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Abstract
In this paper, we propose a new approach for designing

distributed systems to survive Internet catastrophes called in-
formed replication, and demonstrate this approach with the
design and evaluation of a cooperative backup system called
the Phoenix Recovery Service. Informed replication uses a
model of correlated failures to exploit software diversity. The
key observation that makes our approach both feasible and
practical is that Internet catastrophes result from shared vul-
nerabilities. By replicating a system service on hosts that do
not have the same vulnerabilities, an Internet pathogen that
exploits a vulnerability is unlikely to cause all replicas to fail.
To characterize software diversity in an Internet setting, we
measure the software diversity of host operating systems and
network services in a large organization. We then use insights
from our measurement study to develop and evaluate heuris-
tics for computing replica sets that have a number of attractive
features. Our heuristics provide excellent reliability guaran-
tees, result in low degree of replication, limit the storage bur-
den on each host in the system, and lend themselves to a fully
distributed implementation. We then present the design and
prototype implementation of Phoenix, and evaluate it on the
PlanetLab testbed.

1 Introduction

The Internet today is highly vulnerable to Internet epidemics:
events in which a particularly virulent Internet pathogen, such
as a worm or email virus, compromises a large number of
hosts. Starting with the Code Red worm in 2001, which in-
fected over 360,000 hosts in 14 hours [27], such pathogens
have become increasingly virulent in terms of speed, extent,
and sophistication. Sapphire scanned most IP addresses in
less than 10 minutes [25], Nimda reportedly infected mil-
lions of hosts, and Witty exploited vulnerabilities in fire-
wall software explicitly designed to defend hosts from such
pathogens [26]. We call such epidemics Internet catastro-
phes because they result in extensive wide-spread damage
costing billions of dollars [27]. Such damage ranges from
overwhelming networks with epidemic traffic [25, 27], to pro-
viding zombies for spam relays [30] and denial of service at-
tacks [35], to deleting disk blocks [26]. Given the current
ease with which such pathogens can be created and launched,

further Internet catastrophes are inevitable in the near future.
Defending hosts and the systems that run on them is there-

fore a critical problem, and one that has received consider-
able attention recently. Approaches to defend against Internet
pathogens generally fall into three categories. Prevention re-
duces the size of the vulnerable host population [38, 41, 42].
Treatment reduces the rate of infection [9, 33]. Finally, con-
tainment techniques block infectious communication and re-
duce the contact rate of a spreading pathogen [28, 44, 45].

Such approaches can mitigate the impact of an Internet
catastrophe, reducing the number of vulnerable and compro-
mised hosts. However, they are unlikely to protect all vul-
nerable hosts or entirely prevent future epidemics and risk
of catastrophes. For example, fast-scanning worms like Sap-
phire can quickly probe most hosts on the Internet, making
it challenging for worm defenses to detect and react to them
at Internet scale [28]. The recent Witty worm embodies a
so-called zero-day worm, exploiting a vulnerability soon af-
ter patches were announced. Such pathogens make it increas-
ingly difficult for organizations to patch vulnerabilities before
a catastrophe occurs. As a result, we argue that defenses are
necessary, but not sufficient, for fully protecting distributed
systems and data on Internet hosts from catastrophes.

In this paper, we propose a new approach for designing
distributed systems to survive Internet catastrophes called in-
formed replication. The key observation that makes informed
replication both feasible and practical is that Internet epi-
demics exploit shared vulnerabilities. By replicating a system
service on hosts that do not have the same vulnerabilities,
a pathogen that exploits one or more vulnerabilities cannot
cause all replicas to fail. For example, to prevent a distributed
system from failing due to a pathogen that exploits vulnera-
bilities in Web servers, the system can place replicas on hosts
running different Web server software.

The software of every system inherently is a shared vul-
nerability that represents a risk to using the system, and
systems designed to use informed replication are no differ-
ent. Substantial effort has gone into making systems them-
selves more secure, and our design approach can certainly
benefit from this effort. However, with the dramatic rise of
worm epidemics, such systems are now increasingly at risk
to large-scale failures due to vulnerabilities in unrelated soft-
ware running on the host. Informed replication reduces this
new source of risk.
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This paper makes four contributions. First, we develop
a system model using the core abstraction [15] to represent
failure correlation in distributed systems. A core is a reli-
able minimal subset of components such that the probability
of having all hosts in a core failing is negligible. To reason
about the correlation of failures among hosts, we associate at-
tributes with hosts. Attributes represent characteristics of the
host that can make it prone to failure, such as its operating
system and network services. Since hosts often have many
characteristics that make it vulnerable to failure, we group
host attributes together into configurations to represent the
set of vulnerabilities for a host. A system can use the con-
Þgurations of all hosts in the system to determine how many
replicas are needed, and on which hosts those replicas should
be placed, to survive a worm epidemic.
Second, the efÞciency of informed replication fundamen-

tally depends upon the degree of software diversity among the
hosts in the system, as more homogeneous host populations
result in a larger storage burden for particular hosts. To eval-
uate the degree of software heterogeneity found in an Internet
setting, we measure and characterize the diversity of the op-
erating systems and network services of hosts in the UCSD
network. The operating system is important because it is the
primary attribute differentiating hosts, and network services
represent the targets for exploit by worms. The results of this
study indicate that such networks have sufÞcient diversity to
make informed replication feasible.
Third, we develop heuristics for computing cores that have

a number of attractive features. They provide excellent reli-
ability guarantees, ensuring that user data survives attacks of
single- and double-exploit pathogens with probability greater
than 0.99. They have low overhead, requiring fewer than 3
copies to cope with single-exploit pathogens, and fewer than
5 copies to cope with double-exploit pathogens. They bound
the number of replica copies stored by any host, limiting the
storage burden on any single host. Finally, the heuristics lend
themselves to a fully distributed implementation for scalabil-
ity. Any host can determine its replica set (its core) by con-
tacting a constant number of other hosts in the system, inde-
pendent of system size.

Finally, to demonstrate the feasibility and utility of our
approach, we apply informed replication to the design and
implementation of Phoenix. Phoenix is a cooperative, dis-
tributed remote backup system that protects stored data
against Internet catastrophes that cause data loss [26]. The
usage model of Phoenix is straightforward: users specify an
amount F of bytes of their disk space for management by the
system, and the system protects a proportional amount F/k
of their data using storage provided by other hosts, for some
value of k. We implement Phoenix as a service layered on
the Pastry DHT [32] in the Macedon framework [31], and
evaluate its ability to survive emulated catastrophes on the
PlanetLab testbed.
The rest of this paper is organized as follows. Section 2 dis-

cusses related work. Section 3 describes our systemmodel for
representing correlated failures. Section 4 describes our mea-
surement study of the software diversity of hosts in a large
network, and Section 5 describes and evaluates heuristics for
computing cores. Section 6 describes the design and imple-
mentation of Phoenix, and Section 7 describes the evaluation
of Phoenix. Finally, Section 8 concludes.

2 Related work

Most distributed systems are not designed such that failures
are independent, and there has been recent interest in proto-
cols for systems where failures are correlated. Quorum-based
protocols, which implement replicated update by reading and
writing overlapping subsets of replicas, are easily adapted to
correlated failures. A model of dependent failures was in-
troduced for Byzantine-tolerant quorum systems [23]. This
model, called a fail-prone system, is a dual representation of
the model (cores) that we use here. Our model was devel-
oped as part of a study of lower bounds and optimal protocols
for Consensus in environments where failures can be corre-
lated [15].

The ability of Internet pathogens to spread through a vul-
nerable host population on the network fundamentally de-
pends on three properties of the network: the number of sus-
ceptible hosts that could be infected, the number of infected
hosts actively spreading the pathogen, and the contact rate at
which the pathogen spreads. Various approaches have been
developed for defending against such epidemics that address
each of these properties.

