
AMP: Program Context Specific Buffer Caching

Feng Zhou, Rob von Behren and Eric Brewer
Computer Science Division

University of California, Berkeley
{zf,jrvb,brewer}@cs.berkeley.edu

Abstract
We present Adaptive Multi-Policy disk caching (AMP), which uses
multiple caching policies within one application, and adapts both
which policies to use and their relative fraction of the cache, based
on program-context specific information. AMP differentiate disk
requests based on the program contexts, or code locations, that
issue them. Compared to recent work, AMP is unique in that it
employs a new robust scheme for detecting looping patterns in
access streams, as well as a low-overhead randomized way of
managing many cache partitions. We show that AMP outperforms
non-detection-based caching algorithms on a variety of workloads
by up to 50% in miss rate reduction. Compared to other detection-
based schemes, we show that AMP detects access patterns more
accurately for a series of synthesized workloads, and incurs up to
15% fewer misses for one application trace.

1 Detection (classification) Based Caching
Modern applications access increasing amounts of disk data
and have widely varying access patterns. These access pat-
terns deviate from traditional OS workloads with temporal
locality. Recent work on detection or classification based
caching schemes [2, 5, 4] exploits consistent access pat-
terns in applications by explicitly detecting the patterns and
applying different policies. In this paper, we present Adap-
tive Multi-Policy caching, a detection-based caching sys-
tem with several novel features.

One major aspect of the design of a detection-based
caching scheme is the pattern detection algorithm. UBM
[5] detects loops by looking for accesses to physically
consecutive blocks in files. One obvious problem is that
some loops are to blocks not physically consecutive.
DEAR [2] detects loops and probabilistic patterns by
sorting blocks by last-access time and frequency. Although
it detects non-consecutive loops, it’s more expensive
and brittle against fluctuations in block ordering. PCC
[4] resorts to a simple counter-based pattern detection
algorithm. Essentially a stream with many repeating
accesses is classified as looping. This scheme, although
simple, risks classifying temporally clustered streams with
high locality as loops.

AMP features a new access pattern detection algorithm.
It detects consecutive and non-consecutive loops and is ro-
bust against small reorderings. Its overhead is small and can
be made constant per access, independent of working set or
memory size.

AMP is also novel in the way it manages the cache parti-

tions. Both UBM and PCC evict the block with the least es-
timated “marginal gain”. Because the marginal gain estima-
tion changes over time, finding this block can be expensive.
AMP, in contrast, uses a randomized eviction policy that is
much cheaper and robustly achieves similar effectiveness.

One decision differentiating these approaches is the def-
inition of an I/O stream to do detection on. For example,
UBM [5] does per-file detection and DEAR is based on
per-process detection. AMP and PCC [4] do per-program
context (referred to as program counter in [4]) detection.
The basic idea is to separate access streams by the program
context (identified by the function call stack) when the I/O
access is made, with the assumption that a single program
context is likely to access disk files with the same pattern in
the future. This PC-based approach differs radically from
previous methods and is the key idea in both PCC and AMP,
although the two systems were developed concurrently and
independently. Interested readers are referred to [4] and
[7] for further motivations for this approach and application
traces showing its effectiveness.

2 Design

AMP is composed of two components. The first compo-
nent, Access Pattern Detector, uses an access-pattern detec-
tion algorithm to determine the access pattern for each pro-
gram context issuing I/O calls. The other component, AMP
Cache Manager, subsumes the original OS cache manager.
It maintains a default cache partition that holds all “normal”
blocks using a default policy such as ARC or LRU (assumed
to be ARC later on). Then, it maintains one partition for
each “optimized” program context, using the appropriate
policy for that program context. It continuously adapts to
the workload and adjusts the sizes of the partitions.

