
Facilitating the Development of Soft Devices

Andrew Warfield, Steven Hand, Keir Fraser and Tim Deegan
University of Cambridge Computer Laboratory, J J Thomson Avenue, Cambridge, UK

{firstname.lastname}@cl.cam.ac.uk

1 Introduction

Device-level interfaces in operating systems present a very
useful cut-point for researchers to experiment with new
ideas. By virtualizing these interfaces, developers can cre-
ate soft devices, which are used in the same way as nor-
mal hardware devices, but provide extra functionality in
software. Recent years have shown this approach to be of
considerable interest: a few examples of block device ex-
tension include the addition of intrusion detection systems
to disk interfaces [1], the development of “semantically
smart” disks [2], and that of time-travel block devices [3].
Other devices, such as network interfaces, have similarly
been extended.

Working at the device interface allows an examination of
the functional separation between hardware and software:
researchers can simulate new features as if they were prop-
erties of the device itself. As simple examples, block or
network device interfaces might be extended to compress
or encrypt data before it is written to disk or transmitted.
Alternatively, it may be desirable to prototype entirely new
devices in software, bound to existing interfaces, for in-
stance a content-addressable disk.

Unfortunately, researchers face a challenge in extending
devices in this manner. Implementors must typically mod-
ify an existing operating system to add the new function-
ality, often by creating OS-specific pseudo-devices. This
requirement means learning the OS source and writing
scaffolding code to intercept events. Moreover, where
new functionality must be developed in-kernel it is diffi-
cult to debug and crashes are not contained. Finally, these
low-level developments are difficult to share and maintain
across systems, as they will be specific to the OS, or even
specific version thereof, that it has been developed within.

This paper presents a solution to the problems associated
with developing soft devices by extending the existing de-
vice interface in Xen [4]. Xen is a virtual machine monitor
(VMM) for the IA32 architecture that paravirtualizes hard-

ware: Rather than attempting to present a fully virtualized
hardware interface to each OS in a Xen environment, guest
OSes are modified to use a simple, narrow and idealized
view of hardware. Soft devices take advantage of these
narrow interface to capture and transform block requests,
network packets, and USB messages.

As an initial example of this approach, we have imple-
mented a block tap, which is an interface to facilitate the
development of soft devices for block device access. The
block tap allows soft devices to be constructed as user-
space applications in an entirely isolated virtual machine.
This strong isolation from the remainder of the system al-
lows a single soft device to work with any OS and hardware
available on Xen, and allows developers to work with high-
level languages and debuggers. While our approach aims
to facilitate development it still provides a high level of per-
formance, sustaining 50MB/s read throughput for disk re-
quests in our experiments.

2 Device Access in Xen

The existing approach to device access in Xen makes use
of split device drivers, and has been described in detail in
[5]. Figure 1 illustrates a split driver: A device driver VM
is granted specific access to the physical hardware that it
will manage. This VM runs an existing, unmodified (e.g.
Linux) device driver to access the device. In addition it
runs a back-end driver, which provides a simple narrow in-
terface to the device. Operating systems wishing to access
the device will use a front-end driver, and interact with the
back-end over a device channel, which is a shared-memory
communications primitive.

This approach aims to improve system stability while still
supporting existing device drivers by isolating drivers in
a single VM, away from both other OSes and the VMM.
Perhaps more importantly though, the split driver interface
simplifies device access for operating systems above Xen,
as an OS need only implement a single front-end driver to

2005 USENIX Annual Technical Conference USENIX Association 379

Xen

Device VM Guest OS

Block
Front-end

Driver

Block
Back-end

Driver

Physical
Device
Driver

device
channel

Split Device Drivers in Xen
Physical driver runs in an isolated VM, connected over a shared memory device
channel to a guest VM accessing the device.

Figure 1: Split device drivers in Xen

support an entire class of devices (e.g. block storage).

Xen’s current split block device illustrates exactly how nar-
row this interface is. The device channel shown in Figure 1
is a single page of memory shared between the two VMs.
A bi-directional ring buffer is used to pass messages. Pages
of data are attached and mapped separately. The interface
has only three commands: READ, WRITE, and PROBE.
READ and WRITE provide block-level access to data, while
PROBE returns a list of accessible block devices.

3 Implementing a soft device Interface

This section describes how we have extended Xen’s exist-
ing split device interface to support the development of soft
devices. We describe an implementation of a block tap that
allows the construction block soft devices. In designing
and implementing the block tap, we have attempted to meet
three general requirements:

1. Make device implementation easy. Our principal
goal is to facilitate the development and exploration
of new functionality for device interfaces. We have
chosen to give developers the option of receiving de-
vice requests through a user-level interface in the soft
device domain, allowing development in a safe envi-
ronment with a variety of languages and tools.

2. Do not modify the existing guest OS or device VM.
While Xen itself achieves performance by modifying
the guest operating system, we desire that the soft de-
vice interface leave the attached front-end and back-
end VMs unmodified. This approach allows the devel-
opment of soft devices between any hardware and OS
combination supported by Xen without necessitating
the modification (or even understanding) of that code.
Additionally, the soft device interface may be used to
trace, debug, or modify an existing split device con-
nection. As such, all soft device implementation exists
within an isolated VM using only the shared-memory
device channels as an interface.