Prevention techniques, such as patching [24, 38, 42] and
overßow guarding [7, 41], prevent pathogens from exploit-
ing vulnerabilities, thereby reducing the size of the vulnerable
host population and limiting the extent of a worm outbreak.
However, these approaches have the traditional limitations of
ensuring soundness and completeness, or leave windows of
vulnerability due to the time required to develop, test, and
deploy.

Treatment techniques, such as disinfection [6, 9] and vac-
cination [33], remove software vulnerabilities after they have
been exploited and reduce the rate of infection as hosts are
treated. However, such techniques are reactive in nature and
hosts still become infected.

Containment techniques, such as throttling [21, 44] and Þl-
tering [28, 39], block infectious communication between in-
fected and uninfected hosts, thereby reducing or potentially
halting the contact rate of a spreading pathogen. The ef-
Þcacy of reactive containment fundamentally depends upon
the ability to quickly detect a new pathogen [19, 29, 37, 46],
characterize it to create Þlters speciÞc to infectious traf-
Þc [10, 16, 17, 34], and deploy such Þlters in the net-
work [22, 40]. Unfortunately, containment at Internet scales
is challenging, requiring short reaction times and extensive
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deployment [28, 45]. Again, since containment is inherently
reactive, some hosts always become infected.

Various approaches take advantage of software heterogene-
ity to make systems fault-tolerant. N-version programming
uses different implementations of the same service to prevent
correlated failures across implementations. Castro’s Byzan-
tine fault tolerant NFS service (BFS) is one such example [4]
and provides excellent fault-tolerant guarantees, but requires
multiple implementations of every service. Scrambling the
layout and execution of code can introduce heterogeneity into
deployed software [1]. However, such approaches can make
debugging, troubleshooting, and maintaining software con-
siderably more challenging. In contrast, our approach takes
advantage of existing software diversity.

Lastly, Phoenix is just one of many proposed cooperative
systems for providing archival and backup services. For ex-
ample, Intermemory [5] and Oceanstore [18] enable stored
data to persist indeÞnitely on servers distributed across the
Internet. As with Phoenix, Oceanstore proposes mechanisms
to cope with correlated failures [43]. The approach, however,
is reactive and does not enable recovery after Internet catas-
trophes. With Pastiche [8], pStore [2], and CIBS [20], users
relinquish a fraction of their computing resources to collec-
tively create a backup service. However, these systems tar-
get localized failures simply by storing replicas offsite. Such
systems provide similar functionality as Phoenix, but are not
designed to survive wide-spread correlated failures of Inter-
net catastrophes. Finally, Glacier is a system speciÞcally de-
signed to survive highly correlated failures like Internet catas-
trophes [11]. In contrast to Phoenix, Glacier assumes a very
weak failure model and instead copes with catastrophic fail-
ures via massive replication. Phoenix relies upon a stronger
failure model, but replication in Phoenix is modest in com-
parison.

3 System model

As a Þrst step toward the development of a technique to cope
with Internet catastrophes, in this section we describe our sys-
tem model for representing and reasoning about correlated
failures, and discuss the granularity at which we represent
software diversity.

3.1 Representing correlated failures
Consider a system composed of a set H of hosts each of
which is capable of holding certain objects. These hosts can
fail (for example, by crashing) and, to keep these objects
available, they need to be replicated. A simple replication
strategy is to determine the maximum number t of hosts that
can fail at any time, and then maintain more than t replicas of
each object.
However, using more than t replicas may lead to excessive

replication when host failures are correlated. As a simple ex-

ample, consider three hosts {h1, h2, h3} where the failures
of h1 and h2 are correlated while h3 fails independent of the
other hosts. If h1 fails, then the probability of h2 failing is
high. As a result, one might set t = 2 and thereby require
t + 1 = 3 replicas. However, if we place replicas on h1 and
h3, the object’s availability may be acceptably high with just
two replicas.

To better address issues of optimal replication in the face
of correlated failures, we have deÞned an abstraction that we
call a core [15]. A core is a minimal set of hosts such that,
in any execution, at least one host in the core does not fail.
In the above example, both {h1, h3} and {h2, h3} are cores.
{h1, h2} would not be a core since the probability of both
failing is too high and {h1, h2, h3} would not be a core since
it is not minimal. Using this terminology, a central problem
of informed replication is the identiÞcation of cores based on
the correlation of failures.
An Internet catastrophe causes hosts to fail in a corre-

lated manner because all hosts running the targeted soft-
ware are vulnerable. Operating systems and Web servers
are examples of software commonly exploited by Internet
pathogens [27, 36]. Hence we characterize a host’s vulner-
abilities by the software they run. We associate with each
host a set of attributes, where each attribute is a canonical
name of a software package or system that the host runs; in
Section 3.2 below, we discuss the tradeoffs of representing
software packages at different granularities. We call the com-
bined representation of all attributes of a host the conÞgura-
tion of the host. An example of a conÞguration is {Windows,
IIS, IE}, where Windows is a canonical name for an operat-
ing system, IIS for a Web server package, and IE for a Web
browser. Agreeing on canonical names for attribute values
is essential to ensure that dependencies of host failures are
appropriately captured.
An Internet pathogen can be characterized by the set of

attributes A that it targets. Any host that has none of the at-
tributes in A is not susceptible to the pathogen. A core is a
minimal set C of hosts such that, for each pathogen, there is
a host h in C that is not susceptible to the pathogen. Internet
pathogens often target a single (possibly cross-platform) vul-
nerability, and the ones that target multiple vulnerabilities tar-
get the same operating system. Assuming that any attribute is
susceptible to attack, we can re-deÞne a core using attributes:
a core is a minimal set C of processes such that no attribute
is common to all hosts in C. In Section 5.4, we relax this
assumption and show how to extend our results to tolerate
pathogens that can exploit multiple vulnerabilities.
To illustrate these concepts, consider the system described

in Example 3.1. In this system, hosts are characterized by six
attributes which we classify for clarity into operating system,
Web server, and Web browser.

H1 and H2 comprise what we call an orthogonal core,
which is a core composed of hosts that have disjoint con-
Þgurations. Given our assumption that Internet pathogens
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target only one vulnerability or multiple vulnerabilities on
one platform, an orthogonal core will contain two hosts.
{H1,H3,H4} is also a core because there is no attribute
present in all hosts, and it is minimal.

Example 3.1

Attributes: Operating System = {Unix, Windows};
Web Server = {Apache, IIS};
Web Browser = {IE, Netscape}.

Hosts: H1 = {Unix, Apache, Netscape};
H2 = {Windows, IIS, IE};
H3 = {Windows, IIS, Netscape};
H4 = {Windows, Apache, IE}.

Cores = {{H1, H2}, {H1, H3, H4}}.

The smaller core {H1,H2} might appear to be the better
choice since it requires less replication. Choosing the small-
est core, however, can have an adverse effect on individual
hosts if many hosts use this core for placing replicas. To rep-
resent this effect, we deÞne load to be the amount of storage
a host provides to other hosts. In environments where some
conÞgurations are rare, hosts with the rare conÞgurations may
occur in a large percentage of the smallest cores. Thus, hosts
with rare conÞgurations may have a signiÞcantly higher load
than the other hosts. Indeed, having a rare conÞguration can
increase a host’s load even if the smallest core is not selected.
For example, in Example 3.1, H1 is the only host that has a
ßavor of Unix as its operating system. Consequently, H1 is
present in both cores.
To make our argument more concrete, consider the worms

in Table 1, which are well-known worms unleashed in the past
few years. For each worm, given two hosts with one not run-
ning Windows or not running a speciÞc server such as a Web
server or a database, at least one survives the attack. With
even a very modest amount of heterogeneity, our method of
constructing cores includes such pairs of hosts.

