
2005 USENIX Annual Technical Conference USENIX Association 105

Analysis and Evolution of Journaling File Systems
Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Computer Sciences Department
University of Wisconsin, Madison

{vijayan, dusseau, remzi}@cs.wisc.edu

Abstract
We develop and apply two new methods for analyzing file sys-
tem behavior and evaluating file system changes. First, seman-
tic block-level analysis (SBA) combines knowledge of on-disk
data structures with a trace of disk traffic to infer file system be-
havior; in contrast to standard benchmarking approaches, SBA
enables users to understand why the file system behaves as it
does. Second, semantic trace playback (STP) enables traces of
disk traffic to be easily modified to represent changes in the file
system implementation; in contrast to directly modifying the file
system, STP enables users to rapidly gauge the benefits of new
policies. We use SBA to analyze Linux ext3, ReiserFS, JFS,
and Windows NTFS; in the process, we uncover many strengths
and weaknesses of these journaling file systems. We also apply
STP to evaluate several modifications to ext3, demonstrating the
benefits of various optimizations without incurring the costs of
a real implementation.

1 Introduction
Modern file systems are journaling file systems [4, 22,
29, 32]. By writing information about pending updates
to a write-ahead log [12] before committing the updates
to disk, journaling enables fast file system recovery after
a crash. Although the basic techniques have existed for
many years (e.g., in Cedar [13] and Episode [9]), journal-
ing has increased in popularity and importance in recent
years; due to ever-increasing disk capacities, scan-based
recovery (e.g., via fsck [16]) is prohibitively slow on mod-
ern drives and RAID volumes. However, despite the pop-
ularity and importance of journaling file systems such as
ext3 [32], ReiserFS [22], JFS [4], and NTFS [27] little is
known about their internal policies.

Understanding how these file systems behave is impor-
tant for developers, administrators, and application writ-
ers. Therefore, we believe it is time to perform a detailed
analysis of journaling file systems. Most previous work
has analyzed file systems from above; by writing user-
level programs and measuring the time taken for various
file system operations, one can elicit some salient aspects
of file system performance [6, 8, 19, 26]. However, it
is difficult to discover the underlying reasons for the ob-
served performance with this approach.

In this paper we employ a novel benchmarking method-
ology called semantic block-level analysis (SBA) to trace
and analyze file systems. With SBA, we induce controlled

workload patterns from above the file system, but focus
our analysis not only on the time taken for said operations,
but also on the resulting stream of read and write requests
below the file system. This analysis is semantic because
we leverage information about block type (e.g., whether a
block request is to the journal or to an inode); this analysis
is block-level because it interposes on the block interface
to storage. By analyzing the low-level block stream in a
semantically meaningful way, one can understand why the
file system behaves as it does.

Analysis hints at how the file system could be im-
proved, but does not reveal whether the change is worth
implementing. Traditionally, for each potential improve-
ment to the file system, one must implement the change
and measure performance under various workloads; if the
change gives little improvement, the implementation ef-
fort is wasted. In this paper, we introduce and apply a
complementary technique to SBA called semantic trace
playback (STP). STP enables us to rapidly suggest and
evaluate file system modifications without a large imple-
mentation or simulation effort. Using real workloads and
traces, we show how STP can be used effectively.

We have applied a detailed analysis to both Linux ext3
and ReiserFS and a preliminary analysis to Linux JFS and
Windows NTFS. In each case, we focus on the journaling
aspects of each file system. For example, we determine
the events that cause data and metadata to be written to
the journal or their fixed locations. We also examine how
the characteristics of the workload and configuration pa-
rameters (e.g., the size of the journal and the values of
commit timers) impact this behavior.

Our analysis has uncovered design flaws, performance
problems, and even correctness bugs in these file systems.
For example, ext3 and ReiserFS make the design decision
to group unrelated traffic into the same compound trans-
action; the result of this tangled synchrony is that a sin-
gle disk-intensive process forces all write traffic to disk,
particularly affecting the performance of otherwise asyn-
chronous writers. (§3.2.1). Further, we find that both ext3
and ReiserFS artificially limit parallelism, by preventing
the overlap of pre-commit journal writes and fixed-place
updates (§3.2.2). Our analysis also reveals that in ordered
and data journaling modes, ext3 exhibits eager writing,
forcing data blocks to disk much sooner than the typical
30-second delay (§3.2.3). In addition, we find that JFS

2005 USENIX Annual Technical Conference USENIX Association106

has an infinite write delay, as it does not utilize commit
timers and indefinitely postpones journal writes until an-
other trigger forces writes to occur, such as memory pres-
sure (§5). Finally, we identify four previously unknown
bugs in ReiserFS that will be fixed in subsequent releases
(§4.3).

The main contributions of this paper are:
• A new methodology, semantic block analysis (SBA),

for understanding the internal behavior of file systems.
• A new methodology, semantic trace playback (STP),

for rapidly gauging the benefits of file system modifica-
tions without a heavy implementation effort.
• A detailed analysis using SBA of two important jour-

naling file systems, ext3 and ReiserFS, and a preliminary
analysis of JFS and NTFS.
• An evaluation using STP of different design and im-

plementation alternatives for ext3.
The rest of this paper is organized as follows. In §2 we

describe our new techniques for SBA and STP. We apply
these techniques to ext3, ReiserFS, JFS, and NTFS in §3,
§4, §5, and §6 respectively. We discuss related work in
§7 and conclude in §8.

2 Methodology
We introduce two techniques for evaluating file systems.
First, semantic block analysis (SBA) enables users to un-
derstand the internal behavior and policies of the file sys-
tem. Second, semantic trace playback (STP) allows users
to quantify how changing the file system will impact the
performance of real workloads.

2.1 Semantic Block-Level Analysis
File systems have traditionally been evaluated using one
of two approaches; either one applies synthetic or real
workloads and measures the resulting file system perfor-
mance [6, 14, 17, 19, 20] or one collects traces to un-
derstand how file systems are used [1, 2, 21, 24, 35, 37].
However, performing each in isolation misses an interest-
ing opportunity: by correlating the observed disk traffic
with the running workload and with performance, one can
often answer why a given workload behaves as it does.

Block-level tracing of disk traffic allows one to analyze
a number of interesting properties of the file system and
workload. At the coarsest granularity, one can record the
quantity of disk traffic and how it is divided between reads
and writes; for example, such information is useful for
understanding how file system caching and write buffer-
ing affect performance. At a more detailed level, one can
track the block number of each block that is read or writ-
ten; by analyzing the block numbers, one can see the ex-
tent to which traffic is sequential or random. Finally, one
can analyze the timing of each block; with timing infor-
mation, one can understand when the file system initiates
a burst of traffic.

By combining block-level analysis with semantic infor-
mation about those blocks, one can infer much more about

Ext3 ReiserFS JFS NTFS
SBA Generic 1289 1289 1289 1289
SBA FS Specific 181 48 20 15
SBA Total 1470 1337 1309 1304

Table 1: Code size of SBA drivers. The number of C statements
(counted as the number of semicolons) needed to implement SBA
for ext3 and ReiserFS and a preliminary SBA for JFS and NTFS.

the behavior of the file system. The main difference be-
tween semantic block analysis (SBA) and more standard
block-level tracing is that SBA analysis understands the
on-disk format of the file system under test. SBA enables
us to understand new properties of the file system. For ex-
ample, SBA allows us to distinguish between traffic to the
journal versus to in-place data and to even track individual
transactions to the journal.

2.1.1 Implementation
The infrastructure for performing SBA is straight-
forward. One places a pseudo-device driver in the ker-
nel, associates it with an underlying disk, and mounts the
file system of interest (e.g., ext3) on the pseudo device;
we refer to this as the SBA driver. One then runs con-
trolled microbenchmarks to generate disk traffic. As the
SBA driver passes the traffic to and from the disk, it also
efficiently tracks each request and response by storing a
small record in a fixed-sized circular buffer. Note that
by tracking the ordering of requests and responses, the
pseudo-device driver can infer the order in which the re-
quests were scheduled at lower levels of the system.

SBA requires that one interpret the contents of the disk
block traffic. For example, one must interpret the con-
tents of the journal to infer the type of journal block (e.g.,
a descriptor or commit block) and one must interpret the
journal descriptor block to know which data blocks are
journaled. As a result, it is most efficient to semantically
interpret block-level traces on-line; performing this analy-
sis off-line would require exporting the contents of blocks,
greatly inflating the size of the trace.

An SBA driver is customized to the file system under
test. One concern is the amount of information that must
be embedded within the SBA driver for each file system.
Given that the focus of this paper is on understanding jour-
naling file systems, our SBA drivers are embedded with
enough information to interpret the placement and con-
tents of journal blocks, metadata, and data blocks. We
now analyze the complexity of the SBA driver for four
journaling file systems, ext3, ReiserFS, JFS, and NTFS.

Journaling file systems have both a journal, where
transactions are temporarily recorded, and fixed-location
data structures, where data permanently reside. Our SBA
driver distinguishes between the traffic sent to the jour-
nal and to the fixed-location data structures. This traffic
is simple to distinguish in ReiserFS, JFS, and NTFS be-
cause the journal is a set of contiguous blocks, separate
from the rest of the file system. However, to be backward

2005 USENIX Annual Technical Conference USENIX Association 107

compatible with ext2, ext3 can treat the journal as a reg-
ular file. Thus, to determine which blocks belong to the
journal, SBA uses its knowledge of inodes and indirect
blocks; given that the journal does not change location af-
ter it has been created, this classification remains efficient
at run-time. SBA is also able to classify the different types
of journal blocks such as the descriptor block, journal data
block, and commit block.

