
Hyper-Threading Aware Process Scheduling Heuristics

James R. Bulpin and Ian A. Pratt
University of Cambridge Computer Laboratory
James.Bulpin@cl.cam.ac.uk, http://www.cl.cam.ac.uk/netos

Abstract
Intel Corporation’s “Hyper-Threading Technology” is
the first commercial implementation of simultaneous
multithreading. Hyper-Threading allows a single phys-
ical processor to execute two heavyweight threads (pro-
cesses) at the same time, dynamically sharing processor
resources. This dynamic sharing of resources, particu-
larly caches, causes a wide variety of inter-thread be-
haviour. Threads competing for the same resource can
experience a low combined throughput.
Hyper-Threads are abstracted by the hardware as log-
ical processors. Current generation operating systems
are aware of the logical-physical processor hierarchy and
are able to perform simple load-balancing. However, the
particular resource requirements of the individual threads
are not taken into account and sub-optimal schedules can
arise and remain undetected.
We present a method to incorporate knowledge of per-
thread Hyper-Threading performance into a commod-
ity scheduler through the use of hardware performance
counters and the modification of dynamic priority.

1 Introduction

Simultaneous multithreaded (SMT) processors allow
multiple threads to execute in parallel, with instructions
from multiple threads able to be executed during the
same cycle [10]. The availability of a large number of
instructions increases the utilization of the processor be-
cause of the increased instruction-level parallelism.
Intel Corporation introduced the first commercially
available implementation of SMT to the Pentium 4 [2]
processor as “Hyper-Threading Technology” [3, 5, 4].
Hyper-Threading is now common in server and desktop
Pentium 4 processors and becoming available in the mo-
bile version. The individual Hyper-Threads of a phys-
ical processor are presented to the operating system as
logical processors. Each logical processor can execute

a heavyweight thread (process); the OS and applications
need not be aware that the logical processors are sharing
physical resources. However, some OS awareness of the
processor hierarchy is desirable in order to avoid circum-
stances such as a two physical processor system having
two runnable processes scheduled on the two logical pro-
cessors of one package (and therefore sharing resources)
while the other package remains idle. Current generation
OSs such as Linux (version 2.6 and later versions of 2.4)
and Windows XP have this awareness.
When processes share a physical processor the sharing
of resources, including the fetch and issue bandwidth,
means that they both run slower than they would do if
they had exclusive use of the processor. In most cases
the combined throughput of the processes is greater than
the throughput of either one of them running exclusively
— the system provides increased system-throughput at
the expense of individual processes’ throughput. The
system-throughput “speedup” of running tasks using
Hyper-Threading compared to running them sequentially
is of the order of 20% [1, 9]. We have shown previously
that there are a number of pathological combinations
of workloads that can give a poor system-throughput
speedup or give a biased per-process throughput [1]. We
argue that the operating system process scheduler can
improve throughput by trying to schedule processes si-
multaneously that have a good combined throughput. We
use measurement of the processor to inform the sched-
uler of the realized performance.

2 Performance Estimation
In order to provide throughput-aware scheduling the OS
needs to be able to quantify the current per-thread and
system-wide throughput. It is not sufficient to measure
throughput as instructions per cycle (IPC) because pro-
cesses with natively low IPC would be misrepresented.
We choose instead to express the throughput of a pro-
cess as a performance ratio specified as its rate of execu-
tion under Hyper-Threading versus its rate of execution

