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Figure 2. IPC and L2 miss ratio for the SPEC workload

Figure 1. IPC and L1 data cache miss ratio for the SPEC
workload
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depending on the experiment. For more details on our
simulator and for the explanation of our choices for
system configuration parameters, please refer to our
earlier papers [11, 21].

To analyze processor sensitivity to the L1 cache
miss ratio, we measured cache miss ratios and
instructions per cycle (IPC) for the benchmarks from
the SPEC CPU2000 suite, varying the size of the data
cache from 8KB to 128KB. In each experiment we ran
four copies of the same benchmark on a single-core
machine – the threads running the workload shared the
core’s data cache.

Figure 1 shows the average miss ratios and IPC
for the benchmarks. The key point of this figure is that
even though the increase of cache miss ratios is
significant (from 8% for the 128KB cache to 25% for
the 8KB cache), the IPC is relatively insensitive to this
variation.

Now, consider a similar experiment with the L2
cache. We configured our simulator to have two cores,
and ran the SPEC benchmarks simultaneously, creating
a workload of heterogeneous threads.

Figure 2 shows the processor IPC and the L2
cache miss ratio for various L2 cache sizes. IPC
degradation is evident as the L2 cache becomes smaller
– this shows that the processor performance is
significantly dependent upon the L2 cache.

This result is worthy of serious attention. Modern
applications exhibit a trend of becoming progressively
more memory-intensive. While CMT processors may
be equipped with enough cache for the time being, it is
likely that in the future it will be more difficult for
CMT processors to satisfy application cache needs.
Equipping these processors with larger L2 caches may
be difficult: as the microchip technology is moving
beyond the 90-nm mark, packing more and more
transistors on a processor becomes increasingly more

complicated due to limitations of silicon technology.
To ensure that our systems run well in the future, it is
important that the software community develop
techniques to improve resource utilization of CMT
processors. In the next section we describe an L2-
cache-conscious scheduling algorithm and quantify the
potential performance improvement that it can produce.

3. BALANCE-SET SCHEDULING
Balance-set scheduling was proposed by Denning

[14] as a way to improve the performance of virtual
memory. We evaluated the effectiveness of this
approach for the L2 cache. The idea behind balance-set
scheduling is as follows. Separate all runnable threads
into subsets, or groups, such that the combined working
set of each group fits in the cache. Then, schedule a
group at a time for the duration of the scheduling time
slice. By making sure that the working set of each
scheduled group fits in the cache, this algorithm
reduces cache miss ratios.

However, we found that working set size is not a
good indicator of a workload's cache behavior [21]: the
reuse pattern of memory locations in the working set is
more important than the size of the working set. In
order to estimate a cache miss ratio produced by a
group of threads we used a cache model for single-
threaded workloads developed by Berg and Hagersten
[13], and adapted it to work for multi-threaded
workloads [21].

Using this model we are able to estimate cache
miss ratios of multithreaded workloads to within 17%
of their actual values, on average. Such accuracy is
satisfactory, because it is sufficient to distinguish
between those workloads that fit in the cache and those
that thrash.

Once we are able to estimate the cache miss ratio
of any group of threads we can decide which threads
should be scheduled together. By scheduling threads in
groups that have low cache miss ratios, we ensure that
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the miss ratio is always kept low, and the overall IPC is
high. We also need to make sure that each runnable
thread is included in at least one of the scheduled
groups, so that none are starved.

The steps involved in our algorithm are:
1. Estimate cache miss ratios for all possible groups

of threads using the Berg-Hagersten-based model.
2. Select cache miss ratio threshold
3. Schedule those thread groups whose estimated

cache miss ratio is below the threshold.

Before implementing this algorithm in the operating
system, we wanted to be sure that it would be worth the
effort. Therefore, we quantified the potential for
performance improvement using a scheduler prototype,
which we implemented partially at user-level and
partially inside the simulator. We now briefly describe
the prototype implementation of these steps; a more
detailed description appears in our earlier work [21].

Estimating cache miss ratios using the Berg-
Hagersten model requires monitoring threads’ memory
re-use patterns. To implement such monitoring it is
necessary to construct a sample of memory locations
that a thread references and then to watch how often
those locations are reused. Using this approach in a
real system is expensive, because it requires handling
frequent processor traps. Although we are working on a
low-overhead way to approximate the measurements
produced by the memory-monitoring approach, in this
analysis we use the memory-monitoring approach
because it provides the best accuracy. Our hardware
simulator analyzes memory-reuse patterns of threads,
and produces the data that we use to estimate cache-
miss ratios for all groups of threads.

The cache miss ratio threshold guides the
scheduling decisions. Only the thread groups whose

estimated miss ratio is below the threshold will be
scheduled. We select the cache-miss ratio threshold
such that each thread is included in at least one of the
groups that satisfies the threshold; of all such possible
threshold values, we choose the lowest. This way we
ensure that none of the threads are starved.

In our prototype we enforced scheduling decisions
at user-level, binding threads to processors using the
mechanisms available through a user-level library on
the Solaris operating system.

We now present performance results achieved
using our algorithm. We use the multi-process SPEC
CPU workload – the same that we used for the analysis
of IPC sensitivity in the previous section. We compare
the IPC and the L2 cache miss ratio of this workload
achieved using the default Solaris scheduler, and
using our balance-set scheduler prototype. Figure 3
presents the IPC for both schedulers, Figure 4 presents
the L2 cache miss ratio. In all cases, the balance-set
scheduler outperforms the default scheduler. The IPC
gain from the balance-set scheduler is from 27%
(384KB L2) to 45% (48KB L2). This improvement in
the IPC is due to reduction in cache miss ratios. As
Figure 4 shows, with balance-set scheduling we were
able to reduce the L2 miss ratios by 25-37%.

The performance improvement resulted from
constructing thread groups so that they would share the
cache amiably, producing a low L2 miss ratio, and
achieving high IPC as a result.

4. DISCUSSION
The magnitude of the performance improvement

from balance-set scheduling depends on the properties
of the workload. Since the balance-set scheduler
exploits the disparity in threads’ cache behaviors, if all
threads in the workload behave in a similar manner,
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Figure 3. IPC achieved with the default scheduler and the
balance-set scheduler.
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Figure 4. L2 cache miss ratios achieved with the
default scheduler and the balance-set scheduler.
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large performance gains cannot be realized.
Understanding how the characteristics of the workload
affect potential performance gains is the subject of
future work. We also need to determine how balance-
set scheduling affects fairness: sacrificing fairness for
performance is a canonical trade-off made in
scheduling algorithms.

Implementing cache-miss ratio analysis using
memory monitoring and examining all possible groups
of threads to select those that satisfy the miss ratio
threshold is expensive. We are working on a novel
low-overhead way of approximating these operations
and are now implementing the balance-set scheduler in
Solaris 10.

5. CONCLUSIONS
In this paper we presented results of the first study

evaluating the performance of a CMT processor. We
analyzed how contention for L1 and L2 caches affects
performance. We determined that contention for the L2
cache has the greatest effect on system performance –
therefore, this is where system designers should focus
their optimization efforts.

We investigated how to leverage the operating
system scheduler to reduce the pressure on the L2
cache, using balance-set scheduling.

We demonstrated that with balance-set scheduling
it is possible to reduce the L2 cache miss ratio by 25-
37% and increase performance by 27-45%.

The implementation of the scheduler is currently
under way. In the future, we also plan to investigate
how workload characteristics affect the potential
performance gains from this algorithm and the
associated fairness tradeoffs.
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