To perform useful analysis of journaling file systems,
the SBA driver does not have to understand many details
of the file system. For example, our driver does not under-
stand the directory blocks or superblock of ext3 or the B+
tree structure of ReiserFS or JFS. However, if one wishes
to infer additional file system properties, one may need
to embed the SBA driver with more knowledge. Never-
theless, the SBA driver does not know anything about the
policies or parameters of the file system; in fact, SBA can
be used to infer these policies and parameters.

Table 1 reports the number of C statements required to
implement the SBA driver. These numbers show that most
of the code in the SBA driver (i.e., 1289 statements) is
for general infrastructure; only between approximately 50
and 200 statements are needed to support different jour-
naling file systems. The ext3 specific code is more than
that of the other file systems because in ext3, journal is
created as a file and can span multiple block groups. In
order to find the blocks belonging to the journal file, we
parse the journal inode and journal indirect blocks. In
Reiserfs, JFS, and NTFS the journal is contiguous and
finding its blocks is trivial (even though the journal is a
file in NTFS, for small journals they are contiguously al-
located).

2.1.2 Workloads
SBA analysis can be used to gather useful information
for any workload. However, the focus of this paper is
on understanding the internal policies and behavior of the
file system. As a result, we wish to construct synthetic
workloads that uncover decisions made by the file system.
More realistic workloads will be considered only when we
apply semantic trace playback.

When constructing synthetic workloads that stress the
file system, previous research has revealed a range of pa-
rameters that impact performance [8]. We have created
synthetic workloads varying these parameters: the amount
of data written, sequential versus random accesses, the in-
terval between calls to fsync, and the amount of concur-
rency. We focus exclusively on write-based workloads be-
cause reads are directed to their fixed-place location, and
thus do not impact the journal. When we analyze each file
system, we only report results for those workloads which
revealed file system policies and parameters.

2.1.3 Overhead of SBA
The processing and memory overheads of SBA are mini-
mal for the workloads we ran as they did not generate high

I/O rates. For every I/O request, the SBA driver performs
the following operations to collect detailed traces:
• A gettimeofday() call during the start and end of I/O.
• A block number comparison to see if the block is a

journal or fixed-location block.
• A check for a magic number on journal blocks to dis-

tinguish journal metadata from journal data.
SBA stores the trace records with details like read or

write, block number, block type, time of issue and com-
pletion in an internal circular buffer. All these operations
are performed only if one needs detailed traces. But for
many of our analyses, it is sufficient to have cumulative
statistics like the total number of journal writes and fixed-
location writes. These numbers are easy to collect and
require less processing within the SBA driver.

2.1.4 Alternative Approaches
One might believe that directly instrumenting a file sys-
tem to obtain timing information and disk traces would be
equivalent or superior to performing SBA analysis. We
believe this is not the case for several reasons. First, to
directly instrument the file system, one needs source code
for that file system and one must re-instrument new ver-
sions as they are released; in contrast, SBA analysis does
not require file system source and much of the SBA driver
code can be reused across file systems and versions. Sec-
ond, when directly instrumenting the file system, one may
accidentally miss some of the conditions for which disk
blocks are written; however, the SBA driver is guaranteed
to see all disk traffic. Finally, instrumenting existing code
may accidentally change the behavior of that code [36];
an efficient SBA driver will likely have no impact on file
system behavior.

2.2 Semantic Trace Playback
In this section we describe semantic trace playback (STP).
STP can be used to rapidly evaluate certain kinds of new
file system designs, both without a heavy implementation
investment and without a detailed file system simulator.

We now describe how STP functions. STP is built as
a user-level process; it takes as input a trace (described
further below), parses it, and issues I/O requests to the
disk using the raw disk interface. Multiple threads are
employed to allow for concurrency.

Ideally, STP would function by only taking a block-
level trace as input (generated by the SBA driver), and in-
deed this is sufficient for some types of file system modifi-
cations. For example, it is straightforward to model differ-
ent layout schemes by simply mapping blocks to different
on-disk locations.

However, it was our desire to enable more powerful em-
ulations with STP. For example, one issue we explore later
is the effect of using byte differences in the journal, in-
stead of storing entire blocks therein. One complication
that arises is that by changing the contents of the journal,

2005 USENIX Annual Technical Conference USENIX Association108

the timing of block I/O changes; the thresholds that initi-
ate I/O are triggered at a different time.

To handle emulations that alter the timing of disk I/O,
more information is needed than is readily available in the
low-level block trace. Specifically, STP needs to observe
two high-level activities. First, STP needs to observe
any file-system level operations that create dirty buffers
in memory. The reason for this requirement is found in
§3.2.2; when the number of uncommitted buffers reaches
a threshold (in ext3, 1

4
of the journal size), a commit is en-

acted. Similarly, when one of the interval timers expires,
these blocks may have to be flushed to disk.

Second, STP needs to observe application-level calls
to fsync; without doing so, STP cannot understand
whether an I/O operation in the SBA trace is there due to
a fsync call or due to normal file system behavior (e.g.,
thresholds being crossed, timers going off, etc.). Without
such differentiation, STP cannot emulate behaviors that
are timing sensitive.

Both of these requirements are met by giving a file-
system level trace as input to STP, in addition to the SBA-
generated block-level trace. We currently use library-level
interpositioning to trace the application of interest.

We can now qualitatively compare STP to two other
standard approaches for file system evolution. In the first
approach, when one has an idea for improving a file sys-
tem, one simply implements the idea within the file sys-
tem and measures the performance of the real system.
This approach is attractive because it gives a reliable an-
swer as to whether the idea was a real improvement, as-
suming that the workload applied is relevant. However, it
is time consuming, particularly if the modification to the
file system is non-trivial.

In the second approach, one builds an accurate simula-
tion of the file system, and evaluates a new idea within the
domain of the file system before migrating it to the real
system. This approach is attractive because one can often
avoid some of the details of building a real implementa-
tion and thus more quickly understand whether the idea is
a good one. However, it requires a detailed and accurate
simulator, the construction and maintenance of which is
certainly a challenging endeavor.

STP avoids the difficulties of both of these approaches
by using the low-level traces as the “truth” about how the
file system behaves, and then modifying file system output
(i.e., the block stream) based on its simple internal models
of file system behavior; these models are based on our
empirical analysis found in §3.2.

Despite its advantages over traditional implementation
and simulation, STP is limited in some important ways.
For example, STP is best suited for evaluating design al-
ternatives under simpler benchmarks; if the workload ex-
hibits complex virtual memory behavior whose interac-
tions with the file system are not modeled, the results may
not be meaningful. Also, STP is limited to evaluating file
system changes that are not too radical; the basic opera-

tion of the file system should remain intact. Finally, STP
does not provide a means to evaluate how to implement
a given change; rather, it should be used to understand
whether a certain modification improves performance.

2.3 Environment
All measurements are taken on a machine running Linux
2.4.18 with a 600 MHz Pentium III processor and 1 GB
of main memory. The file system under test is created
on a single IBM 9LZX disk, which is separate from the
root disk. Where appropriate, each data point reports the
average of 30 trials; in all cases, variance is quite low.

3 The Ext3 File System
In this section, we analyze the popular Linux filesystem,
ext3. We begin by giving a brief overview of ext3, and
then apply semantic block-level analysis and semantic
trace playback to understand its internal behavior.

3.1 Background
Linux ext3 [33, 34] is a journaling file system, built as an
extension to the ext2 file system. In ext3, data and meta-
data are eventually placed into the standard ext2 struc-
tures, which are the fixed-location structures. In this or-
ganization (which is loosely based on FFS [15]), the disk
is split into a number of block groups; within each block
group are bitmaps, inode blocks, and data blocks. The
ext3 journal (or log) is commonly stored as a file within
the file system, although it can be stored on a separate de-
vice or partition. Figure 1 depicts the ext3 on-disk layout.

Information about pending file system updates is writ-
ten to the journal. By forcing journal updates to disk be-
fore updating complex file system structures, this write-
ahead logging technique [12] enables efficient crash re-
covery; a simple scan of the journal and a redo of any
incomplete committed operations bring the file system to
a consistent state. During normal operation, the journal is
treated as a circular buffer; once the necessary informa-
tion has been propagated to its fixed location in the ext2
structures, journal space can be reclaimed.
Journaling Modes: Linux ext3 includes three flavors of
journaling: writeback mode, ordered mode, and data jour-
naling mode; Figure 2 illustrates the differences between
these modes. The choice of mode is made at mount time
and can be changed via a remount.

In writeback mode, only file system metadata is jour-
naled; data blocks are written directly to their fixed loca-
tion. This mode does not enforce any ordering between
the journal and fixed-location data writes, and because of
this, writeback mode has the weakest consistency seman-
tics of the three modes. Although it guarantees consistent
file system metadata, it does not provide any guarantee as
to the consistency of data blocks.