3.2 Attribute granularity
Attributes can represent software diversity at many different
granularities. The choice of attribute granularity balances re-
silience to pathogens, ßexibility for placing replicas, and de-
gree of replication. An example of the coarsest representa-
tion is for a host to have a conÞguration comprising a sin-
gle attribute for the generic class of operating system, e.g.,
“Windows”, “Unix”, etc. This single attribute represents the
potential vulnerabilities of all versions of software running
on all versions of the same class of operating system. As
a result, replicas would always be placed on hosts with dif-
ferent operating systems. A less coarse representation is to
have attributes for the operating system as well as all net-
work services running on the host. This representation yields
more freedom for placing replicas. For example, we can place
replicas on hosts with the same class of operating system if

Worm Form of infection (Service) Platform
Code Red port 80/http (MS IIS) Windows
Nimda multiple: email; Trojan horse versions Windows

using open network shares (SMB: ports
137–139 and 445); port 80/HTTP
(MS IIS); Code Red backdoors

Sapphire port 1434/udp (MS SQL, MSDE) Windows
Sasser port 445/tcp (LSASS) Windows
Witty port 4000/udp (BlackICE) Windows

Table 1: Recent well-known pathogens.

they run different services. The core {H1,H3,H4} in Exam-
ple 3.1 is an example of this situation since H3 and H4 both
run Windows. More Þne-grained representations can have at-
tributes for different versions of operating systems and appli-
cations. For example, we can represent the various releases of
Windows, such as “Windows 2000” and “Windows XP”, or
even versions such as “NT 4.0sp4” as attributes. Such Þne-
grained attributes provide considerable ßexibility in placing
replicas. For example, we can place a replica on an NT host
and an XP host to protect against worms such as Code Red
that exploit an NT service but not an XP service. But do-
ing so greatly increases the cost and complexity of collecting
and representing host attributes, as well as computing cores
to determine replica sets.
Our initial work [14] suggested that informed replication

can be effective with relatively coarse-grained attributes for
representing software diversity. As a result, we use attributes
that represent just the class of operating system and network
services on hosts in the system, and not their speciÞc ver-
sions. In subsequent sections, we show that, when represent-
ing diversity at this granularity, hosts in an enterprise-scale
network have substantial and sufÞcient software diversity for
efÞciently supporting informed replication. Our experience
suggests that, although we can represent software diversity at
Þner attribute granularities such as speciÞc software versions,
there is not a compelling need to do so.

4 Host diversity

With informed replication, the difÞculty of identifying cores
and the resulting storage load depend on the actual distri-
bution of attributes among a set of hosts. To better under-
stand these two issues, we measured the software diversity
of a large set of hosts at UCSD. In this section, we Þrst de-
scribe the methodology we used, and discuss the biases and
limitations our methodology imposes. We then characterize
the operating system and network service attributes found on
the hosts, as well as the host conÞgurations formed by those
attributes.

4.1 Methodology
On our behalf, UCSD Network Operations used the Nmap
tool [12] to scan IP address blocks owned by UCSD to deter-
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mine the host type, operating system, and network services
running on the host. Nmap uses various scanning techniques
to classify devices connected to the network. To determine
operating systems, Nmap interacts with the TCP/IP stack on
the host using various packet sequences or packet contents
that produce known behaviors associated with specific op-
erating system TCP/IP implementations. To determine the
network services running on hosts, Nmap scans the host port
space to identify all open TCP and UDP ports on the host. We
anonymized host IP addresses prior to processing.

Due to administrative constraints collecting data, we ob-
tained the operating system and port data at different times.
We had a port trace collected between December 19ñ22,
2003, and an operating system trace collected between De-
cember 29, 2003 and January 7, 2004. The port trace con-
tained 11,963 devices and the operating system trace con-
tained 6,395 devices.

Because we are interested in host data, we first discarded
entries for specialized devices such as printers, routers, and
switches. We then merged these traces to produce a combined
trace of hosts that contained both operating system data and
open port data for the same set of hosts. When fingerprinting
operating systems, Nmap determines both a class (e.g., Win-
dows) as well as a version (e.g., Windows XP). For added
consistency, we discarded host information for those entries
that did not have consistent OS class and version info. The
result was a data set with operating system and port data for
2,963 general-purpose hosts.

Our data set was constructed using assumptions that in-
troduced biases. First, worms exploit vulnerabilities that are
present in network services. We make the assumption that
two hosts that have the same open port are running the same
network service and thus have the same vulnerability. In
fact, two hosts may use a given port to run different ser-
vices, or even different versions (with different vulnerabili-
ties) of the same service. Second, ignoring hosts that Nmap
could not consistently fingerprint could bias the host traces
that were used. Third, DHCP-assigned host addresses are
reused. Given the time elapsed between the time operating
system information was collected and port information was
collected, an address in the operating system trace may refer
to a different host in the port trace. Further, a host may appear
multiple times with different addresses either in the port trace
or in the operating system trace. Consequently, we may have
combined information from different hosts to represent one
host or counted the same host multiple times.

The first assumption can make two hosts appear to share
vulnerabilities when in fact they do not, and the second as-
sumption can consistently discard configurations that other-
wise contribute to a less skewed distribution of configura-
tions. The third assumption may make the distribution of con-
figurations seem less skewed, but operating system and port
counts either remain the same (if hosts do not appear multiple
times in the traces) or increase due to repeated configurations.

OS
Name Count (%)

Windows 1604 (54.1)
Solaris 301 (10.1)

Mac OS X 296 (10.0)
Linux 296 (10.0)
Mac OS 204 (6.9)
FreeBSD 66 (2.2)
IRIX 60 (2.0)
HP-UX 32 (1.1)
BSD/OS 28 (0.9)

Tru64 Unix 22 (0.7)

(a)

Port
Number Count (%)

139 (netbios-ssn) 1640 (55.3)
135 (epmap) 1496 (50.4)

445 (microsoft-ds) 1157 (39.0)
22 (sshd) 910 (30.7)

111 (sunrpc) 750 (25.3)
1025 (various) 735 (24.8)
25 (smtp) 575 (19.4)
80 (httpd) 534 (18.0)
21 (ftpd) 528 (17.8)

515 (printer) 462 (15.6)

(b)

Table 2: Top 10 operating systems (a) and ports (b) among
the 2,963 general-purpose hosts.

The net effect of our assumptions is to make operating system
and port distributions appear to be less diverse than it really
is, although it may have the opposite effect on the distribution
of configurations.

Another bias arises from the environment we surveyed. A
university environment is not necessarily representative of the
Internet, or specific subsets of it. We suspect that such an en-
vironment is more diverse in terms of software use than other
environments, such as the hosts in a corporate environment or
in a governmental agency. On the other hand, there are per-
haps thousands of universities with a large setting connected
to the Internet around the globe, and so the conclusions we
draw from our data are undoubtedly not singular.

4.2 Attributes
Together, the hosts in our study have 2,569 attributes repre-
senting operating systems and open ports. Table 2 shows the
ten most prevalent operating systems and open ports identi-
fied on the general purpose hosts. Table 2.a shows the num-
ber and percentage of hosts running the named operating sys-
tems. As expected, Windows is the most prevalent OS (54%
of general purpose hosts). Individually, Unix variants vary
in prevalence (0.03ñ10%), but collectively they comprise a
substantial fraction of the hosts (38%).

Table 2.b shows the most prevalent open ports on the hosts
and the network services typically associated with those port
numbers. These ports correspond to services running on
hosts, and represent the points of vulnerability for hosts. On
average, each host had seven ports open. However, the num-
ber of ports per host varied considerably, with 170 hosts only
having one port open while one host (running a firewall soft-
ware) had 180 ports open. Windows services dominate the
network services running on hosts, with netbios-ssn (55%),
epmap (50%), and domain services (39%) topping the list.
The most prevalent services typically associated with Unix
are sshd (31%) and sunrpc (25%). Web servers on port 80 are
roughly as prevalent as ftp (18%).