3. Maintain satisfactory performance. We hope to use
soft devices in practical situations, and not just as a

Xen

Block Tap VM

Soft Device Application

device
channel

device
channel

user dev
channel

user dev
channel

Block Tap Device Structure

back-end
ring page

front-end
ring page

additional address space
for data page mappings

to back-end
in Device VM

to front-end
in Guest VM

Message
Switch

/dev/blocktap is mapped into application memory:

The application accesses the block device interface to generate and receive block
messages. The message switch has a variety of forwarding modes.

Figure 2: block tap structure.

prototyping tool. By taking advantage of the perfor-
mance allowed through request batching, we hope to
maintain a high level of throughput for soft devices.

The remainder of this section describes our block tap im-
plementation addressing these requirements. The block tap
is currently about 1300 lines of commented C code, and
runs in a Linux-based VM.

3.1 A Switch for Block Requests

The potential ways in which a soft device interface might
be used are varied. Developers may desire to simply trace
request traffic in order to monitor usage patterns, they may
wish to modify in-flight requests, or they may desire to
construct a terminating device, which does not forward re-
quests at all.

In order to accommodate these varied modes of operation,
we have implemented the soft device interface as a request
switch. The driver is plumbed into the device channel be-
tween the front-end and back-end domains. In this position,
all block requests pass through it.

The new driver acts as a switch, shown in Figure 2, for-
warding messages across four rings. Two of these rings are
inter-VM shared memory rings as described above. They
connect to the front-end and back-end drivers that the soft
device interface has been placed between. Two additional
rings extend from the block tap up to application space in
the same VM. These rings are accessed through a character
device that can be mapped by applications.

An ioctl() to this character device is used to set the
switching mode used for block messages. Three common
modes are described here, and shown in Figure 3.

MODE PASSTHROUGH is the lowest-overhead switching
configuration. In this mode, messages are passed straight
through the driver on to the opposite ring, and completely

2005 USENIX Annual Technical Conference USENIX Association380

Block Message Switch

device
channel

device
channel

user dev
channel

user dev
channel

Examples of Forwarding Modes in the Block Tap

to back-end
in Device VM

to back-end
in Application

to front-end
in Guest VM

to front-end
in Application

Example A: MODE_PASSTHROUGH

Block Message Switch

device
channel

device
channel

user dev
channel

user dev
channel

to back-end
in Device VM

to back-end
in Application

to front-end
in Guest VM

to front-end
in Application

Example B: MODE_INTERPOSE

Block Message Switch

device
channel

device
channel

user dev
channel

user dev
channel

to back-end
in Application

to front-end
in Guest VM

to front-end
in Application

Example C: MODE_INTERCEPT_FE

Figure 3: Examples of forwarding modes.

bypass the user rings. Passthrough can be used to imple-
ment kernel-level monitoring of block requests, or to im-
plement soft devices in-kernel for improved performance.

MODE INTERPOSE routes all requests and replies across
the user rings. An application must attach to the block tap
interface and pass messages across the two rings, allow-
ing complete monitoring and modification of the request
stream at the application level. This mode can be used
to modify in-flight requests, for instance to build a com-
pressed or encrypted block store.

MODE INTERCEPT FE uses only the front-end rings on
the driver, disabling the back-end altogether. This mode al-
lows the construction of full, application-level soft devices,
using existing OS interfaces (such as memory, or mounted
file systems) as a backing store. This mode can be used to
easily prototype new functionality, or to forward block re-
quests to a block device back-end on another physical host
(after an OS migration, for instance1).

1OS migration is feature that we have recently added to Xen, allowing
a running OS to move from one physical host to another while executing.
One problem which managing migration is that local disks will be left
behind.

3.2 The Application Interface

As shown in Figure 2, the user rings are exported to a char-
acter device, which is mapped by a library allowing access
to the message rings and in-flight requests. Our current
implementation allows chains of plugins to be attached to
handle block requests. We presently have plugins to pro-
vide both copy-on-write and encrypted disks and to allow
direct access to image files and remote GNBD disks.

4 Evaluation

Figure 4 shows an analysis of the impact of soft devices on
block request performance with respect to both throughput
and latency. Tests were performed on a Compaq Proliant
DL360, which is a dual Pentium III 733MHz machine with
72.8GB Ultra3 SCSI disks.

Throughput measurements aimed to test the maximum
achievable read and write speeds to the local disk.
The left graph in Figure 4 shows read and write
throughput moving four gigabytes of sequential data to
and from disk. The three bars in the graph com-
pare the throughput without using the block tap, using
the block tap in MODE PASSTHROUGH, and finally in
MODE INTERPOSE. As shown, our soft device interface
results in a minimal degradation of throughput. We are ca-
pable of achieving 50MB/s read throughput, identical to
that achieved by Xen’s existing split drivers. On writes,
we see about a 15% overhead; we are still investigating the
source of this loss of performance.