In ordered journaling mode, again only metadata writes
are journaled; however, data writes to their fixed location
are ordered before the journal writes of the metadata. In

2005 USENIX Annual Technical Conference USENIX Association 109

JS JD JCIB DB INODE

OTHER GROUPSCYLINDER GROUP 1

JD = Journal Descriptor Block,IB = Inode Bitmap, JC = Journal Commit BlockDB = Data Bitmap, JS = Journal Superblock,

Figure 1: Ext3 On-Disk Layout. The picture shows the layout of an ext3 file system. The disk address space is broken down into a
series of block groups (akin to FFS cylinder groups), each of which has bitmaps to track allocations and regions for inodes and data
blocks. The ext3 journal is depicted here as a file within the first block group of the file system; it contains a superblock, various
descriptor blocks to describe its contents, and commit blocks to denote the ends of transactions.

Journal (Commit)

Journal (Inode)

Sync

Fixed (Data)

Fixed (Data)

Fixed (Inode)

Fixed (Data)

Journal (Inode)

Sync

Journal (Commit)

Fixed (Data)

Sync

Fixed (Inode)

Sync

In
 w

ri
te

ba
ck

 m
od

e,
 d

at
a

w
ri

te
 c

an
 h

ap
pe

n
at

 a
ny

 ti
m

e

WRITEBACK ORDERED

Journal (Inode+Data)

Fixed (Inode+Data)

Journal (Commit)

DATA

Journal Write

Journal Commit

Checkpoint Write

Figure 2: Ext3 Journaling Modes. The diagram depicts the
three different journaling modes of ext3: writeback, ordered, and
data. In the diagram, time flows downward. Boxes represent
updates to the file system, e.g., “Journal (Inode)” implies the
write of an inode to the journal; the other destination for writes
is labeled “Fixed”, which is a write to the fixed in-place ext2
structures. An arrow labeled with a “Sync” implies that the two
blocks are written out in immediate succession synchronously,
hence guaranteeing the first completes before the second. A
curved arrow indicates ordering but not immediate succession;
hence, the second write will happen at some later time. Finally,
for writeback mode, the dashed box around the “Fixed (Data)”
block indicates that it may happen at any time in the sequence.
In this example, we consider a data block write and its inode as
the updates that need to be propagated to the file system; the di-
agrams show how the data flow is different for each of the ext3
journaling modes.

contrast to writeback mode, this mode provides more sen-
sible consistency semantics, where both the data and the
metadata are guaranteed to be consistent after recovery.

In full data journaling mode, ext3 logs both metadata
and data to the journal. This decision implies that when
a process writes a data block, it will typically be written
out to disk twice: once to the journal, and then later to
its fixed ext2 location. Data journaling mode provides the
same strong consistency guarantees as ordered journaling
mode; however, it has different performance characteris-
tics, in some cases worse, and surprisingly, in some cases,
better. We explore this topic further (§3.2).
Transactions: Instead of considering each file system up-
date as a separate transaction, ext3 groups many updates
into a single compound transaction that is periodically
committed to disk. This approach is relatively simple to
implement [33]. Compound transactions may have bet-
ter performance than more fine-grained transactions when
the same structure is frequently updated in a short period
of time (e.g., a free space bitmap or an inode of a file that

is constantly being extended) [13].

Journal Structure: Ext3 uses additional metadata struc-
tures to track the list of journaled blocks. The journal
superblock tracks summary information for the journal,
such as the block size and head and tail pointers. A jour-
nal descriptor block marks the beginning of a transaction
and describes the subsequent journaled blocks, including
their final fixed on-disk location. In data journaling mode,
the descriptor block is followed by the data and metadata
blocks; in ordered and writeback mode, the descriptor
block is followed by the metadata blocks. In all modes,
ext3 logs full blocks, as opposed to differences from old
versions; thus, even a single bit change in a bitmap results
in the entire bitmap block being logged. Depending upon
the size of the transaction, multiple descriptor blocks each
followed by the corresponding data and metadata blocks
may be logged. Finally, a journal commit block is written
to the journal at the end of the transaction; once the com-
mit block is written, the journaled data can be recovered
without loss.

Checkpointing: The process of writing journaled meta-
data and data to their fixed-locations is known as check-
pointing. Checkpointing is triggered when various thresh-
olds are crossed, e.g., when file system buffer space is low,
when there is little free space left in the journal, or when
a timer expires.

Crash Recovery: Crash recovery is straightforward in
ext3 (as it is in many journaling file systems); a basic form
of redo logging is used. Because new updates (whether to
data or just metadata) are written to the log, the process
of restoring in-place file system structures is easy. During
recovery, the file system scans the log for committed com-
plete transactions; incomplete transactions are discarded.
Each update in a completed transaction is simply replayed
into the fixed-place ext2 structures.

3.2 Analysis of ext3 with SBA
We now perform a detailed analysis of ext3 using our SBA
framework. Our analysis is divided into three categories.
First, we analyze the basic behavior of ext3 as a function
of the workload and the three journaling modes. Second,
we isolate the factors that control when data is committed
to the journal. Third, we isolate the factors that control
when data is checkpointed to its fixed-place location.

2005 USENIX Annual Technical Conference USENIX Association110

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

B
an

dw
id

th
 (

M
B

/s
)

Amount of data written (MB)

Bandwidth

Data
Ordered

Writeback
Ext2

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

Jo
ur

na
l d

at
a

(M
B

)

Amount of data written (MB)

Amount of journal writes

Data
Ordered

Writeback
Ext2

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

F
ix

ed
-lo

ca
tio

n
da

ta
 (

M
B

)

Amount of data written (MB)

Amount of fixed-location writes

Data
Ordered

Writeback
Ext2

Figure 3: Basic Behavior for Sequential Workloads in ext3.
Within each graph, we evaluate ext2 and the three ext3 jour-
naling modes. We increase the size of the written file along the
x-axis. The workload writes to a single file sequentially and
then performs an fsync. Each graph examines a different met-
ric: the top graph shows the achieved bandwidth; the middle
graph uses SBA to report the amount of journal traffic; the bot-
tom graph uses SBA to report the amount of fixed-location traffic.
The journal size is set to 50 MB.

3.2.1 Basic Behavior: Modes and Workload

We begin by analyzing the basic behavior of ext3 as a
function of the workload and journaling mode (i.e., write-
back, ordered, and full data journaling). Our goal is to
understand the workload conditions that trigger ext3 to
write data and metadata to the journal and to their fixed
locations. We explored a range of workloads by varying
the amount of data written, the sequentiality of the writes,
the synchronization interval between writes, and the num-
ber of concurrent writers.

Sequential and Random Workloads: We begin by
showing our results for three basic workloads. The first
workload writes to a single file sequentially and then per-
forms an fsync to flush its data to disk (Figure 3); the
second workload issues 4 KB writes to random locations
in a single file and calls fsync once for every 256 writes
(Figure 4); the third workload again issues 4 KB random
writes but calls fsync for every write (Figure 5). In
each workload, we increase the total amount of data that

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

B
an

dw
id

th
 (

M
B

/s
)

Amount of data written (MB)

Random write bandwidth

Data
Ordered

Writeback
Ext2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50

Jo
ur

na
l d

at
a

(M
B

)

Amount of data written (MB)

Amount of journal writes

Data
Ordered

Writeback
Ext2

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50

F
ix

ed
-lo

ca
tio

n
da

ta
 (

M
B

)

Amount of data written (MB)

Amount of fixed-location writes

Data
Ordered

Writeback
Ext2

Figure 4: Basic Behavior for Random Workloads in ext3.
This figure is similar to Figure 3. The workload issues 4 KB
writes to random locations in a single file and calls fsync once
for every 256 writes. Top graph shows the bandwidth, middle
graph shows the journal traffic, and the bottom graph reports
the fixed-location traffic. The journal size is set to 50 MB.

it writes and observe how the behavior of ext3 changes.
The top graphs in Figures 3, 4, and 5 plot the achieved

bandwidth for the three workloads; within each graph, we
compare the three different journaling modes and ext2.
From these bandwidth graphs we make four observations.
First, the achieved bandwidth is extremely sensitive to the
workload: as expected, a sequential workload achieves
much higher throughput than a random workload and call-
ing fsync more frequently further reduces throughput
for random workloads. Second, for sequential traffic, ext2
performs slightly better than the highest performing ext3
mode: there is a small but noticeable cost to journaling
for sequential streams. Third, for all workloads, ordered
mode and writeback mode achieve bandwidths that are
similar to ext2. Finally, the performance of data journal-
ing is quite irregular, varying in a sawtooth pattern with
the amount of data written.

These graphs of file system throughput allow us to com-
pare performance across workloads and journaling modes,
but do not enable us to infer the cause of the differences.
To help us infer the internal behavior of the file system, we
apply semantic analysis to the underlying block stream;

2005 USENIX Annual Technical Conference USENIX Association 111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25

B
an

dw
id

th
 (

M
B

/s
)

Amount of data written (MB)

Random write bandwidth

Data
Ordered

Writeback
Ext2

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

Jo
ur

na
l d

at
a

(M
B

)

Amount of data written (MB)

Amount of journal writes

Data
Ordered

Writeback
Ext2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

F
ix

ed
-lo

ca
tio

n
da

ta
 (

M
B

)

Amount of data written (MB)

Amount of fixed-location writes

Data
Ordered

Writeback
Ext2

Figure 5: Basic Behavior for Random Workloads in ext3.
This figure is similar to Figure 3. The workload issues 4 KB
random writes and calls fsync for every write. Bandwidth is
shown in the first graph; journal writes and fixed-location writes
are reported in the second and third graph using SBA. The jour-
nal size is set to 50 MB.

in particular, we record the amount of journal and fixed-
location traffic. This accounting is shown in the bottom
two graphs of Figures 3, 4, and 5.