2005 USENIX Annual Technical Conference USENIX Association 399



when given exclusive use of the processor. An appli-
cation that takes 60 seconds to execute in the exclusive
mode and 100 seconds when running with another appli-
cation under Hyper-Threading has a performance ratio
of 0.6. The system speedup of a pair of simultaneously
executing processes is defined as the sum of their per-
formance ratios. Two instances of the previous example
running together would have a system speedup of 1.2 —
the 20% Hyper-Threading speedup described above.
The performance ratio and system speedup metrics
both require knowledge of a process’ exclusive mode ex-
ecution time and are based on the complete execution of
the process. In a running system the former is not known
and the latter can only be known once the process has
terminated by which time the knowledge is of little use.
It is desirable to be able to estimate the performance ra-
tio of a process while it is running. We want to be able
to do this online using data from the processor hardware
performance counters. A possible method is to look for a
correlation between performance counter values and cal-
culated performance; work on this estimation technique
is ongoing, however, we present here a method used to
derive a model for online performance ratio estimation
using an analysis of a training workload set.
Using a similar technique to our previous measure-
ment work [1] we executed pairs of SPEC CPU2000
benchmark applications on the two logical processors of
a Hyper-Threaded processor; each application running
in an infinite loop on its logical processor. Performance
counter samples were taken at 100ms intervals with the
counters configured to record for each logical proces-
sor the cache miss rates for the L1 data, trace- and L2
caches, instructions retired and floating-point operations.
A stand-alone base dataset was generated by executing
the benchmark applications with exclusive use of the pro-
cessor, recording the number of instructions retired over
time. Execution runs were split into 100 windows of
equal instruction count. For each window the number of
processor cycles taken to execute that window under both
Hyper-Threading and exclusive mode were used to com-
pute a performance ratio for that window. The perfor-
mance counter samples from the Hyper-Threaded runs
were interpolated and divided by the cycle counts to give
events-per-cycle (EPC) data for each window. A set of 8
benchmark applications (integer and floating-point, cov-
ering a range of behaviours) were run in a cross-product
with 3 runs of each pair, leading to a total of 16,800 win-
dows each with EPC data for the events for both the ap-
plication’s own, and the “background” logical processor.
A multiple linear regression analysis was performed us-
ing the EPC data as the explanatory variables and the ap-
plication’s performance ratio as the dependent variable.
The coefficient of determination (the R2 value), an indi-
cation of how much of the variability of the dependent

variable can be explained by the explanatory variables,
was 66.5%, a reasonably good correlation considering
this estimate is only to be used as a heuristic. The coeffi-
cients for the explanatory variables are shown in Table 1
along with the mean EPC for each variable (shown to put
the magnitudes of the variables into context). The fourth
column of the table indicates the importance of each
counter in the model by multiplying the standard devi-
ation of that metric by the coefficient; a higher absolute
value here shows a counter that has a greater effect on
the predicted performance. Calculation of the p-values
showed the L2 miss rate of the background process to be
statistically insignificant (in practical terms this metric is
covered largely by the IPC of the background process).
The experiment was repeated with a different subset of
benchmark applications and the MLR model was used to
predict the performance ratio for each window. The co-
efficient of correlation between the estimated and mea-
sured values was 0.853, a reasonably strong correlation.
We are investigating refinements to this model by con-
sidering other performance counters and input data.

3 Scheduler Modifications
Rather than design a Hyper-Threading aware scheduler
from the ground up, we argue that gains can be made
by making modifications to existing scheduler designs.
We wish to keep existing functionality such as starvation
avoidance, static priorities and (physical) processor affin-
ity. A suitable location for Hyper-Threading awareness
would be in the calculation of dynamic priority; a candi-
date runnable process could be given a higher dynamic
priority if it is likely to perform well with the process
currently executing on the other logical processor.
Our implementation uses the Linux 2.4.19 kernel.

Counter Coefficient Mean events Importance
per 1000 Cycles (coeff. x

(to 3 S.F.) (to 3 S.F.) st.dev.
(Constant) 0.4010
TC-subj 29.7000 0.554 26.2
L2-subj 55.7000 1.440 87.2
FP-subj 0.3520 52.0 29.8
Insts-subj -0.0220 258 -4.3
L1-subj 2.1900 10.7 15.4
TC-back 32.7000 0.561 29.0
L2-back 1.5200 1.43 2.3
FP-back -0.4180 52.6 -35.3
Insts-back 0.5060 256 99.7
L1-back -3.5400 10.6 -25.3

Table 1: Multiple linear regression coefficients for esti-
mating the performance ratio of the subject process. The
performance counters for the logical processor executing
the subject process are suffixed “subj” and those for the
background process’s logical processor, “back”.