These results show that the software diversity is signifi-
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Figure 1: Visualization of UCSD configurations.

cantly skewed. Most hosts have open ports that are shared by
many other hosts (Table 2.b lists specific examples). How-
ever, most attributes are found on few hosts, i.e., most open
ports are open on only a few hosts. From our traces, we ob-
serve that the first 20 most prevalent attributes are found on
10% or more of hosts, but the remaining attributes are found
on fewer hosts.
These results are encouraging for the process of finding

cores. Having many attributes that are not widely shared
makes it easier to find replicas that cover each otherís at-
tributes, preventing a correlated failure from affecting all
replicas. We examine this issue next.

4.3 Configurations
Each host has multiple attributes comprised of its operating
system and network services, and together these attributes de-
termine its configuration. The distribution of configurations
among the hosts in the system determines the difficulty of
finding core replica sets. The more configurations shared by
hosts, the more challenging it is to find small cores.

Figure 1 is a qualitative visualization of the space of host
configurations. It shows a scatter plot of the host configura-
tions among the UCSD hosts in our study. The x-axis is the
port number space from 0ñ6500, and the y-axis covers the
entire set of 2,963 host configurations grouped by operating
system family. A dot corresponds to an open port on a host,
and each horizontal slice of the scatter plot corresponds to the
configuration of open ports for a given host. We sort groups
in decreasing size according to the operating systems listed
in Table 2: Windows hosts start at the bottom, then Solaris,
Mac OS X, etc. Note that we have truncated the port space
in the graph; hosts had open ports above 6500, but showing
these ports did not add any additional insight and obscured
patterns at lower, more prevalent port numbers.
Figure 1 shows a number of interesting features of the

configuration space. The marked vertical bands within each
group indicate, as one would expect, strong correlations of
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Figure 2: Distribution of configurations.

network services among hosts running the same general op-
erating system. For example, most Windows hosts run the
epmap (port 135) and netbios (port 139) services, and many
Unix hosts run sshd (port 22) and X11 (port 6000). Also,
in general, non-Windows hosts tend to have more open ports
(8.3 on average) than Windows hosts (6.0 on average). How-
ever, the groups of hosts running the same operating system
still have substantial diversity within the group. Although
each group has strong bands, they also have a scattering of
open ports between the bands contributing to diversity within
the group. Lastly, there is substantial diversity among the
groups. Windows hosts have different sets of open ports than
hosts running variants of Unix, and these sets even differ
among Unix variants. We take advantage of these character-
istics to develop heuristics for determining cores in Section 5.

Figure 2 provides a quantitative evaluation of the diversity
of host configurations. It shows the cumulative distribution
of configurations across hosts for different classes of port at-
tributes, with configurations on the x-axis sorted by decreas-
ing order of prevalence. A distribution in which all configura-
tions are equally prevalent would be a straight diagonal line.
Instead, the results show that the distribution of configura-
tions is skewed, with a majority of hosts accounting for only
a small percentage of all configurations. For example, when
considering all attributes, 50% of hosts comprise just 20% of
configurations. In addition, reducing the number of port at-
tributes considered further skews the distribution. For exam-
ple, when only considering ports that appear on more than one
host, shown by the ìMultipleî line, 15% of the configurations
represent over 50% of the hosts. And when considering only
the port attributes that appear on at least 100 hosts, only 8%
of the configurations represent over 50% of the hosts. Skew
in the configuration distribution makes it more difficult to find
cores for those hosts that share more prevalent configurations
with other hosts. In the next section, however, we show that
host populations with diversity similar to UCSD are sufficient
for efficiently constructing cores that result in a low storage
load.
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5 Surviving catastrophes

With informed replication, each host h constructs a core
Core(h) based on its conÞguration and the conÞguration of
other hosts.1 Unfortunately, computing a core of optimal size
is NP-hard, as we have shown with a reduction from SET-
COVER [13]. Hence, we use heuristics to compute Core(h).
In this section, we Þrst discuss a structure for representing
advertised conÞgurations that is amenable to heuristics for
computing cores. We then describe four heuristics and eval-
uate via simulation the properties of the cores that they con-
struct. As a basis for our simulations, we use the set of hosts
H obtained from the traces discussed in Section 4.

5.1 Advertised conÞgurations
Our heuristics are different versions of greedy algorithms: a
host h repeatedly selects other hosts to include in Core(h)
until some condition is met. Hence we chose a representa-
tion that makes it easier for a greedy algorithm to Þnd good
candidates to include in Core(h). This representation is a
three-level hierarchy.
The top level of the hierarchy is the operating system that a

host runs, the second level includes the applications that run
on that operating system, and the third level are hosts. Each
host runs one operating system, and so each host is subordi-
nate to its operating system in the hierarchy (we can represent
hosts running multiple virtual machines as multiple virtual
hosts in a straightforward manner). Since most applications
run predominately on one platform, hosts that run a different
operating system than h are likely good candidates for includ-
ing in Core(h). We call the Þrst level the containers and the
second level the sub-containers. Each sub-container contains
a set of hosts. Figure 3 illustrates these abstractions using the
conÞgurations of Example 3.1.
More formally, let O be the set of canonical operating sys-

tem names and C be the set of containers. Each host h has
an attribute h.os that is the canonical name of the operating
system on h. The function mc : O → C maps operating sys-
tem name to container; thus, mc(h.os) is the container that
contains h.
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Figure 3: Illustration of containers and sub-containers.

Let h.apps denote the set of canonical names of the ap-
plications that are running on h, and let A be the canoni-

1More precisely, Core(h) is a core constrained to contain h. That is,
Core(h) \ {h} may itself be minimal, but we require h ∈ Core(h).

cal names of all of the applications. We denote with S the
set of sub-containers and with ms : C → 2S the function
that maps a container to its sub-containers. The function
mh : C × A → S maps a container and application to a
sub-container; thus, for each a ∈ h.apps, host h is in each
sub-container mh(mc(h.os), a).

At this high level of abstraction, advertising a conÞguration
is straightforward. Initially C is empty. To advertise its con-
Þguration, a host h Þrst ensures that there is a container c ∈ C
such that mc(h.os) = c. Then, for each attribute a ∈ h.apps,
h ensures that there is a sub-container mh(c, a) containing h.

5.2 Computing cores
The heuristics we describe in this section compute Core(h)
in time linear with the number of attributes in h.apps. These
heuristics reference the set C of containers and the three func-
tions mc,ms and mh, but they do not reference the full set
A of attributes. In addition, these heuristics do not enumerate
H, but they do reference the conÞguration of hosts (to refer-
ence the conÞguration of a host h′, they reference h′.os and
h′.apps). Thus, the container/sub-container hierarchy is the
only data structure that the heuristics use to compute cores.

5.2.1 Metrics

We evaluate our heuristics using three metrics:

• Average core size: |Core(h)| averaged over all h ∈
H. This metric is important because it determines how
much capacity is available in the system. As the aver-
age core size increases, the total capacity of the system
decreases.

• Maximum load: The load of a host h′ is the number of
cores Core(h) of which h′ is a member. The maximum
load is the largest load of any host h′ ∈ H.

• Average coverage: We say that an attribute a of a host
h is covered in Core(h) if there is at least one other host
h′ in Core(h) that does not have a. Thus, an exploit of
attribute a can affect h, but not h′, and so not all hosts
in Core(h) are affected. The coverage of Core(h) is the
fraction of attributes of h that are covered. The aver-
age coverage is the average of the coverages of Core(h)
over all hosts h ∈ H. A high average coverage indicates
a higher resilience to Internet catastrophes: many hosts
have most or all of their attributes covered. We return
to this discussion of what coverage means in practice in
Section 5.3, after we present most of our simulation re-
sults for context.