The second row of graphs in Figures 3, 4, and 5 quan-
tify the amount of traffic flushed to the journal and help
us to infer the events which cause this traffic. We see that,
in data journaling mode, the total amount of data written
to the journal is high, proportional to the amount of data
written by the application; this is as expected, since both
data and metadata are journaled. In the other two modes,
only metadata is journaled; therefore, the amount of traffic
to the journal is quite small.

The third row of Figures 3, 4, and 5 shows the traffic
to the fixed location. For writeback and ordered mode the
amount of traffic written to the fixed location is equal to
the amount of data written by the application. However,
in data journaling mode, we observe a stair-stepped pat-
tern in the amount of data written to the fixed location.
For example, with a file size of 20 MB, even though the
process has called fsync to force the data to disk, no
data is written to the fixed location by the time the appli-
cation terminates; because all data is logged, the expected

consistency semantics are still preserved. However, even
though it is not necessary for consistency, when the ap-
plication writes more data, checkpointing does occur at
regular intervals; this extra traffic leads to the sawtooth
bandwidth measured in the first graph. In this particu-
lar experiment with sequential traffic and a journal size of
50 MB, a checkpoint occurs when 25 MB of data is writ-
ten; we explore the relationship between checkpoints and
journal size more carefully in §3.2.3.

The SBA graphs also reveal why data journaling mode
performs better than the other modes for asynchronous
random writes. With data journaling mode, all data is
written first to the log, and thus even random writes be-
come logically sequential and achieve sequential band-
width. As the journal is filled, checkpointing causes ex-
tra disk traffic, which reduces bandwidth; in this particu-
lar experiment, the checkpointing occurs near 23 MB. Fi-
nally, SBA analysis reveals that synchronous 4 KB writes
do not perform well, even in data journaling mode. Forc-
ing each small 4 KB write to the log, even in logical
sequence, incurs a delay between sequential writes (not
shown) and thus each write incurs a disk rotation.
Concurrency: We now report our results from running
workloads containing multiple processes. We construct
a workload containing two diverse classes of traffic: an
asynchronous foreground process in competition with a
background process. The foreground process writes out a
50 MB file without calling fsync, while the background
process repeatedly writes a 4 KB block to a random lo-
cation, optionally calls fsync, and then sleeps for some
period of time (i.e., the “sync interval”). We focus on data
journaling mode, but the effect holds for ordered journal-
ing mode too (not shown).

In Figure 6 we show the impact of varying the mean
“sync interval” of the background process on the perfor-
mance of the foreground process. The first graph plots
the bandwidth achieved by the foreground asynchronous
process, depending upon whether it competes against an
asynchronous or synchronous background process. As ex-
pected, when the foreground process runs with an asyn-
chronous background process, its bandwidth is uniformly
high and matches in-memory speeds. However, when the
foreground process competes with a synchronous back-
ground process, its bandwidth drops to disk speeds.

The SBA analysis in the second graph reports the
amount of journal data, revealing that the more frequently
the background process calls fsync, the more traffic is
sent to the journal. In fact, the amount of journal traf-
fic is equal to the sum of the foreground and background
process traffic written in that interval, not that of only the
background process. This effect is due to the implemen-
tation of compound transactions in ext3: all file system
updates add their changes to a global transaction, which
is eventually committed to disk.

This workload reveals the potentially disastrous conse-
quences of grouping unrelated updates into the same com-

2005 USENIX Annual Technical Conference USENIX Association112

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000

B
an

dw
id

th
 (

M
B

/s
)

Sync interval (milliseconds)

Bandwidth

Background process does not call fsync
Background process calling fsync

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000

Jo
ur

na
l d

at
a

(M
B

)

Sync interval (milliseconds)

Amount of journal writes

Background process does not call fsync
Background process calls fsync

Figure 6: Basic Behavior for Concurrent Writes in ext3. Two
processes compete in this workload: a foreground process writ-
ing a sequential file of size 50 MB and a background process
writing out 4 KB, optionally calling fsync, sleeping for the
“sync interval”, and then repeating. Along the x-axis, we in-
crease the sync interval. In the top graph, we plot the bandwidth
achieved by the foreground process in two scenarios: with the
background process either calling or not calling fsync after
each write. In the bottom graph, the amount of data written to
disk during both sets of experiments is shown.

pound transaction: all traffic is committed to disk at the
same rate. Thus, even asynchronous traffic must wait for
synchronous updates to complete. We refer to this nega-
tive effect as tangled synchrony and explore the benefits
of untangling transactions in §3.3.3 using STP.

3.2.2 Journal Commit Policy
We next explore the conditions under which ext3 commits
transactions to its on-disk journal. As we will see, two
factors influence this event: the size of the journal and the
settings of the commit timers.

In these experiments, we focus on data journaling
mode; since this mode writes both metadata and data to
the journal, the traffic sent to the journal is most easily
seen in this mode. However, writeback and ordered modes
commit transactions using the same policies. To exer-
cise log commits, we examine workloads in which data
is not explicitly forced to disk by the application (i.e., the
process does not call fsync); further, to minimize the
amount of metadata overhead, we write to a single file.
Impact of Journal Size: The size of the journal is a
configurable parameter in ext3 that contributes to when
updates are committed. By varying the size of the journal
and the amount of data written in the workload, we can
infer the amount of data that triggers a log commit. Fig-
ure 7 shows the resulting bandwidth and the amount of
journal traffic, as a function of file size and journal size.
The first graph shows that when the amount of data writ-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50

B
an

dw
id

th
 (

M
B

/s
)

Amount of data written (MB)

Bandwidth

Journal size = 20MB
Journal size = 40MB
Journal size = 60MB
Journal size = 80MB

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

Jo
ur

na
l d

at
a

(M
B

)

Amount of data written (MB)

Amount of journal writes

Journal size = 20MB
Journal size = 80MB

Figure 7: Impact of Journal Size on Commit Policy in ext3.
The topmost figure plots the bandwidth of data journaling mode
under different-sized file writes. Four lines are plotted repre-
senting four different journal sizes. The second graph shows the
amount of log traffic generated for each of the experiments (for
clarity, only two of the four journal sizes are shown).

ten by the application (to be precise, the number of dirty
uncommitted buffers, which includes both data and meta-
data) reaches 1

4
the size of the journal, bandwidth drops

considerably. In fact, in the first performance regime, the
observed bandwidth is equal to in-memory speeds.

Our semantic analysis, shown in the second graph, re-
ports the amount of traffic to the journal. This graph re-
veals that metadata and data are forced to the journal when
it is equal to 1

4
the journal size. Inspection of Linux ext3

code confirms this threshold. Note that the threshold is
the same for ordered and writeback modes (not shown);
however, it is triggered much less frequently since only
metadata is logged.
Impact of Timers: In Linux 2.4 ext3, three timers have
some control over when data is written: the metadata
commit timer and the data commit timer, both managed
by the kupdate daemon, and the commit timer managed
by the kjournal daemon. The system-wide kupdate dae-
mon is responsible for flushing dirty buffers to disk; the
kjournal daemon is specialized for ext3 and is respon-
sible for committing ext3 transactions. The strategy for
ext2 is to flush metadata frequently (e.g., every 5 seconds)
while delaying data writes for a longer time (e.g., every
30 seconds). Flushing metadata frequently has the advan-
tage that the file system can approach FFS-like consis-
tency without a severe performance penalty; delaying data
writes has the advantage that files that are deleted quickly
do not tax the disk. Thus, mapping the ext2 goals to the
ext3 timers leads to default values of 5 seconds for the
kupdate metadata timer, 5 seconds for the kjournal timer,

2005 USENIX Annual Technical Conference USENIX Association 113

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Jo
ur

na
l w

rit
e

tim
e

(s
ec

on
ds

)

kupdated metadata timer value (seconds)

Sensitivity to kupdated metadata timer

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

Jo
ur

na
l w

rit
e

tim
e

(s
ec

on
ds

)

kupdated data timer value (seconds)

Sensitivity to kupdated data timer

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Jo
ur

na
l w

rit
e

tim
e

(s
ec

on
ds

)

kjournald timer value (seconds)

Sensitivity to kjournald timer

Figure 8: Impact of Timers on Commit Policy in ext3. In
each graph, the value of one timer is varied across the x-axis,
and the time of the first write to the journal is recorded along
the y-axis. When measuring the impact of a particular timer, we
set the other timers to 60 seconds and the journal size to 50 MB
so that they do not affect the measurements.

and 30 seconds for the kupdate data timer.
We measure how these timers affect when transactions

are committed to the journal. To ensure that a specific
timer influences journal commits, we set the journal size
to be sufficiently large and set the other timers to a large
value (i.e., 60 s). For our analysis, we observe when the
first write appears in the journal. Figure 8 plots our results
varying one of the timers along the x-axis, and plotting the
time that the first log write occurs along the y-axis.