2005 USENIX Annual Technical Conference USENIX Association400



This kernel has basic Hyper-Threading support in areas
other than the scheduler. We modify the goodness()
function which is used to calculate the dynamic priority
for each runnable task when a scheduling decision is be-
ing made; the task with the highest goodness is executed.
We present two algorithms: “tryhard” which biases the
goodness of a candidate process by how well it has per-
formed previously when running with the process on the
other logical processor, and “plan” which uses a user-
space tool to process performance ratio data and produce
a scheduling plan to be implemented (as closely as pos-
sible) in a gang-scheduling manner.
For both algorithms the kernel keeps a record of the
estimated system-speedups of pairs of processes. The
current tryhard implementation uses a small hash table
based on the process identifiers (PIDs). The performance
counter model described above is used for the estimates.
The goodness modification is to lookup the recorded esti-
mate for the pair of PIDs of the candidate process and the
process currently running on the other logical processor.
For each process p, plan records the three other pro-
cesses that have given the highest estimated system-
speedups when running simultaneously with p. Peri-
odically a user-space tool reads this data for all pro-
cesses and greedily selects pairs with the highest esti-
mated system-speedup. The tool feeds this plan back
to the scheduler which heavily biases goodness in or-
der to approximate gang-scheduling of the planned pairs.
Any processes not in the plan, or those created after the
planning cycle, will still run when processes in the plan
block or exhaust their time-slice. For both algorithms the
process time-slices are respected so starvation avoidance
and static priorities are still available.

4 Evaluation
The evaluation machine was an Intel SE7501 based
2.4GHz Pentium 4 Xeon systemwith 1GB of DDRmem-
ory. RedHat 7.3 was used, the benchmarks were com-
piled with gcc 2.96. A single physical processor with
Hyper-Threading enabled was used for the experiments.
The scheduling algorithms were evaluated with sets of
benchmark applications from the SPEC CPU2000 suite:
Set A: 164.gzip, 186.crafty, 171.swim, 179.art.
Set B: 164.gzip, 181.mcf, 252.eon, 179.art, 177.mesa.
Set C: 164.gzip, 186.crafty, 197.parser, 255.vortex, 300.

twolf, 172.mgrid, 173.applu, 179.art, 183.equake, 200.sixtrack.
Each benchmark application was run in an infinite
loop. Each experiment was run for a length of time suf-
ficient to allow each application to run at least once. The
experiment was repeated three times for each benchmark
set. The individual application execution times were
compared to exclusive mode times to get a performance
ratio similar to that described above. The sum of the
performance ratios for the benchmarks in the set gives a

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

CBA

S
ys

te
m

 S
pe

ed
up

Benchmark Set

native
basic

tryhard
plan

ipc

Figure 1: System-speedups for benchmark sets running
under the different scheduling algorithms.

system-speedup. The execution time for the entire appli-
cation, rather than a finer granularity, was used in order
to assess the over all effect of the scheduling algorithm
adapting to the effects of Hyper-Threading.
Each benchmark set was run with both tryhard and
plan; the stock Linux 2.4.19 scheduler “native”; the same
modified to provide physical, rather than logical, proces-
sor affinity “basic”; and an IPC-maximizing scheme us-
ing rolling-average IPC for each process and a goodness
modification to greedily select tasks with the highest IPC
(inspired by Parekh et al’s “G IPC” algorithm [7]).
Figure 1 shows the system-speedups (relative to run-
ning the tasks sequentially) for each benchmark set with
each scheduler. Improvements over native of up to
3.2% are seen; this figure is comparable with other work
in the field and is a reasonable fraction of the 20%
mean speedup provided by Hyper-Threading itself. The
tryhard scheduler does reasonably well on benchmark
sets B and C but results in a small slowdown on A:
the four applications execute in a lock-step, round-robin
fashion which tryhard is unable to break. It results in the
same schedule as native but suffers the overhead of es-
timating performance. This is an example of worst-case
behaviour that would probably be mitigated with a real,
changing workload. plan provides a speedup on all sets.
The fairness of the schedulers was tested by consid-
ering the variance in the individual performance ratios
of the benchmarks within a set. tryhard, plan and ba-
sic were as fair as, or fairer than native. The per-process
time-slices were retained which meant that applications
with low estimated performances were able to run once
the better pairings had exhausted their time-slices. As
would be expected, ipc was biased towards high-IPC
tasks, however, the use of process time-slices meant that
complete starvation was avoided. The algorithms were
also tested for their respect of static priorities (“nice”
values); both plan and tryhard behaved correctly. This

2005 USENIX Annual Technical Conference USENIX Association 401



behaviour is a result of retaining the time-slices; a higher
priority process is given a larger time-slice. Again, ipc
penalized low-IPC processes but this was partially cor-
rected by the retention of the time-slice mechanism.