For brevity, we use the terms core size, load, and cover-
age to indicate average core size, maximum load, and average
coverage, respectively. Where we do refer to these terms in
the context of a particular host, we say so explicitly.
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Core size Coverage Load
Random 5 0.977 12
Uniform 2.56 0.9997 284
Weighted 2.64 0.9995 84
DWeighted 2.58 0.9997 91

Table 3: A typical run of the heuristics.

A good heuristic will determine cores with small size, low
load, and high coverage. Coverage is the most critical metric
because it determines how well it does in guaranteeing ser-
vice in the event of a catastrophe. Coverage may not equal 1
either because there was no host h′ that was available to cover
an attribute a of h, or because the heuristic failed to identify
such a host h′. As shown in the following sections, the second
case rarely happens with our heuristics.

Note that, as a single number, the coverage of a given
Core(h) does not fully capture its resilience. For example,
consider host h1 with two attributes and host h2 with 10 at-
tributes. If Core(h1) covers only one attribute, then Core(h1)
has a coverage of 0.5. If Core(h2) has the same coverage,
then it covers only 5 of the 10 attributes. There are more ways
to fail all of the hosts in Core(h2) than those in Core(h1).
Thus, we also use the number of cores that do not have a cov-
erage of 1.0 as an extension of the coverage metric.

5.2.2 Heuristics

We begin by using simulation to evaluate a naive heuristic
called Random that we use as a basis for comparison. It is
not a greedy heuristic and does not reference the advertised
conÞgurations. Instead, h simply chooses at random a subset
of H of a given size containing h.
The Þrst row of Table 3 shows the results ofRandom using

one run of our simulator. We set the size of the cores to 5, i.e.,
Random chose 5 random hosts to form a core. The coverage
of 0.977 may seem high, but there are still many cores that
have uncovered attributes and choosing a core size smaller
than Þve results in even lower coverage. The load is 12, which
is signiÞcantly higher than the lower bound of 5.2
Our Þrst greedy heuristic Uniform (“uniform” selection

among operating systems) operates as follows. First, it
chooses a host with a different operating system than h.os
to cover this attribute. Then, for each attribute a ∈ h.apps,
it chooses both a container c ∈ C \ {mc(h.os)} and a sub-
container sc ∈ ms(c) \ {mh(c, a)} at random. Finally, it
chooses a host h′ at random from sc. If a �∈ h′.apps then it
includes h′ in Core(h). Otherwise, it tries again by choos-
ing a new container c, sub-container sc, and host h′ at ran-
dom. Uniform repeats this procedure diff OS times in an
attempt to cover a with Core(h). If it fails to cover a, then the
heuristic tries up to same OS times to cover a by choosing

2To meet this bound, number the hosts in H from 0 to |H| − 1. Let
Core(h) be the hosts {h + i (mod |H|) : i ∈ {0, 1, 2, 3, 4}}.

a sub-container sc ∈ mc(h.os) at random and a host h′ at
random from sc.

The goal for having two steps, one with diff OS and an-
other with same OS, is to Þrst exploit diversity across op-
erating systems, and then to exploit diversity among hosts
within the same operating system group. Referring back to
Figure 1, the set of prevalent services among hosts running
the same operating system varies across the different operat-
ing systems. In the case the attribute cannot be covered with
hosts running other operating systems, the diversity within an
operating system group may be sufÞcient to Þnd a host h′

without attribute a.
In all of our simulations, we set diff OS to 7 and

same OS to 4. After experimentation, these values have pro-
vided a good trade-off between number of useless tries and
obtaining good coverage. However, we have yet to study how
to in general choose good values of diff OS and same OS.

Pseudo-code for Uniform is as follows.

Algorithm Uniform on input h:
integer i;
core ← {h};
C′ ← C \ {mc(h.os)}
for each attribute a ∈ h.apps

i ← 0
while (a is not covered) ∧

(i ≤ diff OS + same OS)
if (i ≤ diff OS) choose randomly c ∈ C′

else c ← mc(h.os)
choose randomly sc ∈ ms(c) \ {mh(c, a)}
choose a host h′ ∈ sc : h′ �= h
if (h′ covers a) add h′ to core
i ← i + 1

return core

The second row of Table 3 shows the performance of Uni-
form for a representative run of our simulator. The core size
is close to the minimum size of two, and the coverage is very
close to the ideal value of one. This means that using Uni-
form results in signiÞcantly better capacity and improved re-
silience than Random. On the other hand, the load is very
high: there is at least one host that participates in 284 cores.
The load is so high because h chooses containers and sub-
containers uniformly. When constructing the cores for hosts
of a given operating system, the other containers are refer-
enced roughly the same number of times. Thus, Uniform
considers hosts running less prevalent operating systems for
inclusion in cores a disproportionately large number of times.
A similar argument holds for hosts running less popular ap-
plications.

This behavior suggests reÞning the heuristic to choose con-
tainers and applications weighted on the popularity of their
operating systems and applications. Given a container c, let
Nc(c) be the number of distinct hosts in the sub-containers of
c, and given a set of containers C, let Nc(C) be the sum of
Nc(c) for all c ∈ C. The heuristic Weighted (“weighted”
OS selection) is the same as Uniform except that for the
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Þrst diff OS attempts, h chooses a container c with prob-
ability Nc(c)/Nc(C \ {mc(h.os)}). Heuristic DWeighted
(“doubly-weighted” selection) takes this a step further. Let
Ns(c, a) be |mh(c, a)| and Ns(c, A) be the size of the union
of mh(c, a) for all a ∈ A. Heuristic DWeighted is the
same as Weighted except that, when considering attribute
a ∈ h.apps, h chooses a host from sub-container mh(c, a′)
with probability Ns(c, a′)/Ns(c,A \ {a}).

In the third and fourth rows of Table 3, we show a represen-
tative run of our simulator for both of these variations. The
two variations result in comparable core sizes and coverage as
Uniform, but signiÞcantly reduce the load. The load is still
very high, though: at least one host ends up being assigned to
over 80 cores.
Another approach to avoid a high load is to simply disallow

it at the risk of decreasing the coverage. That is, for some
value ofL, once a host h′ is included inL cores, h′ is removed
from the structure of advertised conÞgurations. Thus, the load
of any host is constrained to be no larger than L.
What is an effective value of L that reduces load while still

providing good coverage? We answer this question by Þrst
establishing a lower bound on the value of L. Suppose that
a is the most prevalent attribute (either service or operating
system) among all attributes, and it is present in a fraction x
of the host population. As a simple application of the pigeon-
hole principle, some host must be in at least l cores, where l
is deÞned as:

l =
⌈

|H| · x
|H| · (1 − x)

⌉
=

⌈
x

(1 − x)

⌉
(1)

Thus, the value of L cannot be smaller than l. Using Ta-
ble 2, we have that the most prevalent attribute (port 139) is
present in 55.3% of the hosts. In this case, l = 2.
Using simulation, we now evaluate our heuristics in terms

of core size, coverage, and load as a function of the load limit
L. Figures 4–7 present the results of our simulations. In these
Þgures, we vary L from the minimum 2 through a high load
of 10. All the points shown in these graphs are the averages
of eight simulated runs with error bars (although they are too
narrow to be seen in some cases). For Figures 4–6, we use
the standard error to determine the limits of the error bars,
whereas for Figure 7 we use the maximum and minimum
observed among our samples. When using load limit as a
threshold, the order in which hosts request cores fromH will
produce different results. In our experiments, we randomly
choose eight different orders of enumeratingH for construct-
ing cores. For each heuristic, each run of the simulator uses
a different order. Finally, we vary the core size of Random
using the load limit L to illustrate its effectiveness across a
range of core sizes.
Figure 4 shows the average core size for the four algorithms

for different values of L. According to this graph, Uniform,
Weighted, and DWeighted do not differ much in terms of
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core size. The average core size of Random increases lin-
early with L by design.

