequent reads
of that block. Note, however, that most concurrency
situations can be tested.
More stateful protocols: Our file server Tee works for
NFS version 3, which is a stateless protocol. The fact
that no server state about clients is involved simplifies
Tee construction and allows quick ramp up of the per-
centage of comparable operations. Althoughwe have not
built one, we believe that few aspects would change sig-
nificantly in a file server Tee for more stateful protocols,
such as CIFS, NFS version 4, and AFS [5]. The most
notable change will be that the Tee must create dupli-
cate state on the SUT and include callbacks in the set
of ìresponsesî comparedócallbacks are, after all, exter-
nal actions taken by servers usually in response to client
requests. A consequence of the need to track and du-
plicate state is that comparisons cannot begin until both
synchronization completes and the plug-in portion of the
Tee observes the beginnings of client sessions with the
server. This will reduce the speed at which the percent-
age of comparable operations grows.

7 Related work
On-line comparison has a long history in computer fault-
tolerance [14]. Usually, it is used as a voting mecha-
nism for determining the right result in the face of prob-
lems with a subset of instances. For example, the triple
modular redundancy concept consists of running mul-
tiple instances of a component in parallel and compar-
ing their results; this approach has been used, mainly, in
very critical domains where the dominant fault type is
hardware problems. Fault-tolerant consistency protocols
(e.g., Paxos [11]) for distributed systems use similar vot-
ing approaches.
With software, deterministic programs will produce the
same answers given the same inputs, so one accrues lit-
tle benefit from voting among multiple instances of the
same implementation. With multiple implementations
of the same service, on the other hand, benefits can ac-
crue. This is generally referred to as N-version program-
ming [2]. Although some argue that N-version program-

ming does not assist fault-tolerancemuch [8, 9], we view
comparison-based verification as a useful application of
the basic concept of comparing one implementationís re-
sults to those produced by an independent implementa-
tion.
One similar use of inter-implementation comparison is
found in the Ballista-based study of POSIX OS robust-
ness [10]. Ballista [3] is a tool that exercises POSIX
interfaces with various erroneous arguments and evalu-
ates how an OS implementation copes. In many cases,
DeVale, et al. found that inconsistent return codes were
used by different implementations, which clearly cre-
ates portability challenges for robustness-sensitive appli-
cations.
Use of a server Tee applies the proxy concept [13] to
allow transparent comparison of a developmental server
to a reference server. Many others have applied the
proxy concept for other means. In the file system do-
main, specifically, some examples include Slice [1],
Zforce [17], Cuckoo [7], and Anypoint [16]. These all
interpose on client-server NFS activity to provide clus-
tering benefits to unmodified clients, such as replication
and load balancing. Most of them demonstrate that such
interposing can be done with minimal performance im-
pact, supporting our belief that the slowdown of our Teeís
relaying could be eliminated with engineering effort.

8 Summary
Comparison-based server verification can be a useful ad-
dition to the server testing toolbox. By comparing a SUT
to a reference server, one can isolate RPC interactions
that the SUT services differently. If the reference server
is considered correct, these discrepancies are potential
bugs needing exploration. Our prototype NFSv3 Tee
demonstrates the feasibility of comparison-based server
verification, and our use of it to debug a prototype server
and to discover interesting discrepancies among produc-
tion NFS servers illustrates its usefulness.

Acknowledgements
We thank Raja Sambasivan and Mike Abd-El-Malek for
help with experiments. We thank the reviewers, includ-
ing Vivek Pai (our shepherd), for constructive feedback
that improved the presentation. We thank the mem-
bers and companies of the PDL Consortium (including
EMC, Engenio, Hewlett-Packard, HGST, Hitachi, IBM,
Intel, Microsoft, Network Appliance, Oracle, Panasas,
Seagate, Sun, and Veritas) for their interest, insights,
feedback, and support. This material is based on re-
search sponsored in part by the National Science Foun-

2005 USENIX Annual Technical Conference USENIX Association132

dation, via grant #CNS-0326453, by the Air Force Re-
search Laboratory, under agreement number F49620ñ
01ñ1ñ0433, and by the Army Research Office, under
agreement number DAAD19ñ02ñ1ñ0389.

References
[1] D. C. Anderson, J. S. Chase, and A. M. Vahdat. In-

terposed request routing for scalable network stor-
age. Symposium on Operating Systems Design and
Implementation (San Diego, CA, 22ñ25 October
2000), 2000.

[2] L. Chen and A. Avizienis. N-version program-
ming: a fault tolerance approach to reliability of
software operation. International Symposium on
Fault-Tolerant Compter Systems, pages 3ñ9, 1978.

[3] J. P. DeVale, P. J. Koopman, and D. J. Guttendorf.
The Ballista software robustness testing service.
Testing Computer Software Conference (Bethesda,
MD, 14ñ18 June 1999). Unknown publisher, 1999.

[4] G. R. Ganger, J. D. Strunk, and A. J. Kloster-
man. Self-* Storage: Brick-based storage with au-
tomated administration. Technical Report CMUñ
CSñ03ñ178. Carnegie Mellon University, August
2003.

[5] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West. Scale and performance in a dis-
tributed file system. ACM Transactions on Com-
puter Systems (TOCS), 6(1):51ñ81. ACM, Febru-
ary 1988.

[6] J. Katcher. PostMark: a new file system benchmark.
Technical report TR3022. Network Appliance, Oc-
tober 1997.

[7] A. J. Klosterman and G. Ganger. Cuckoo: lay-
ered clustering for NFS. Technical Report CMUñ
CSñ02ñ183. Carnegie Mellon University, October
2002.

[8] J. C. Knight and N. G. Leveson. A reply to the crit-
icisms of the Knight & Leveson experiment. ACM
SIGSOFT Software Engineering Notes, 15(1):24ñ
35. ACM, January 1990.

[9] J. C. Knight and N. G. Leveson. An experimen-
tal evaluation of the assumptions of independence
in multiversion programming. Trnsactions on Soft-
ware Engineering, 12(1):96ñ109,March 1986.

[10] P. Koopman and J. DeVale. Comparing the ro-
bustness of POSIX operating systems. Interna-
tional Symposium on Fault-Tolerant Compter Sys-
tems (Madison, WI, 15ñ18 June 1999), 1999.

[11] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18ñ25. ACM, December 2001.

[12] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A.
Smith, C. A. N. Soules, and C. A. Stein. Journaling
versus Soft Updates: AsynchronousMeta-data Pro-
tection in File Systems. USENIX Annual Techni-
cal Conference (San Diego, CA, 18ñ23 June 2000),
pages 71ñ84, 2000.

[13] M. Shapiro. Structure and encapsulation in dis-
tributed systems: the proxy principle. International
Conference on Distributed Computing Systems
(Cambridge, Mass), pages 198ñ204. IEEE Com-
puter Society Press, Catalog number 86CH22293-
9, May 1986.

[14] D. P. Siewiorek and R. S. Swarz. Reliable computer
systems: design and evaluation. Digital Press, Sec-
ond edition, 1992.

[15] SPEC SFS97 R1 V3.0 benchmark, Standard Per-
formance Evaluation Corporation, August, 2004.
http://www.specbench.org/sfs97r1/.

[16] K. G. Yocum, D. C. Anderson, J. S. Chase, and
A. M. Vahdat. Anypoint: extensible transport
switching on the edge. USENIX Symposium on In-
ternet Technologies and Systems (Seattle, WA, 26ñ
28 March 2003), 2003.

[17] Z-force, Inc., 2004. www.zforce.com.

2005 USENIX Annual Technical Conference USENIX Association 133