5 Related Work
Parekh et al introduced the idea of thread-sensitive
scheduling [7]. They evaluated scheduling algorithms
based on maximizing a particular metric, such as IPC
or cache miss rates, for the set of jobs chosen in each
quantum. The algorithm greedily selected jobs with the
highest metric; there was no mechanism to prevent star-
vation. They found that maximizing the IPC was the best
performing algorithm over all their tests. Snavely et al’s
“SOS” (sample, optimize, symbios) “symbiotic” sched-
uler sampled different combinations of jobs and recorded
a selection of performance metrics for each jobmix [8].
The scheduler then optimized the schedule based on this
data executed the selected jobmixes during the “sym-
bios” phase. Nakajima and Pallipadi used a user-space
tool that read data from processor performance counters
and changed the package affinity of processes in a two
package, each of two Hyper-Threads, system [6]. They
aimed to balance load, mainly in terms of floating point
and level 2 cache requirements, between the two pack-
ages. They measured speedups over a standard scheduler
of approximately 3% and 6% on two test sets chosen to
exhibit uneven demands for resources. They only inves-
tigated workloads with four active processes, the same
number as the system had logical processors. The tech-
nique could extend to scenarios with more processes than
processors however the infrequent performance counter
sampling can hide a particularly high or low load of one
of the processes sharing time on a logical processor.

6 Conclusion and Further Work

We have introduced a practical technique for introduc-
ing awareness of the performance effects of Hyper-
Threading into a production process scheduler. We
have demonstrated that throughput gains are possible and
of a similar magnitude to alternative user-space based
schemes. Our algorithms respect static priorities and
starvation avoidance. The work on these algorithms is
ongoing. We are investigating better performance esti-
mation methods and looking at the sensitivity of the al-
gorithms to the accuracy of the estimation. We are con-
sidering implementation modifications to allow learned
data to be inherited by child processes or through subse-
quent instantiations of the same application.
The scheduling heuristics were demonstrated using the
standard Linux 2.4 scheduler – a single-queue dynamic
priority based scheduler where priority is calculated for
each runnable task at each rescheduling point. Linux

2.6 introduced the “O(1)” scheduler which maintains a
run queue per processor and does not perform goodness
calculations for each process at each reschedule point.
The independence of scheduling between the processors
complicates coordination of pairs of tasks. We plan to
investigate further how our heuristics could be applied to
Linux 2.6.

Acknowledgements
We would like to thank our shepherd, Vivek Pai, and the
anonymous reviewers. James Bulpin was funded by a
CASE award from EPSRC and Marconi Corp. plc.

References

[1] J. R. Bulpin and I. A. Pratt. Multiprogramming perfor-
mance of the Pentium 4 with Hyper-Threading. In Third
Annual Workshop on Duplicating, Deconstruction and
Debunking (at ISCA’04), pages 53–62, June 2004.

[2] G. Hinton, D. Sager, M. Upton, D. Boggs D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the
Pentium 4 processor. Intel Technology Journal, 5(1):1–
13, Feb. 2001.

[3] Intel Corporation. Introduction to Hyper-Threading Tech-
nology, 2001.

[4] D. Koufaty and D. T. Marr. Hyperthreading technology in
the netburst microarchitecture. IEEE Micro, 23(2):56–64,
2003.

[5] D. T. Marr, F. Binns, D. L. Hill, G. Hinton D. A. Koufaty,
J. A. Miller, and M. Upton. Hyper-Threading technol-
ogy architecture and microarchitecture. Intel Technology
Journal, 6(2):1–12, Feb. 2002.

[6] J. Nakajima and V. Pallipadi. Enhancements for Hyper-
Threading technology in the operating system — seek-
ing the optimal scheduling. In Proceedings of the 2nd
Workshop on Industrial Experiences with Systems Soft-
ware. The USENIX Association, Dec. 2002.

[7] S. S. Parekh, S. J. Eggers, H. M. Levy, and J. L. Lo.
Thread-sensitive scheduling for SMT processors. Tech-
nical Report 2000-04-02, University of Washington, June
2000.

[8] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling
for a simultaneous multithreading processor. In Proceed-
ings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS ’00), pages 234–244. ACM Press, Nov.
2000.

[9] N. Tuck and D. M. Tullsen. Initial observations of the si-
multaneous multithreading Pentium 4 processor. In Pro-
ceedings of the 12th International Conference on Parallel
Architectures and Compilation Techniques (PACT ’2003),
pages 26–34. IEEE Computer Society, Sept. 2003.

[10] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simulta-
neous multithreading: Maximizing on-chip parallelism.
In Proceedings of the 22th International Symposium on
Computer Architecture (ISCA ’95), pages 392–403. IEEE
Computer Society, June 1995.

2005 USENIX Annual Technical Conference USENIX Association402