In Figure 5, we show results for coverage. Coverage
is slightly smaller than 1.0 for Uniform, Weighted, and
DWeighted when L is greater or equal to three. For L =
2, Weighted and DWeighted still have coverage slightly
smaller than 1.0, but Uniform does signiÞcantly worse. Us-
ing weighted selection is useful when L is small. Random
improves coverage with increasing L because the size of the
cores increases. Note that, to reach the same value of cover-
age obtained by the other heuristics,Random requires a large
core size of 9.

There are two other important observations to make about
this graph. First, coverage is roughly the same for Uniform,
Weighted, and DWeighted when L > 2. Second, as L con-
tinues to increase, there is a small decrease in coverage. This
is due to the nature of our traces and to the random choices
made by our algorithms. Ports such as 111 (portmapper,
rpcbind) and 22 (sshd) are open on several of the hosts with
operating systems different than Windows. For small values
of L, these hosts rapidly reach their threshold. Consequently,
when hosts that do have these services as attributes request
a core, there are fewer hosts available with these same at-
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Figure 6: Average fraction of uncovered hosts.

tributes. On the other hand, for larger values of L, these hosts
are more available, thus slightly increasing the probability
that not all the attributes are covered for hosts executing an
operating system different than Windows. We observed this
phenomenon exactly with ports 22 and 111 in our traces.
This same phenomenon can be observed in Figure 6. In

this Þgure, we plot the average fraction of hosts that are not
fully covered, which is an alternative way of visualizing cov-
erage. We observe that there is a share of the population of
hosts that are not fully covered, but this share is very small for
Uniform and its variations. Such a set is likely to exist due to
the non-deterministic choices we make in our heuristics when
forming cores. These uncovered hosts, however, are not fully
unprotected. From our simulation traces, we note the average
number of uncovered attributes is very small forUniform and
its variations. In all runs, we have just a few hosts that do not
have all their attributes covered, and in the majority of the
instances there is just a single uncovered attribute.
Finally, we show the resulting variance in load. Since the

heuristics limit each host to be in no more than L cores, the
maximum load equals L. The variance indicates how fairly
the load is spread among the hosts. As expected, Random
does well, having the lowest variance among all the algo-
rithms and for all values of L. Ordering the greedy heuris-
tics by their variance in load, we have Uniform � Weighted
� DWeighted. This is not surprising since we introduced
the weighted selection exactly to better balance the load. It
is interesting to observe that for every value of L, the load
variance obtained for Uniform is close to L. This means that
there were several hosts not participating in any core and sev-
eral other hosts participating in L cores.

A larger variance in load may not be objectionable in prac-
tice as long as a maximum load is enforced. Given the extra
work of maintaining the functions Ns and Nc, the heuristic
Uniform with small L (L > 2) is the best choice for our ap-
plication. However, should load variance be an issue, we can
use one of the other heuristics.
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5.3 Translating to real pathogens
In this section, we discuss why we have chosen to tolerate
exploits of vulnerabilities on a single attribute at a time. We
do so based on information about past worms to support our
choices and assumptions.

Worms such as the ones in Table 1 used services that have
vulnerabilities as vectors for propagation. Code Red, for ex-
ample, used a vulnerability in the IIS Web server to infect
hosts. In this example, a vulnerability on a single attribute
(Web server listening on port 80) was exploited. In other in-
stances, such as with the Nimda worm, more than one vulner-
ability was exploited during propagation, such as via e-mail
messages and Web browsing. Although these cases could be
modeled as exploits to vulnerabilities on multiple attributes,
we observe that previous worms did not propagate across op-
erating system platforms: in fact, the worms targeted services
on various versions of Windows.

By covering classes of operating systems in our cores, we
guarantee that pathogens that exploit vulnerabilities on a sin-
gle platform are not able to compromise all the members of
a core C of a particular host h, assuming that C covers all
attributes of h. Even if Core(h) leaves some attributes uncov-
ered, h is still protected against attacks targeting covered at-
tributes. Referring back to Figure 6, the majority of the cores
have maximum coverage. We also observed in the previous
section that, for cores that do not have maximum coverage,
usually it is only a single uncovered attribute.

Under our assumptions, informed replication mitigates the
effects of a worm that exploits vulnerabilities on a service
that exists across multiple operating systems, and of a worm
that exploits vulnerabilities on services in a single operating
system. Figure 6 presents a conservative estimate on the per-
centage of the population that is unprotected in the case of an
outbreak of such a pathogen. Assuming conservatively that
every host that is not fully covered has the same uncovered
attribute, the numbers in the graph give the fraction of the
population that can be affected in the case of an outbreak. As
can be seen, this fraction is very small.
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With our current use of attributes to represent software het-
erogeneity, a worm can be effective only if it can exploit vul-
nerabilities in services that run across operating systems, or
if it exploits vulnerabilities in multiple operating systems. To
the best of our knowledge, there has been no large-scale out-
break of such a worm. Of course, such a worm could be
written. In the next section, we discuss how to modify our
heuristics to cope with exploits of vulnerabilities on multiple
attributes.

5.4 Exploits of multiple attributes
To tolerate exploits on multiple attributes, we need to con-
struct cores such that, for subsets of attributes possessed by
members of a core, there must be a core member that does
not have these attributes. We call a k-resilient core C a group
of hosts in H such that, for every k attributes of members of
C, there is at least one host in C that does not contain any of
these attributes. In this terminology, the cores we have been
considering up to this point have been 1-resilient cores.

To illustrate this idea, consider the following example.
Hosts run Windows, Linux, and Solaris as operating sys-
tems, and IIS, Apache, and Zeus as Web servers. An ex-
ample of a 2-resilient core is a subset composed of hosts
h1, h2, h3 with conÞgurations: h1 = {Linux, Apache}; h2 =
{Windows, IIS}; h3 = {Solaris, Zeus}. In this core, for ev-
ery pair of attributes, there is at least one host that contains
none of them.
As before, every host h builds a k-resilient core Core(h).

To build Core(h), host h uses the following heuristic:
Step 1 Select randomly k − 1 hosts, h1 through hk−1, such that

hi.os = h.os, for every i ∈ {1, . . . , k − 1};
Step 2 Use Uniform to search for a 1-resilient core C for h;
Step 3 For each i ∈ {1, . . . , k − 1}, use Uniform to search for a

1-resilient core Ci for hi;
Step 4 Core(h) ← C ∪ C1 ∪ . . . ∪ Ck−1.