The first graph and the third graph show that the kup-
date daemon metadata commit timer and the kjournal dae-
mon commit timer control the timing of log writes: the
data points along y = x indicate that the log write oc-
curred precisely when the timer expired. Thus, traffic is
sent to the log at the minimum of those two timers. The
second graph shows that the kupdate daemon data timer
does not influence the timing of log writes: the data points
are not correlated with the x-axis. As we will see, this
timer influences when data is written to its fixed location.
Interaction of Journal and Fixed-Location Traffic:
The timing between writes to the journal and to the fixed-

 0

 2

 4

 6

 8

 10

 12

 14

 10.3 10.35 10.4 10.45 10.5 10.55 10.6

R
eq

ue
st

 q
ue

ue
 (

4K
B

 b
lo

ck
s)

Time (seconds)

Write ordering in ext3

Fixed location
Journal

Figure 9: Interaction of Journal and Fixed-Location Traffic
in ext3. The figure plots the number of outstanding writes to
the journal and fixed-location disks. In this experiment, we run
five processes, each of which issues 16 KB random synchronous
writes. The file system has a 50 MB journal and is running in
ordered mode; the journal is configured to run on a separate
disk.

location data must be managed carefully for consistency.
In fact, the difference between writeback and ordered
mode is in this timing: writeback mode does not enforce
any ordering between the two, whereas ordered mode en-
sures that the data is written to its fixed location before the
commit block for that transaction is written to the journal.
When we performed our SBA analysis, we found a perfor-
mance deficiency in how ordered mode is implemented.

We consider a workload that synchronously writes a
large number of random 16 KB blocks and use the SBA
driver to separate journal and fixed-location data. Figure 9
plots the number of concurrent writes to each data type
over time. The figure shows that writes to the journal and
fixed-place data do not overlap. Specifically, ext3 issues
the data writes to the fixed location and waits for comple-
tion, then issues the journal writes to the journal and again
waits for completion, and finally issues the final commit
block and waits for completion. We observe this behavior
irrespective of whether the journal is on a separate device
or on the same device as the file system. Inspection of the
ext3 code confirms this observation. However, the first
wait is not needed for correctness. In those cases where
the journal is configured on a separate device, this ex-
tra wait can severely limit concurrency and performance.
Thus, ext3 has falsely limited parallelism. We will use
STP to fix this timing problem in §3.3.4.

3.2.3 Checkpoint Policy
We next turn our attention to checkpointing, the process
of writing data to its fixed location within the ext2 struc-
tures. We will show that checkpointing in ext3 is again a
function of the journal size and the commit timers, as well
as the synchronization interval in the workload. We focus
on data journaling mode since it is the most sensitive to
journal size. To understand when checkpointing occurs,
we construct workloads that periodically force data to the
journal (i.e., call fsync) and we observe when data is
subsequently written to its fixed location.
Impact of Journal Size: Figure 10 shows our SBA results

2005 USENIX Annual Technical Conference USENIX Association114

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

F
ix

ed
 lo

ca
tio

n
da

ta
 (

M
B

)

Amount of data written (MB)

Amount of fixed location writes

Sync size = 1MB
Sync size = 15MB
Sync size = 20MB

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40

F
re

e
sp

ac
e

Amount of data written (MB)

Checkpointing

Sync size = 1MB
Sync size = 15MB
Sync size = 20MB

1/4th of Journal Size

1/2th of Journal Size

Figure 10: Impact of Journal Size on Checkpoint Policy in
ext3. We consider a workload where a certain amount of data
(as indicated by the x-axis value) is written sequentially, with
a fsync issued after every 1, 15, or 20 MB. The first graph
uses SBA to plot the amount of fixed-location traffic. The second
graph uses SBA to plot the amount of free space in the journal.

as a function of file size and synchronization interval for
a single journal size of 40 MB. The first graph shows the
amount of data written to its fixed ext2 location at the end
of each experiment. We can see that the point at which
checkpointing occurs varies across the three sync inter-
vals; for example, with a 1 MB sync interval (i.e., when
data is forced to disk after every 1 MB worth of writes),
checkpoints occur after approximately 28 MB has been
committed to the log, whereas with a 20 MB sync interval,
checkpoints occur after 20 MB. To illustrate what triggers
a checkpoint, in the second graph, we plot the amount
of journal free space immediately preceding the check-
point. By correlating the two graphs, we see that check-
pointing occurs when the amount of free space is between
1

4
-th and 1

2
-th of the journal size. The precise fraction

depends upon the synchronization interval, where smaller
sync amounts allow checkpointing to be postponed until
there is less free space in the journal.1 We have confirmed
this same relationship for other journal sizes (not shown).
Impact of Timers: We examine how the system timers
impact the timing of checkpoint writes to the fixed loca-

1The exact amount of free space that triggers a checkpoint is not
straightforward to derive for two reasons. First, ext3 reserves some
amount of journal space for overhead such as descriptor and commit
blocks. Second, ext3 reserves space in the journal for the currently com-
mitting transaction (i.e., the synchronization interval). Although we have
derived the free space function more precisely, we do not feel this very
detailed information is particularly enlightening; therefore, we simply
say that checkpointing occurs when free space is somewhere between
1

4
-th and 1

2
-th of the journal size.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

W
rit

e
tim

e
(s

ec
on

ds
)

kupdated data timer value (seconds)

Sensitivity to kupdated data timer

Log writes
Fixed-location writes

Figure 11: Impact of Timers on Checkpoint Policy in ext3.
The figure plots the relationship between the time that data is
first written to the log and then checkpointed as dependent on
the value of the kupdate data timer. The scatter plot shows the
results of multiple (30) runs. The process that is running writes
1 MB of data (no fsync); data journaling mode is used, with
other timers set to 5 seconds and a journal size of 50 MB.

tions using the same workload as above. Here, we vary
the kupdate data timer while setting the other timers to
five seconds. Figure 11 shows how the kupdate data timer
impacts when data is written to its fixed location. First,
as seen previously in Figure 8, the log is updated after
the five second timers expire. Then, the checkpoint write
occurs later by the amount specified by the kupdate data
timer, at a five second granularity; further experiments
(not shown here) reveal that this granularity is controlled
by the kupdate metadata timer.

Our analysis reveals that the ext3 timers do not lead to
the same timing of data and metadata traffic as in ext2. Or-
dered and data journaling modes force data to disk either
before or at the time of metadata writes. Thus, both data
and metadata are flushed to disk frequently. This timing
behavior is the largest potential performance differentia-
tor between ordered and writeback modes. Interestingly,
this frequent flushing has a potential advantage; by forc-
ing data to disk in a more timely manner, large disk queues
can be avoided and overall performance improved [18].
The disadvantage of early flushing, however, is that tem-
porary files may be written to disk before subsequent dele-
tion, increasing the overall load on the I/O system.

3.2.4 Summary of Ext3
Using SBA, we have isolated a number of features within
ext3 that can have a strong impact on performance.
• The journaling mode that delivers the best perfor-

mance depends strongly on the workload. It is well known
that random workloads perform better with logging [25];
however, the relationship between the size of the journal
and the amount of data written by the application can have
an even larger impact on performance.
• Ext3 implements compound transactions in which un-

related concurrent updates are placed into the same trans-
action. The result of this tangled synchrony is that all traf-
fic in a transaction is committed to disk at the same rate,
which results in disastrous performance for asynchronous
traffic when combined with synchronous traffic.

2005 USENIX Annual Technical Conference USENIX Association 115

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70

B
an

dw
id

th
 (

M
B

/s
)

File number

Bandwidth in Ordered Journaling Mode

Default ext3 with journal at beginning
Modified ext3 with journal at middle

STP with journal at middle

Figure 12: Improved Journal Placement with STP. We com-
pare three placements of the journal: at the beginning of the
partition (the ext3 default), modeled in the middle of the file sys-
tem using STP, and in the middle of the file system. 50 MB files
are created across the file system; a file is chosen, as indicated
by the number along the x-axis, and the workload issues 4 KB
synchronous writes to that file.

• In ordered mode, ext3 does not overlap any of the
writes to the journal and fixed-place data. Specifically,
ext3 issues the data writes to the fixed location and waits
for completion, then issues the journal writes to the jour-
nal and again waits for completion, and finally issues the
final commit block and waits for completion; however, the
first wait is not needed for correctness. When the journal
is placed on a separate device, this falsely limited paral-
lelism can harm performance.
• In ordered and data journaling modes, when a timer

flushes meta-data to disk, the corresponding data must be
flushed as well. The disadvantage of this eager writing is
that temporary files may be written to disk, increasing the
I/O load.

3.3 Evolving ext3 with STP
In this section, we apply STP and use a wider range of
workloads and traces to evaluate various modifications to
ext3. To demonstrate the accuracy of the STP approach,
we begin with a simple modification that varies the place-
ment of the journal. Our SBA analysis pointed to a num-
ber of improvements for ext3, which we can quantify
with STP: the value of using different journaling modes
depending upon the workload, having separate transac-
tions for each update, and overlapping pre-commit jour-
nal writes with data updates in ordered mode. Finally, we
use STP to evaluate differential journaling, in which block
differences are written to the journal.