2.1 Access-Pattern Detection

The AMP access pattern detector assigns one of the follow-
ing block access patterns to each program context, similar
to UBM and PCC: One-shot for one-time accesses; Loop-
ing for repeated accesses to a series of blocks in the same or
roughly the same order, either physically consecutive or not.
Temporally clustered [1] for accesses characterized by the
property that blocks accessed recently are more likely to
be accessed in the future. Others when none of the above
apply.

PCs that always issue one-shot accesses are easy to iden-
tify, by simply observing if no blocks accessed by it are

2005 USENIX Annual Technical Conference USENIX Association 371

accessed again. The other patterns are distinguished based
on a metric we call average reference recency. The in-
tuition is that if a sequence is temporally clustered, then
the more recently a block was accessed, the more likely
it is to be accessed again. The exact contrary holds for
looping sequences. Hence, one way to distinguish these ac-
cess patterns is to measure the recency of blocks accessed.
Concretely, we measure this reference recency of an access
by looking at the relative position of the previous appear-
ance of the same block in the list of all previously accessed
blocks, ordered by their last reference time.

Formally, for the i-th access in a sequence, we let Li be
the list of all previously accessed blocks, ordered from the
oldest to the most recent by their last access time. Note that
each block only appears in Li at most once, at its position
of last access. Thus if the access string is [4 2 3 1 2 3], with
time increasing to the right, we have L6 = {4, 3, 1, 2}, and
L7 = {4, 1, 2, 3}, although we don’t yet know the seventh
block. Let the length of the list be |Li|, and the position of
the block of interest be pi, with the oldest position being 0
and newest position being |Li| − 1.

Define the reference recency Ri of the i-th access as:

Ri =

pi/(|Li| − 1), |Li| > 1
0.5, |Li| = 1
⊥, undefined for first access

Then the average reference recency R̄ of the whole string is
simply the average of all defined Ri.

Example 1. Consider looping access string [1 2 3 1 2
3]. For the second access to block 1, i = 4 and L4 ={1 2
3}. Thus p4 = 0, R4 = 0

3−1
= 0. Also L5 = {2, 3, 1}

and p5 = 0, and thus R5 = 0. Similarly, R6 = 0 too, and
in fact any pure looping pattern will have Ri = 0 and thus
R̄ = 0. Example 2. Consider temporally clustered string
[1 2 3 4 4 3 4 5 6 5 6]. With the calculations omitted, we
get R̄ = 0.79.

In general, for pure loop sequences such as example 1,
R̄=0. For highly temporally clustered sequences R̄ is close
to 1. It is also easy to see a uniformly random access
sequence has R̄ = 0.5. In this sense, the average refer-
ence recency metric provides a measure of the correlation
between recency and future accesses. If R̄ > 0.5, recently
accessed blocks are more likely than average to be accessed
in the near future, vice versa.

The R̄ values can be estimated either continuously, up-
dating results as each I/O request is issued, or periodically,
in a record-then-compute fashion. A continuous detector
using exponential moving average of R values as R̄ instead
of the definition above can respond faster to changes in
workload. In contrast, the periodical one can be easier to
implement, because it could be done at user-level and needs
less interaction with the cache manager.

The pattern detector categorizes all contexts with R̄ < T
as having looping patterns, where T is an adjustable thresh-
old. We found T = 0.4 to be a good value in experiments.
The R̄ metric is quite robust against small permutations

of accesses. For example, the relative position of a block
changes very little if access to it is exchanged with the
access before or after it.

Block sampling. It is easy to see that the cost of com-
puting R̄ per access is O(|L|). This calculation could hence
become rather expensive for PCs accessing a large number
of blocks. Sampling can be applied to reduce this cost.
A quick calculation reveals that by sampling 1/m pages,
the total overhead could be reduced to roughly 1/m2 of the
original. We could also adapt the sampling rate such that |L|
is bounded, thus limits the per-access overhead to a constant
upper-bound. For details, see [7].