Intuitively, to form a k-resilient core we need to gather
enough hosts such that we can split these hosts into k subsets,
where at least one subset is a 1-resilient core. Moreover, if
there are two of these subsets where, for each subset, all of the
members of that subset share some attribute, then the shared
attribute of one set must be different from the shared attribute
of the other set. Our heuristic is conservative in searching
independently for 1-resilient cores because the problem does
not require all such sets to be 1-resilient cores. In doing so,
we protect clients and at the same time avoid the complex-
ity of optimally determining such sets. The sets output by
the heuristic, however, may not be minimal, and therefore
they are approximations of theoretical cores. We discuss this
heuristic further in [13].
In Table 4, we show simulation results for this heuristic for

k = 2. The Þrst column shows the values of load limit (L)
used by the Uniform heuristic to compute cores. We chose

L Avg. 2–coverage Avg. 1–coverage Avg. Core size
5 0.829 (0.002) 0.855 (0.002) 4.19 (0.004)
6 0.902 (0.002) 0.917 (0.002) 4.59 (0.005)
7 0.981 (0.001) 0.987 (0.001) 5.00 (0.005)
8 0.995 (0.0) 1.0 (0.0) 5.11 (0.005)
9 0.996 (0.0) 1.0 (0.0) 5.14 (0.005)
10 0.997 (0.0) 1.0 (0.0) 5.17 (0.003)

Table 4: Summary of simulation results for k = 2 for 8 dif-
ferent runs.
values of L ≥ 5 based on an argument generalized from the
one given in Section 5.2 giving the lower bound of L [13].
In the second and third columns, we present our measure-
ments for coverage with standard error in parentheses. For
each computed core Core(h), we calculate the fraction of
pairs of attributes such that at least one host h′ ∈ Core(h)
contains none of attributes of the pair. We name this metric
2-coverage, and in the table we present the average across all
hosts and across all eight runs of the simulator. 1-coverage
is the same as the average coverage metric deÞned in Sec-
tion 5.2. Finally, the last column shows average core size.
According to the coverage results, the heuristic does well

in Þnding cores that protect hosts against potential pathogens
that exploit vulnerabilities in at most two attributes. A beneÞ-
cial side-effect of protecting against exploits on two attributes
is that the amount of diversity in a 2-resilient core permits bet-
ter protection to its client against pathogens that exploit vul-
nerabilities on single attributes. For values of L greater than
seven, all clients have all their attributes covered (the average
1-coverage metric is one and the standard error is zero).

Having a system that more broadly protects its hosts re-
quires more resources: core sizes are larger to obtain sufÞ-
ciently high degrees of coverage. Compared to the results in
Section 5.2, we observe that we need to double the load limit
to obtain similar values for coverage. This is not surprising.
In our heuristic, for each host, we search for two 1-resilient
cores. We therefore need to roughly double the amount of
resources used.
Of course, there is a limit to what can be done with in-

formed replication. As k increases, the demand on resources
continues to grow, and a point will be reached in which there
is not enough diversity to withstand an attack that targets k+1
attributes. Using our diversity study results in Table 2, if a
worm were able to simultaneously infect machines that run
one of the Þrst four operating systems in this table, the worm
could potentially infect 84% of the population. The release of
such a worm would most likely cause the Internet to collapse.
An approach beyond informed replication would be needed
to combat an act of cyberterrorism of this magnitude.

6 The Phoenix Recovery Service

A cooperative recovery service is an attractive architecture for
tolerating Internet catastrophes. It is attractive for both indi-
vidual Internet users, like home broadband users, who do not

2005 USENIX Annual Technical Conference USENIX Association 55

 



Id (bi bits)

Zone
(bo bits)

Sub-zone
(ba bits)
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wish to pay for commercial backup service or deal with the
inconvenience of making manual backups, as well as corpo-
rate environments, which often have a signiÞcant amount of
unused disk space per machine. If Phoenix were deployed,
users would not need to exert signiÞcant effort to backup
their data, and they would not require local backup systems.
Phoenix makes specifying what data to protect as straightfor-
ward as specifying what data to share on Þle-sharing peer-
to-peer systems. Further, a cooperative architecture has little
cost in terms of time and money; instead, users relinquish a
small fraction of their disk, CPU, and network resources to
gain access to a highly resilient backup service.
As with Pastiche [8], we envision using Phoenix as a coop-

erative recovery service for user data. However, rather than
exploiting redundant data on similar hosts to reduce backup
costs for operating system and application software, we envi-
sion Phoenix users only backing up user-generated data and
relying upon installation media to recover the operating sys-
tem and application software. With this usage model, broad-
band users of Phoenix can recover 10 GB of user-generated
data in a day. Given the relatively low capacity utilization
of disks in desktop machines [3], 10 GB should be sufÞcient
for a wide range of users. Further, users can choose to be
more selective in the data backed up to reduce their recovery
time. We return to the issue of bandwidth consumption and
recovery time in Section 7.3.

6.1 System overview
A Phoenix host selects a subset of hosts to store backup data,
expecting that at least one host in the subset survives an In-
ternet catastrophe. This subset is a core, chosen using the
Uniform heuristic described above.

Choosing cores requires knowledge of host software con-
Þgurations. As described in Section 5, we use the container
mechanism for advertising conÞgurations. In our prototype,
we implement containers using the Pastry [32] distributed
hash table (DHT). Pastry is an overlay of nodes that have
identiÞers arranged in a ring. This overlay provides a scal-
able mechanism for routing requests to appropriate nodes.
Phoenix structures the DHT identiÞer space hierarchically.

It splits the identiÞer space into zones, mapping containers
to zones. It further splits zones into sub-zones, mapping sub-
containers to equally-sized sub-zones. Figure 8 illustrates this

hierarchy. Corresponding to the hierarchy, Phoenix creates
host identiÞers out of three parts. To generate its identiÞer,
a host concatenates the hash representing its operating sys-
tem h.os, the hash representing an attribute a ∈ h.apps, and
the hash representing its IP address. As Figure 8 illustrates,
each part has bo, ba, and bi bits, respectively. To advertise
its conÞguration, a host creates a hash for each one of its
attributes. It therefore generates as many identiÞers as the
number of attributes in h.apps. It then joins the DHT at mul-
tiple points, each point being characterized by one of these
identiÞers. Since the hash of the operating system is the
initial, “most signiÞcant” part of all the host’s identiÞers, all
identiÞers of a host lie within the same zone.

To build Core(h) using Uniform, host h selects hosts at
random. When trying to cover an attribute a, h Þrst selects a
container at random, which corresponds to choosing a num-
ber c randomly from [0, 2bo − 1]. The next step is to se-
lect a sub-container and a host within this sub-container both
at random. This corresponds to choosing a random number
sc within [0, 2ba − 1] and another random number id within
[0, 2bi − 1], respectively. Host h creates a Phoenix identiÞer
by concatenating these various components as (c ◦ sc ◦ id).
It then performs a lookup on the Pastry DHT for this identi-
Þer. The host h′ that satisÞes this lookup informs h of its own
conÞguration. If this conÞguration covers attribute a, h adds
h′ to its core. If not, h repeats this process.

The hosts in h’s core maintain backups of its data. These
hosts periodically send announcements to h. In the event of
a catastrophe, if h loses its data, it waits for one of these an-
nouncements from a host in its core, say h′. After receiving
such a message, h requests its data from h′. Since recovery is
not time-critical, the period between consecutive announce-
ments that a host sends can be large, from hours to a day.
A host may permanently leave the system after having

backed up its Þles. In this situation, other hosts need not hold
any backups for this host and can use garbage collection to re-
trieve storage used for the departed host’s Þles. Thus, Phoenix
hosts assume that if they do not receive an acknowledgment
for any announcement sent for a large period of time (e.g., a
week), then this host has left the system and its Þles can be
discarded.
Since many hosts share the same operating systems,

Phoenix identiÞers are not mapped in a completely random
fashion into the DHT identiÞer space. This could lead to
some hosts receiving a disproportionate number of requests.
For example, consider a host h that is either the Þrst of a pop-
ulated zone that follows an empty zone or is the last host of a
populated zone that precedes an empty zone. Host h receives
requests sent to the empty zone because, by the construction
of the ring, its address space includes addresses of the empty
zone. In our design, however, once a host reaches its load
limit, it can simply discard new requests by the Phoenix pro-
tocol.
Experimenting with the Phoenix prototype, we found that
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constructing cores performed well even with an unbalanced
ID space. But a simple optimization can improve core con-
struction further. The system can maintain an OS hint list that
contains canonical names of operating systems represented in
the system. When constructing a core, a host then uses hashes
of these names instead of generating a random number. Such
a list could be maintained externally or generated by sam-
pling. We present results for both approaches in Section 7.