3.3.1 Journal Location
Our first experiment with STP quantifies the impact of
changing a simple policy: the placement of the journal.
The default ext3 creates the journal as a regular file at the
beginning of the partition. We start with this policy be-
cause we are able to validate STP: the results we obtain
with STP are quite similar to those when we implement
the change within ext3 itself.

We construct a workload that stresses the placement of
the journal: a 4 GB partition is filled with 50 MB files
and the benchmark process issues random, synchronous

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 2000 4000 6000 8000 10000 12000

B
an

dw
id

th
 (

M
B

/s
)

Sync interval (milliseconds)

Bandwidth

Untangled
Standard

Figure 13: Untangling Transaction Groups with STP. This
experiment is identical to that described in Figure 6, with one
addition: we show performance of the foreground process with
untangled transactions as emulated with STP.

4 KB writes to a chosen file. In Figure 12 we vary which
file is chosen along the x-axis. The first line in the graph
shows the performance for ordered mode in default ext3:
bandwidth drops by nearly 30% when the file is located
far from the journal. SBA analysis (not shown) confirms
that this performance drop occurs as the seek distance in-
creases between the writes to the file and the journal.

To evaluate the benefit of placing the journal in the mid-
dle of the disk, we use STP to remap blocks. For vali-
dation, we also coerce ext3 to allocate its journal in the
middle of the disk, and compare results. Figure 12 shows
that the STP predicted performance is nearly identical to
this version of ext3. Furthermore, we see that worst-case
behavior is avoided; by placing the journal in the middle
of the file system instead of at the beginning, the longest
seeks across the entire volume are avoided during syn-
chronous workloads (i.e., workloads that frequently seek
between the journal and the ext2 structures).

3.3.2 Journaling Mode
As shown in §3.2.1, different workloads perform better
with different journaling modes. For example, random
writes perform better in data journaling mode as the ran-
dom writes are written sequentially into the journal, but
large sequential writes perform better in ordered mode
as it avoids the extra traffic generated by data journal-
ing mode. However, the journaling mode in ext3 is set
at mount time and remains fixed until the next mount.

Using STP, we evaluate a new adaptive journaling mode
that chooses the journaling mode for each transaction ac-
cording to writes that are in the transaction. If a transac-
tion is sequential, it uses ordered journaling; otherwise, it
uses data journaling.

To demonstrate the potential performance benefits of
adaptive journaling, we run a portion of a trace from HP
Labs [23] after removing the inter-arrival times between
the I/O calls and compare ordered mode, data journaling
mode, and our adaptive approach. The trace completes
in 83.39 seconds and 86.67 seconds, in ordered and data
journaling modes, respectively; however, with STP adap-
tive journaling, the trace completes in only 51.75 seconds.
Because the trace has both sequential and random write

2005 USENIX Annual Technical Conference USENIX Association116

 0

 2

 4

 6

 8

 10

 12

 14

 10.3 10.35 10.4 10.45 10.5 10.55 10.6

R
eq

ue
st

 q
ue

ue
 (

4K
B

 b
lo

ck
s)

Time (seconds)

Modified write ordering

Fixed location
Journal

Figure 14: Changing the Interaction of Journal and Fixed-
Location Traffic with STP. The same experiment is run as in
Figure 9; however, in this run, we use STP to issue the pre-
commit journal writes and data writes concurrently. We plot the
STP emulated performance, and also made this change to ext3
directly, obtaining the same resultant performance.

phases, adaptive journaling out performs any single-mode
approach.

3.3.3 Transaction Grouping
Linux ext3 groups all updates into system-wide com-
pound transactions and commits them to disk periodically.
However, as we have shown in 3.2.1, if just a single update
stream is synchronous, it can have a dramatic impact on
the performance of other asynchronous streams, by trans-
forming in-memory updates into disk-bound ones.

Using STP, we show the performance of a file system
that untangles these traffic streams, only forcing the pro-
cess that issues the fsync to commit its data to disk.
Figure 13 plots the performance of an asynchronous se-
quential stream in the presence of a random synchronous
stream. Once again, we vary the interval of updates from
the synchronous process, and from the graph, we can see
that segregated transaction grouping is effective; the asyn-
chronous I/O stream is unaffected by synchronous traffic.

3.3.4 Timing
We show that STP can quantify the cost of falsely lim-
ited parallelism, as discovered in 3.2.2, where pre-commit
journal writes are not overlapped with data updates in or-
dered mode. With STP, we modify the timing so that
journal and fixed-location writes are all initiated simul-
taneously; the commit transaction is written only after the
previous writes complete. We consider the same work-
load of five processes issuing 16 KB random synchronous
writes and with the journal on a separate disk.

Figure 14 shows that STP can model this implemen-
tation change by modifying the timing of the requests.
For this workload, STP predicts an improvement of about
18%; this prediction matches what we achieve when ext3
is changed directly. Thus, as expected, increasing the
amount of concurrency improves performance when the
journal is on a separate device.

3.3.5 Journal Contents
Ext3 uses physical logging and writes new blocks in their
entirety to the log. However, if whole blocks are jour-

naled irrespective of how many bytes have changed in the
block, journal space fills quickly, increasing both commit
and checkpoint frequency.

Using STP, we investigate differential journaling,
where the file system writes block differences to the jour-
nal instead of new blocks in their entirety. This ap-
proach can potentially reduce disk traffic noticeably, if
dirty blocks are not substantially different from their pre-
vious versions. We focus on data journaling mode, as it
generates by far the most journal traffic; differential jour-
naling is less useful for the other modes.

To evaluate whether differential journaling matters for
real workloads, we analyze SBA traces underneath two
database workloads modeled on TPC-B [30] and TPC-
C [31]. The former is a simple application-level imple-
mentation of a debit-credit benchmark, and the latter a re-
alistic implementation of order-entry built on top of Post-
gres. With data journaling mode, the amount of data
written to the journal is reduced by a factor of 200 for
TPC-B and a factor of 6 under TPC-C. In contrast, for
ordered and writeback modes, the difference is minimal
(less than 1%); in these modes, only metadata is written to
the log, and applying differential journaling to said meta-
data blocks makes little difference in total I/O volume.

4 ReiserFS
We now focus on a second Linux journaling filesystem,
ReiserFS. In this section, we focus on the chief differences
between ext3 and ReiserFS. Due to time constraints, we
do not use STP to explore changes to ReiserFS.

4.1 Background
The general behavior of ReiserFS is similar to ext3. For
example, both file systems have the same three journaling
modes and both have compound transactions. However,
ReiserFS differs from ext3 in three primary ways.

First, the two file systems use different on-disk struc-
tures to track their fixed-location data. Ext3 uses the same
structures as ext2; for improved scalability, ReiserFS uses
a B+ tree, in which data is stored on the leaves of the tree
and the metadata is stored on the internal nodes. Since
the impact of the fixed-location data structures is not the
focus of this paper, this difference is largely irrelevant.

Second, the format of the journal is slightly different.
In ext3, the journal can be a file, which may be anywhere
in the partition and may not be contiguous. The ReiserFS
journal is not a file and is instead a contiguous sequence of
blocks at the beginning of the file system; as in ext3, the
ReiserFS journal can be put on a different device. Further,
ReiserFS limits the journal to a maximum of 32 MB.

Third, ext3 and ReiserFS differ slightly in their journal
contents. In ReiserFS, the fixed locations for the blocks in
the transaction are stored not only in the descriptor block
but also in the commit block. Also, unlike ext3, Reis-
erFS uses only one descriptor block in every compound

2005 USENIX Annual Technical Conference USENIX Association 117

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

B
an

dw
id

th
 (

M
B

/s
)

Amount of data written (MB)

Bandwidth

Data
Ordered

Writeback

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

Jo
ur

na
l d

at
a

(M
B

)

Amount of data written (MB)

Amount of journal writes

Data
Ordered

Writeback

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

F
ix

ed
-lo

ca
tio

n
da

ta
 (

M
B

)

Amount of data written (MB)

Amount of fixed-location writes

Data
Ordered

Writeback

Figure 15: Basic Behavior for Sequential Workloads in Reis-
erFS. Within each graph, we evaluate the three ReiserFS jour-
naling modes. We consider a single workload in which the size of
the sequentially written file is increased along the x-axis. Each
graph examines a different metric: the first hows the achieved
bandwidth; the second uses SBA to report the amount of journal
traffic; the third uses SBA to report the amount of fixed-location
traffic. The journal size is set to 32 MB.

transaction, which limits the number of blocks that can be
grouped in a transaction.

4.2 Semantic Analysis of ReiserFS
We have performed identical experiments on ReiserFS as
we have on ext3. Due to space constraints, we present
only those results which reveal significantly different be-
havior across the two file systems.