Latency measures the per-request overhead of synchronous
requests to disk. Given that disk requests are heavily
batched in general, this is a less meaningful measurement
for normal workloads. However, it does represent a worst-
case overhead and also gives a clearer illustration of the
costs that our implementation imposes. The right graph in
Figure 4 shows mean request times across 100,000 4-byte
synchronous writes. We see a small overhead in passing
requests through the kernel of the virtual device domain
in MODE PASSTHROUGH, reflecting the cost of an addi-
tional VM context switch and request/response copy2 in
each direction. MODE INTERPOSE is considerably more
expensive as it adds two additional context switches and
two message copies, in order to pass messages through a
user-space application. There are additional costs in map-
ping attached data pages to user space. However, even this
overhead has insignificant impact given the length of av-
erage disk seek times. We intend to explore the more de-
manding performance requirements of network devices in
the coming months.

2Note that only the request and response structs (respectively 60 and
7 bytes) are copied on the shared memory rings. Pages of data are refer-
enced and mapped separately.

2005 USENIX Annual Technical Conference USENIX Association 381

write read

Th
ro

ug
hp

ut
 (M

B
/s

)

0

10

20

30

40

50

60

70

Overhead on Disk Throughput

No Interception
MODE_PASSTHROUGH
MODE_INTERPOSE

request

La
te

nc
y

(m
ic

ro
se

co
nd

s)
0

50

100

150

200

250

300

350

400

450

Overhead on Per−Request Latency

No Interception
MODE_PASSTHROUGH
MODE_INTERPOSE

Figure 4: Overhead of virtual block devices.

5 Related and Future Work

The use of virtual machines to provide device extensibil-
ity has been explored previously in µDenali [6]. While
our intentions of facilitating development of soft devices
are identical, our system is very different. µDenali is
a VMM hosting BSD VMs, which access devices over
micro-kernel-style IPC through Mach’s port abstractions.
Xen does not use synchronous micro-kernel-style IPC; in-
stead it detaches message transfer (copying/mapping pages
between VMs) from notification (virtual interrupts), to
achieve high throughput through message batching. We
feel that these differences are interesting for two reasons:
first, the design presented here represents a considerably
different approach to that presented in [6]. Second, as Xen
is a publicly available VMM and supports the production
use of several popular OSes, we hope that the availability
of this work is of general interest to other researchers.

The block tap itself is similar in some ways to the FreeBSD
GEOM and Linux EVMS projects, both of which provide
a great deal of extensibility the their respective systems’
block device interfaces. The block tap aims to provide
similar extensibility, but in a virtualized environment, thus
catering to a range of operating systems. The use of virtu-
alization also allows strong isolation for soft devices, en-
hancing stability.

We view the soft device interface as an enabling tool for
future work. As mentioned earlier, other projects have
explored the use of interposition on device interfaces for
such goals as intrusion detection [1], semantically smart
disks [2], and fault diagnosis [3]. Two projects that we are
particularly interested in exploring over these interfaces in
the coming months are described here.

Parallax - a cluster storage system for virtual hosts.
Managed virtual machines present different file system re-
quirements than are currently available through distributed
or cluster file systems, or network-attached storage. We are

currently building a cluster-based storage system to provide
high-availability storage for virtual OSes that may migrate
between physical hosts, return to arbitrary historical snap-
shots, and which likely exhibit a large amount of common-
ality in terms of their system images.

Data-stream watchpoints for pervasive debugging. In-
terposing on block and network requests will allow exist-
ing OS debugger work above Xen to be extended to enable
break and watch points on specific content. We intend to al-
low debugging to be triggered if a specific file is modified,
or certain network traffic is sent or received.

6 Conclusion

This paper has briefly presented the implementation of a
virtual device interface for OSes on the Xen VMM. Our
implementation enables the construction of new function-
ality to trace, interpose on, or extend existing block device
interfaces. We look forward to extending this approach to
support network and USB devices, and to building systems
above it.

References

[1] A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Goodson,
and G. Ganger. Storage-based intrusion detection: Watching
storage activity for suspicious behavior. In Proceedings of the
USENIX Security Symposium., August 2003.

[2] M. Sivathanu, V. Prabhakaran, F. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Semantically-Smart Disk Systems. In Proceedings of the Sec-
ond USENIX Symposium on File and Storage Technologies
(FAST ’03), pages 73–88, March 2003.

[3] A. Whitaker, R. S. Cox, and S. D. Gribble. System admin-
istration as search: Finding the needle in the haystack. In
Proceedings of the 6th Symposium on Operating System De-
sign and Implementation (OSDI ’04), December 2004.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles (SOSP19), pages 164–
177. ACM Press, 2003.

[5] K. Fraser, S. Hand, I. Pratt, A. Warfield, R. Neugebauer, and
M. Williamson. Safe hardware access with the Xen virtual
machine monitor. In Proceedings of the First Workshop on
Operating System and Architectural Support for the on de-
mand IT Infrastructure (OASIS-2004), October 2004.

[6] A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble. Con-
structing services with interposable virtual hardware. In Pro-
ceedings of the First Symposium on Networked Systems De-
sign and Implementation (NSDI ’04), March 2004.

2005 USENIX Annual Technical Conference USENIX Association382