2.2 Low-overhead Partitioned Cache Management

The Cache Manager manages the cache according to
the access pattern of each program context. AMP bases
cache partition sizing decisions marginal gain estimation
[5]. However, it differs from previous work in the way
marginal gains are used. Both UBM and PCC evict from
the partition with the smallest estimated marginal gain
when a free block is needed. Unfortunately, finding this
block can be expensive. Moreover, gain estimations are
often inaccurate and delayed, which may lead to a large
number of wrong evictions and overcorrections. AMP
avoids these problems by using a randomized eviction
policy and allowing cache partitions compete for new
blocks. When a cache miss occurs, AMP forces some other
randomly chosen partition to evict a page to free memory
for the new page. This serves to increase the size of each
partition proportional to it’s marginal gain; over time the
partition sizes move towards a balance of equal marginal
gain. This achieves the same local optimum as previous
approaches but with far lower overhead.

The actual adaptation algorithm is briefly as follows (See
[7] for complete specification and justification). When a
cache miss happens, a free block is allocated if one is avail-
able. Otherwise, an occupied block needs to be evicted. If
the missed block is in the ghost queues of ARC (B1 and B2
in [6]), a block from a random MRU partition is evicted. If
instead the access is from a looping context, we evict from a
random partition with probability arc ghost len/loop size

i
,

where arc ghost len is the length of the ghost queues of the
ARC partition and loop sizei is the estimated number of
blocks in every loop of the missed MRU partition. Other-
wise, we just evict the MRU block of the missed partition.

2.3 Linux Implementation

We have implemented AMP for Linux 2.6.8.1. The
program contexts are identified by walking the user-level
stack and hashing together function return addresses. The
AMP cache manager is implemented by extending the
Linux buffer cache, called page cache. The fact that buffer
caching is tightly integrated into the virtual memory system
in Linux poses some challenge to the implementation,
as discussed in [7]. The pattern detector is implemented
at user-level and operates periodically. It calls upon a
kernel trace collector periodically to collect sampled disk

2005 USENIX Annual Technical Conference USENIX Association372

10 100
0

1

Cache size

H
it

ra
te

MRU

LRU

(a) (b) (c) (d) (e) (f) (g)
Figure 1: Traces used to compare detection schemes and their hit rates with LRU and MRU

Stream AMP (R̄) DEAR PCC
a other (0.755) other loop
b loop (0.001) loop loop
c loop (0.347) other loop
d other (0.617) other loop
e loop (0.008) loop loop
f loop (0.010) other other
g other (0.513) other loop

Table 1: Access pattern detection results of streams in
Figure 1. Incorrect results are underlined.

I/O trace, along with corresponding program context
information. The detection results are fed back to the
kernel using the /proc file system interface.

3 Evaluation

3.1 Detection Scheme

We compared the AMP access detection scheme to
DEAR[2] and PCC[4] using simulation. We implemented
these based on the specifications in [2] and [4], respectively.
All schemes work well for detecting pure looping patterns.
Therefore we focus our experiments on accesses with
patterns but, more importantly, irregularities. We
synthesize several such access streams, as shown in
Figure 1. Each stream accesses blocks numbered from
1-100. (a) shows temporally clustered accesses slowly
moving through a file. (b) is pure loops and (c) is loops with
each block moved around randomly (expected distance
0.5). (d) is temporally clustered with local loops. (e)
and (f) are loops in which a block is accessed again with
probability 0.6 and 0.5 respectively. (g) is uniformly
random. The MRU and LRU hit rates in Figure 1 clearly
indicate the best caching policy for each stream. Detection
results of the algorithms are shown in Table 1.

Table 1 shows that AMP detects the correct pattern each
time. DEAR detects the correct patterns except for (c) and
(f). The DEAR scheme requires two parameters, detection
interval and group size. We set the detection interval to half
of the stream length, so that DEAR does a single detection
over the whole stream. Group size is set to 10. DEAR
is quite sensitive to changes in the stream. For example,
both (b)(c) and (e)(f) are pairs of similar streams. However
DEAR succeeds for one but fails for the other in both cases.
As discussed in section 1, the PCC detection scheme tends
to mix locality with looping. Here it misclassifies three

non-loop streams as loops. Actually it detects the highly
temporally clustered stream (a) as looping.