4.2.1 Basic Behavior: Modes and Workload
Qualitatively, the performance of the three journaling
modes in ReiserFS is similar to that of ext3: random
workloads with infrequent synchronization perform best
with data journaling; otherwise, sequential workloads
generally perform better than random ones and write-
back and ordered modes generally perform better than
data journaling. Furthermore, ReiserFS groups concur-
rent transactions into a single compound transaction, as
did ext3. The primary difference between the two file
systems occurs for sequential workloads with data jour-
naling. As shown in the first graph of Figure 15, the

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

F
ix

ed
-lo

ca
tio

n
da

ta
 (

M
B

)

Amount of data written (MB)

Amount of fixed-location writes

Sync size = 64KB
Sync size = 128KB
Sync size = 512KB

Sync size = 1024KB

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

F
ix

ed
 lo

ca
tio

n
da

ta
 (

M
B

)

Number of transactions

Amount of fixed-location writes

Sync size = 32KB
Sync size = 64KB

Sync size = 128KB

Figure 16: Impact of Journal Size and Transactions on
Checkpoint Policy in ReiserFS. We consider workloads where
data is sequentially written and an fsync is issued after a spec-
ified amount of data. We use SBA to report the amount of fixed-
location traffic. In the first graph, we vary the amount of data
written; in the second graph, we vary the number of transac-
tions, defined as the number of calls to fsync.

throughput of data journaling mode in ReiserFS does not
follow the sawtooth pattern. An initial reason for this is
found through SBA analysis. As seen in the second and
third graphs of Figure 15, almost all of the data is written
not only to the journal, but is also checkpointed to its in-
place location. Thus, ReiserFS appears to checkpoint data
much more aggressively than ext3, which we will explore
in §4.2.3.

4.2.2 Journal Commit Policy

We explore the factors that impact when ReiserFS com-
mits transactions to the log. Again, we focus on data jour-
naling, since it is the most sensitive. We postpone explor-
ing the impact of the timers until §4.2.3.

We previously saw that ext3 commits data to the log
when approximately 1

4
of the log is filled or when a timer

expires. Running the same workload that does not force
data to disk (i.e., does not call fsync) on ReiserFS and
performing SBA analysis, we find that ReiserFS uses a
different threshold: depending upon whether the journal
size is below or above 8 MB, ReiserFS commits data when
about 450 blocks (i.e., 1.7 MB) or 900 blocks (i.e., 3.6
MB) are written. Given that ReiserFS limits journal size
to at most 32 MB, these fixed thresholds appear sufficient.

Finally, we note that ReiserFS also has falsely limited
parallelism in ordered mode. Like ext3, ReiserFS forces
the data to be flushed to its fixed location before it issues
any writes to the journal.

2005 USENIX Annual Technical Conference USENIX Association118

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30

W
rit

e
tim

e
(s

ec
on

ds
)

kreiserfsd timer value (seconds)

Sensitivity to kreiserfsd journal timer

Log writes
Fixed-location writes

Figure 17: Impact of Timers in ReiserFS. The figure plots the
relationship between the time that data is written and the value
of the kreiserfs timer. The scatter plot shows the results of mul-
tiple (30) runs. The process that is running writes 1 MB of data
(no fsync); data journaling mode is used, with other timers set
to 5 seconds and a journal size of 32 MB.

4.2.3 Checkpoint Policy
We also investigate the conditions which trigger ReiserFS
to checkpoint data to its fixed-place location; this pol-
icy is more complex in ReiserFS. In ext3, we found that
data was checkpointed when the journal was 1

4
to 1

2
full.

In ReiserFS, the point at which data is checkpointed de-
pends not only on the free space in the journal, but also
on the number of concurrent transactions. We again con-
sider workloads that periodically force data to the journal
by calling fsync at different intervals.

Our results are shown in Figure 16. The first graph
shows the amount of data checkpointed as a function of
the amount of data written; in all cases, data is check-
pointed before 7

8
of the journal is filled. The second graph

shows the amount of data checkpointed as a function of
the number of transactions. This graph shows that data is
checkpointed at least at intervals of 128 transactions; run-
ning a similar workload on ext3 reveals no relationship
between the number of transactions and checkpointing.
Thus, ReiserFS checkpoints data whenever either journal
free space drops below 4 MB or when there are 128 trans-
actions in the journal.

As with ext3, timers control when data is written to
the journal and to the fixed locations, but with some dif-
ferences: in ext3, the kjournal daemon is responsible for
committing transactions, whereas in ReiserFS, the kreis-
erfs daemon has this role. Figure 17 shows the time at
which data is written to the journal and to the fixed lo-
cation as the kreiserfs timer is increased; we make two
conclusions. First, log writes always occur within the first
five seconds of the data write by the application, regard-
less of the timer value. Second, the fixed-location writes
occur only when the elapsed time is both greater than 30
seconds and a multiple of the kreiserfs timer value. Thus,
the ReiserFS timer policy is simpler than that of ext3.

4.3 Finding Bugs
SBA analysis is useful not only for inferring the poli-
cies of filesystems, but also for finding cases that have
not been implemented correctly. With SBA analysis, we

have found a number of problems with the ReiserFS im-
plementation that have not been reported elsewhere. In
each case, we identified the problem because the SBA
driver did not observe some disk traffic that it expected.
To verify these problems, we have also examined the code
to find the cause and have suggested corresponding fixes
to the ReiserFS developers.
• In the first transaction after a mount, the fsync call

returns before any of the data is written. We tracked this
aberrant behavior to an incorrect initialization.
• When a file block is overwritten in writeback mode,

its stat information is not updated. This error occurs due
to a failure to update the inode’s transaction information.
• When committing old transactions, dirty data is not

always flushed. We tracked this to erroneously applying a
condition to prevent data flushing during journal replay.
• Irrespective of changing the journal thread’s wake up

interval, dirty data is not flushed. This problem occurs due
to a simple coding error.

5 The IBM Journaled File System
In this section, we describe our experience performing a
preliminary SBA analysis of the Journaled File System
(JFS). We began with a rudimentary understanding of JFS
from what we were able to obtain through documenta-
tion [3]; for example, we knew that the journal is located
by default at the end of the partition and is treated as a
contiguous sequence of blocks and that one cannot spec-
ify the journaling mode.

Due to the fact that we knew less about this file sys-
tem before we began, we found we needed to apply a new
analysis technique as well: in some cases we filtered out
traffic and then rebooted the system so that we could infer
whether the filtered traffic was necessary for consistency
or not. For example, we used this technique to understand
the journaling mode of JFS. From this basic starting point,
and without examining JFS code, we were able to learn a
number of interesting properties about JFS.

First, we inferred that JFS uses ordered journaling
mode. Due to the small amount of traffic to the journal, it
was obvious that it was not employing data journaling. To
differentiate between writeback and ordered modes, we
observed that the ordering of writes matched that of or-
dered mode. That is, when a data block is written by the
application, JFS orders the write such that the data block
is written successfully before the metadata writes are is-
sued.

Second, we determined that JFS does logging at the
record level. That is, whenever an inode, index tree,
or directory tree structure changes, only that structure is
logged instead of the entire block containing the structure.
As a result, JFS writes fewer journal blocks than ext3 and
ReiserFS for the same operations.

Third, JFS does not by default group concurrent up-
dates into a single compound transaction. Running the
same experiment as we performed in Figure 6, we see that

2005 USENIX Annual Technical Conference USENIX Association 119

the bandwidth of the asynchronous traffic is very high ir-
respective of whether there is a synchronous traffic in the
background. However, there are circumstances in which
transactions are grouped: for example, if the write commit
records are on the same log page.

Finally, there are no commit timers in JFS and the fixed-
location writes happen whenever the kupdate daemon’s
timer expires. However, the journal writes are never trig-
gered by the timer: journal writes are indefinitely post-
poned until there is another trigger such as memory pres-
sure or an unmount operation. This infinite write delay
limits reliability, as a crash can result in data loss even for
data that was written minutes or hours before.

6 Windows NTFS
In this section, we explain our analysis of NTFS. NTFS
is a journaling file system that is used as the default file
system on Windows operating systems such as XP, 2000,
and NT. Although the source code or documentation of
NTFS is not publicly available, tools for finding the NTFS
file layout exist [28].

We ran the Windows XP operating system on top of
VMware on a Linux machine. The pseudo device driver
was exported as a SCSI disk to the Windows and a NTFS
file system was constructed on top of the pseudo device.
We ran simple workloads on NTFS and observed traffic
within the SBA driver for our analysis.

Every object in NTFS is a file. Even metadata is stored
in terms of files. The journal itself is a file and is located
almost at the center of the file system. We used the ntf-
sprogs tools to discover journal file boundaries. Using
the journal boundaries we were able to distinguish journal
traffic from fixed-location traffic.

From our analysis, we found that NTFS does not do
data journaling. This can be easily verified by the amount
of data traffic observed by the SBA driver. We also found
that NTFS, similar to JFS, does not do block-level journal-
ing. It journals metadata in terms of records. We verified
that whole blocks are not journaled in NTFS by matching
the contents of the fixed-location traffic to the contents of
the journal traffic.

We also inferred that NTFS performs ordered journal-
ing. On data writes, NTFS waits until the data block
writes to the fixed-location complete before writing the
metadata blocks to the journal. We confirmed this or-
dering by using the SBA driver to delay the data block
writes upto 10 seconds and found that the following meta-
data writes to the journal are delayed by the corresponding
amount.

7 Related Work
Journaling Studies: Journaling file systems have been
studied in detail. Most notably, Seltzer et al. [26] com-
pare two variants of a journaling FFS to soft updates [11],
a different technique for managing metadata consistency
for file systems. Although the authors present no direct

observation of low-level traffic, they are familiar enough
with the systems (indeed, they are the implementors!) to
explain behavior and make “semantic” inferences. For ex-
ample, to explain why journaling performance drops in a
delete benchmark, the authors report that the file system is
“forced to read the first indirect block in order to reclaim
the disk blocks it references” ([26], Section 8.1). A tool
such as SBA makes such expert observations more readily
available to all. Another recent study compares a range of
Linux file systems, including ext2, ext3, ReiserFS, XFS,
and JFS [7]. This work evaluates which file systems are
fastest for different benchmarks, but gives little explana-
tion as to why one does well for a given workload.