3.2 Caching Performance

We used trace-driven simulation to study caching perfor-
mance of AMP. Only a subset of our results are shown
here; our full results are presented in [7]. All traces were
collected on a 2.4 GHz Pentium 4 Xeon PC server using
the tracing functionality of our AMP implementation. One
difficulty we encountered was that [4] does not does not
contain a detailed specification of PCC’s partitioned cache
manager. Hence, we implemented the PCC pattern detec-
tion algorithm and used AMP’s cache management mod-
ule. We believe this gives a fair evaluation of the detection
algorithm because it should be orthogonal to the cache man-
agement algorithm. We call this hybrid scheme PCC*.

Figure 2 shows results for using cscope to look up 5
symbols in the index (sized 106MB) of Linux kernel source
code. Because cscope does big looping accesses to the
index file, DEAR, PCC* and AMP all perform similarly and
much better than LRU and ARC, which see no improvement
until the cache is large enough to hold the whole index file.

The trace scan (Figure 3) shows a pathological case for
PCC*. In this trace, a test program walks the Linux ker-
nel source once and reads each file three times. These
“small loops” are classified as “loop” by PCC and MRU
is used. AMP classifies these as “temporally clustered”
because more recent blocks get accessed. Figure 3 shows
that PCC* performs much worse than all others, including
LRU.

Figure 4 shows performance while building the Linux
kernel. Since the accesses in this trace show a high degree
of locality and include many small loops, detection based
methods would cannot improve things by applying MRU.
In reality, PCC* and DEAR show degradation compared
to LRU/ARC. PCC classifies some “small loop” contexts
as loops and loses hits. AMP detects these correctly and
shows slight improvements over LRU and ARC.

Our final simulation test was of DBT3 [3], an open-
source implementation of the commercial TPC-H database
benchmark. This a relatively large trace. The whole
database is about 4GB, with each query against a large
portion of the database. It is run on PostgreSQL 7.4.2.
We ran only 16 of the 22 queries because the other 6 take
too long to finish (hours to days) due to known issues

2005 USENIX Annual Technical Conference USENIX Association 373

 0

 20

 40

 60

 80

 100

 1024 2048 4096 8192 16384 32768 65536

M
is

s
 R

a
te

 (
%

)

Cache Size (pages)

LRU
ARC
AMP

DEAR
PCC*
OPT

Figure 2: cscope

 0

 5

 10

 15

 20

 16 64 256 1024 4096 16384 65536

M
is

s
 R

a
te

 (
%

)

Cache Size (pages)

LRU
ARC
AMP

DEAR
PCC*
OPT

Figure 3: scan

 0

 10

 20

 30

 40

 50

 60

 70

 80

 64 128 256 512 1024 2048 4096 8192 16384

M
is

s
 R

a
te

 (
%

)

Cache Size (pages)

LRU
ARC
AMP

DEAR
PCC*
OPT

Figure 4: linuxkernel

 0

 10

 20

 30

 40

 50

 60

 70

 8192 16384 32768 65536 131072

M
is

s
 R

a
te

 (
%

)

Cache Size (pages)

LRU
ARC
AMP

DEAR
PCC*
OPT

Figure 5: dbt3

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300 350

 800

 600

 400

 200

 0

R
u
n
 t
im

e
 (

s
e
c
o
n
d
s
)

B
lo

c
k
s
 r

e
a
d
 (

th
o
u
s
a
n
d
)

Memory size (MB)