File System Benchmarks: There are many popular file
system benchmarks, such as IOzone [19], Bonnie [6], lm-
bench [17], the modified Andrew benchmark [20], and
PostMark [14]. Some of these (IOZone, Bonnie, lm-
bench) perform synthetic read/write tests to determine
throughput; others (Andrew, Postmark) are intended to
model “realistic” application workloads. Uniformly, all
measure overall throughput or runtime to draw high-level
conclusions about the file system. In contrast to SBA,
none are intended to yield low-level insights about the in-
ternal policies of the file system.

Perhaps the most related to our work is Chen and Patter-
son’s self-scaling benchmark [8]. In this work, the bench-
marking framework conducts a search over the space of
possible workload parameters (e.g., sequentiality, request
size, total workload size, and concurrency), and hones in
on interesting parts of the workload space. Interestingly,
some conclusions about file system behavior can be drawn
from the resultant output, such as the size of the file cache.
Our approach is not nearly as automated; instead, we con-
struct benchmarks that exercise certain file system behav-
iors in a controlled manner.

File System Tracing: Many previous studies have traced
file system activity. For example, Zhou et al. [37], Ouster-
hout et al. [21], Baker et al. [2], and Roselli et al. [24]
all record various file system operations to later deduce
file-level access patterns. Vogels [35] performs a simi-
lar study but inside the NT file system driver framework,
where more information is available (e.g., mapped I/O is
not missed, as it is in most other studies). A recent ex-
ample of a tracing infrastructure is TraceFS [1], which
traces file systems at the VFS layer; however, TraceFS
does not enable the low-level tracing that SBA provides.
Finally, Blaze [5] and later Ellard et al. [10] show how
low-level packet tracing can be useful in an NFS environ-
ment. By recording network-level protocol activity, net-
work file system behavior can be carefully analyzed. This
type of packet analysis is analogous to SBA since they are
both positioned at a low level and thus must reconstruct
higher-level behaviors to obtain a complete view.

2005 USENIX Annual Technical Conference USENIX Association120

8 Conclusions
As systems grow in complexity, there is a need for tech-
niques and approaches that enable both users and system
architects to understand in detail how such systems op-
erate. We have presented semantic block-level analysis
(SBA), a new methodology for file system benchmarking
that uses block-level tracing to provide insight about the
internal behavior of a file system. The block stream an-
notated with semantic information (e.g., whether a block
belongs to the journal or to another data structure) is an
excellent source of information.

In this paper, we have focused on how the behavior
of journaling file systems can be understood with SBA.
In this case, using SBA is very straightforward: the user
must know only how the journal is allocated on disk. Us-
ing SBA, we have analyzed in detail two Linux journaling
file systems: ext3 and ReiserFS. We also have performed
a preliminary analysis of Linux JFS and Windows NTFS.
In all cases, we have uncovered behaviors that would be
difficult to discover using more conventional approaches.

We have also developed and presented semantic trace
playback (STP) which enables the rapid evaluation of
new ideas for file systems. Using STP, we have demon-
strated the potential benefits of numerous modifications
to the current ext3 implementation for real workloads and
traces. Of these modifications, we believe the transaction
grouping mechanism within ext3 should most seriously be
reevaluated; an untangled approach enables asynchronous
processes to obtain in-memory bandwidth, despite the
presence of other synchronous I/O streams in the system.

Acknowledgments
We thank Theodore Ts’o, Jiri Schindler and the mem-
bers of the ADSL research group for their insightful
comments. We also thank Mustafa Uysal for his ex-
cellent shepherding, and the anonymous reviewers for
their thoughtful suggestions. This work is sponsored
by NSF CCR-0092840, CCR-0133456, CCR-0098274,
NGS-0103670, ITR-0086044, ITR-0325267, IBM and
EMC.

References
[1] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A File System to Trace

Them All. In FAST ’04, San Francisco, CA, April 2004.

[2] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout. Measure-
ments of a Distributed File System. In SOSP ’91, pages 198–212, Pacific
Grove, CA, October 1991.

[3] S. Best. JFS Log. How the Journaled File System performs logging. In
Proceedings of the 4th Annual Linux Showcase and Conference, pages 163–
168, Atlanta, 2000.

[4] S. Best. JFS Overview. www.ibm.com/developerworks/library/l-jfs.html,
2004.

[5] M. Blaze. NFS tracing by passive network monitoring. In USENIX Winter
’92, pages 333–344, San Francisco, CA, January 1992.

[6] T. Bray. The Bonnie File System Benchmark.
http://www.textuality.com/bonnie/.

[7] R. Bryant, R. Forester, and J. Hawkes. Filesystem Performance and Scala-
bility in Linux 2.4.17. In FREENIX ’02, Monterey, CA, June 2002.

[8] P. M. Chen and D. A. Patterson. A New Approach to I/O Performance
Evaluation–Self-Scaling I/O Benchmarks, Predicted I/O Performance. In
SIGMETRICS ’93, pages 1–12, Santa Clara, CA, May 1993.

[9] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason, and
R. N. Sidebotham. The Episode File System. In USENIX Winter ’92, pages
43–60, San Francisco, CA, January 1992.

[10] D. Ellard and M. I. Seltzer. New NFS Tracing Tools and Techniques for
System Analysis. In LISA ’03, pages 73–85, San Diego, California, October
2003.

[11] G. R. Ganger and Y. N. Patt. Metadata Update Performance in File Systems.
In OSDI ’94, pages 49–60, Monterey, CA, November 1994.

[12] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[13] R. Hagmann. Reimplementing the Cedar File System Using Logging and
Group Commit. In SOSP ’87, Austin, Texas, November 1987.

[14] J. Katcher. PostMark: A New File System Benchmark. Technical Report
TR-3022, Network Appliance Inc., October 1997.

[15] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast File System
for UNIX. ACM Transactions on Computer Systems, 2(3):181–197, August
1984.

[16] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Fsck - The UNIX
File System Check Program. Unix System Manager’s Manual - 4.3 BSD
Virtual VAX-11 Version, April 1986.

[17] L. McVoy and C. Staelin. lmbench: Portable Tools for Performance Analy-
sis. In USENIX 1996, San Diego, CA, January 1996.

[18] J. C. Mogul. A Better Update Policy. In USENIX Summer ’94, Boston, MA,
June 1994.

[19] W. Norcutt. The IOzone Filesystem Benchmark. http://www.iozone.org/.

[20] J. K. Ousterhout. Why Aren’t Operating Systems Getting Faster as Fast as
Hardware? In Proceedings of the 1990 USENIX Summer Technical Confer-
ence, Anaheim, CA, June 1990.

[21] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Kupfer, and J. G.
Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In
SOSP ’85, pages 15–24, Orcas Island, WA, December 1985.

[22] H. Reiser. ReiserFS. www.namesys.com, 2004.

[23] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framework for Evaluating
Storage System Security. In FAST ’02, pages 14–29, Monterey, CA, January
2002.

[24] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File System
Workloads. In USENIX ’00, pages 41–54, San Diego, California, June 2000.

[25] M. Rosenblum and J. Ousterhout. The Design and Implementation of a Log-
Structured File System. ACM Transactions on Computer Systems, 10(1):26–
52, February 1992.

[26] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. N. Soules,
and C. A. Stein. Journaling Versus Soft Updates: Asynchronous Meta-data
Protection in File Systems. In USENIX ’00, pages 71–84, San Diego, Cali-
fornia, June 2000.

[27] D. A. Solomon. Inside Windows NT (Microsoft Programming Series). Mi-
crosoft Press, 1998.

[28] SourceForge. The Linux NTFS Project. http://linux-ntfs.sf.net/, 2004.

[29] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck.
Scalability in the XFS File System. In USENIX 1996, San Diego, CA, Jan-
uary 1996.

[30] Transaction Processing Council. TPC Benchmark B Standard Specification,
Revision 3.2. Technical Report, 1990.

[31] Transaction Processing Council. TPC Benchmark C Standard Specification,
Revision 5.2. Technical Report, 1992.

[32] T. Ts’o and S. Tweedie. Future Directions for the Ext2/3 Filesystem. In
FREENIX ’02, Monterey, CA, June 2002.

[33] S. C. Tweedie. Journaling the Linux ext2fs File System. In The Fourth
Annual Linux Expo, Durham, North Carolina, May 1998.

[34] S. C. Tweedie. EXT3, Journaling File System. olstrans.sourceforge.net/
release/OLS2000-ext3/OLS2000-ext3.html, July 2000.

[35] W. Vogels. File system usage in Windows NT 4.0. In SOSP ’99, pages
93–109, Kiawah Island Resort, SC, December 1999.

[36] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model Checking to
Find Serious File System Errors. In OSDI ’04, San Francisco, CA, December
2004.

[37] S. Zhou, H. D. Costa, and A. Smith. A File System Tracing Package for
Berkeley UNIX. In USENIX Summer ’84, pages 407–419, Salt Lake City,
UT, June 1984.