AMP run time
Vanilla run time

AMP blocks read
Vanilla blocks read

Figure 6: Glimpse on AMP and Linux

0

20

40

60

80

100

120

140

160

180

Q14 Q2 Q6
Q17 Q18 Q8

Q13 Q3
Q22 Q16 Q11 Q15 Q1

Q10 Q19 Q12

Q
ue

ry
ru

n
tim

e

AMP

Linux default

Figure 7: Query exec. times of dbt3

with PostgreSQL 7. At over 700M samples, this trace was
too large for our simulator. Hence we down-sampled this
trace by a factor of 7, reducing it’s working set to 1/7
of the original. Figure 5 shows detection based methods
out-perform ARC/LRU again here. DEAR shows less
improvement, probably because the the complex mix
of accesses from the database process makes DEAR’s
process-based detection less accurate. AMP and PCC*
yield greater improvements and perform similarly. For
example, for a cache size of 52016 pages, AMP achieves
miss rate of 25.9%, compared with ARC at 55.4% and
LRU at 57.6%, a reduction of more than 50%.

3.3 Measurement

Here we compare our AMP implementation with the default
Linux page cache by benchmarking real applications. Our
test machine was a Pentium 4 Xeon 2.4GHz server with
1GB of memory running Linux 2.6.8.1 with and without
our AMP modifications.

Our first test application was glimpse, a text-retrieval
tool. We use the glimpseindex command to index the
Linux 2.6.8.1 kernel source files (sized 222MB). The execu-
tion times and number of blocks read from disk are shown
in Figure 6. AMP shows significant performance improve-
ment over the Linux page cache. Run time decreases by up
to 13% and the number of blocks read from disk decreases
by up to 43%, both when memory size is 224 MB.

We also ran the DBT3 database workload, in the same
configuration as our dbt3 trace. Figure 7 shows the execu-
tion times of queries on AMP and plain Linux. AMP did
better in 11 queries and worse in 5 (Q14, Q2, Q8, Q22 and
Q12) (reason under investigation). AMP shortens the total
execution time by 9.6%, from 1091 seconds to 986 seconds.
Disk read traffic decreased by 24.8% from 15.4 to 11.6 GB.
Write traffic decreased by 6.5%, from 409 MB to 382 MB,
probably due to lower cache contention.

4 Conclusion
We have presented AMP, an adaptive caching system that
deduces information about an application’s structure and
uses it to pick the best cache replacement policy for each
program context. Compared to recent and concurrent ef-
forts, AMP is unique in that it uses a low-overhead and
robust access pattern detection algorithm, as well as a ran-
domized partition size adaptation algorithm. Simulation
confirms the effectiveness and robustness of the pattern de-
tection algorithm. And measurement results on the Linux
prototype are promising.

References
[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff,

and John K. Ousterhout. Measurements of a distributed file system. In
Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, pages 198–212. ACM Press, 1991.

[2] Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho.
An implementation study of a detection-based adaptive block
replacement. In Proceedings of the 1999 Annual USENIX Technical
Conference, pages 239–252, 1999.

[3] OSDL DBT3 database workload. http://www.osdl.org/
lab_activities/kernel_testing/osdl_database_
test_suite/osdl_dbt-3/.

[4] Chris Gniady, Ali R. Butt, and Y. Charlie Hu. Program counter based
pattern classification in buffer caching. In Proceedings of the 6th
Symposium on Operating Systems Design and Implementation (OSDI
’04), 2004.

[5] Jongmin Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul
Min, Yookun Cho, and Chong Sang Kim. A low-overhead
high-performance unified buffer managament scheme that exploits
sequential and looping reference. In Symposium on Operating System
Design and Implementation (OSDI’2000), 2000.

[6] Nimrod Megiddo and Dharmendra S. Modha. Outperforming LRU
with an adaptive replacement cache algorithm. Computer, 37(4):58–
65, 2004.

[7] Feng Zhou, Rob von Behreh, and Eric Brewer. Program context
specific buffer caching with AMP. Technical report, CS Division,
University of California, Berkeley, 2005.

2005 USENIX Annual Technical Conference USENIX Association374