We implemented Phoenix using the Macedon [31] frame-
work for implementing overlay systems. The Phoenix client
on a host takes a tar Þle of data to be backed up as input
together with a host conÞguration. In the current implemen-
tation, users manually specify the host conÞguration. We are
investigating techniques for automating the conÞguration de-
termination, but we expect that, from a practical point of view,
a user will want to have some say in which attributes are im-
portant.

6.2 Attacks on Phoenix
Phoenix uses informed replication to survive wide-spread
failures due to exploits of vulnerabilities in unrelated soft-
ware on hosts. However, Phoenix itself can also be the target
of attacks mounted against the system, as well as attacks from
within by misbehaving peers.
The most effective way to attack the Phoenix system as a

whole is to unleash a pathogen that exploits a vulnerability in
the Phoenix software. In other words, Phoenix itself repre-
sents a shared vulnerability for all hosts running the service.
This shared vulnerability is not a covered attribute, hence
an attack that exploits a vulnerability in the Phoenix soft-
ware would make it possible for data to be lost as a pathogen
spreads unchecked through the Phoenix system. To the extent
possible, Phoenix relies on good programming practices and
techniques to prevent common attacks such as buffer over-
ßows. However, this kind of attack is not unique to Phoenix
or the use of informed replication. Such an attack is a general
problem for any distributed system designed to protect data,
even those that use approaches other than informed replica-
tion [11]. A single system fundamentally represents a shared
vulnerability; if an attacker can exploit a vulnerability in sys-
tem software and compromise the system, the system cannot
easily protect itself.

Alternatively, hosts participating in Phoenix can attack the
system by trying to access private data, tamper with data, or
mount denial-of-service attacks. To prevent malicious servers
from accessing data without authorization or from tampering
with data, we can use standard cryptographic techniques [13].
In particular, we can guarantee the following: (1) the privacy
and integrity of any data saved by any host is preserved, and
(2) if a client host contacts an honest server host for a backup
operation, then the client is able to recover its data after a
catastrophe. From a security perspective, the most relevant
part of the system is the interaction process between a host

client and a host server which has agreed to participate in the
host’s core.

Malicious servers can mount a denial-of-service attack
against a client by agreeing to hold a replica copy of the
client’s data, and subsequently dropping the data or refus-
ing recovery requests. One technique to identify such mis-
behavers is to issue signed receipts [13]. Clients can use such
receipts to claim that servers are misbehaving. As we men-
tioned before, servers cannot corrupt data assuming robust-
ness of the security primitives.

Hosts could also advertise false conÞgurations in an at-
tempt to free-ride in the system. By advertising attributes that
make a host appear more unreliable, the system will consider
the host for fewer cores than otherwise. As a result, a host
may be able to have its data backed up without having to back
up its share of data.

To provide a disincentive against free-riders, members of a
core can maintain the conÞguration of hosts they serve, and
serve a particular client only if their own conÞguration covers
at least one client attribute. By sampling servers randomly, it
is possible to reconstruct cores and eventually Þnd misbehav-
ing clients.

An important feature of our heuristic that constrains the im-
pact of malicious hosts on the system is the load limit: if only
a small percentage of hosts is malicious at any given time,
then only a small fraction of hosts are impacted by the mali-
ciousness. Hosts not respecting the limit can also be detected
by random sampling.

7 Phoenix evaluation

In this Section, we evaluate our Phoenix prototype on the
PlanetLab testbed using the metrics discussed in Section 5.
We also simulate a catastrophic event — the simultaneous
failure of all Windows hosts — to experiment with Phoenix’s
ability to recover from large failures. Finally, we discuss the
time and bandwidth required to recover from catastrophes.

7.1 Prototype evaluation
We tested our prototype on 63 hosts across the Internet: 62
PlanetLab hosts and one UCSD host. To simulate the diver-
sity we obtained in the study presented in Section 4, we se-
lected 63 conÞgurations at random from our set of 2,963 con-
Þgurations of general-purpose hosts, and made each of these
conÞgurations an input to the Phoenix service on a host. In
the population we have chosen randomly, out of the 63 con-
Þgurations 38 have Windows as their operating system. Thus,
in our setting roughly 60% of the hosts represent Windows
hosts. From Section 5.2, the load limit has to be at least three.

For the results we present in this section, we use an OS hint
list while searching for cores. Varying L, we obtained the
values in Table 5 for coverage, core size, and load variance
for a representative run of our prototype. For comparison, we

2005 USENIX Annual Technical Conference USENIX Association 57

 



Load limit (L) Core size Coverage Load var.
Imp. Sim. Imp. Sim. Imp. Sim.

3 2.12 2.23 1.0 1.0 1.65 1.88
5 2.10 2.25 1.0 1.0 2.88 3.31
7 2.10 2.12 1.0 1.0 4.44 3.56

Table 5: Implementation results on PlanetLab (ìImpî) with
simulation results for comparison (ìSimî).

also present results from our simulations with the same set of
configurations used for the PlanetLab experiment. From the
results in the table, coverage is perfect in all cases, and the
average core size is less than 3 (less than 2 replica copies).
The major difference in increasing the value of L is the re-

spective increase in load variance. As L increases, load bal-
ance worsens. We also counted the number of requests issued
by each host in its search for a core. Different from our simu-
lations, we set a large upper bound on the number of request
messages (diff OS + same OS = 100) to verify the aver-
age number of requests necessary to build a core, and we had
hosts searching for other hosts only outside their own zones
(same OS = 0). The averages for number of requests are
14.6, 5.2, and 4.1 for values of L of 3, 5, and 7, respectively.
Hence, we can tradeoff load balance and message complexity.
We also ran experiments without using an OS hint list. The

results are very good, although worse than the implementa-
tion that uses hint lists. We observed two main consequences
in not using a hint list. First, the average number of requests
is considerably higher (over 2x). Second, for small values of
L (L = 3, 5), some hosts did not obtain perfect coverage.

7.2 Simulating catastrophes
Next we examine how the Phoenix prototype behaves in a se-
vere catastrophe: the exploitation and failure of all Windows
hosts in the system. This scenario corresponds to a situation
in which a worm exploits a vulnerability present in all ver-
sions of Windows, and corrupts the data on the compromised
hosts. Note that this scenario is far more catastrophic than
what we have experienced with worms to date. The worms
listed in Table 1, for example, exploit only particular services
on Windows.
The simulation proceeded as follows. Using the same ex-

perimental setting as above, hosts backed up their data under
a load limit constraint of L = 3. We then triggered a fail-
ure in all Windows hosts, causing the loss of data stored on
them. Next we restarted the Phoenix service on the hosts,
causing them to wait for announcements from other hosts
in their cores (Section 6.1). We then observed which Win-
dows hosts received announcements and successfully recov-
ered their data.
All 38 hosts recovered their data in a reasonable amount

of time. For 35 of these hosts, it took on average 100 sec-
onds to recover their data. For the other three machines, it
took several minutes due to intermittent network connectivity

(these machines were in fact at the same site). Two impor-
tant parameters that determine the time for a host to recover
are the frequency of announcements and the backup file size
(transfer time). We used an interval between two consecutive
announcements to the same client of 120 seconds, and a to-
tal data size of 5 MB per host. The announcement frequency
depends on the user expectation on recovery speed. In our
case, we wanted to finish each experiment in a reasonable
amount of time. Yet, we did not want to have hosts send-
ing a large number of announcement messages unnecessarily.
For the backup file size, we chose an arbitrary value since we
are not concerned about transfer time in this experiment. On
the other hand, this size was large enough to hinder recovery
when connectivity between client and server was intermittent.

It is important to observe that we stressed our prototype
by causing the failure of these hosts almost simultaneously.
Although the number of nodes we used is small compared to
the potential number of nodes that Phoenix can have as partic-
ipants, we did not observe any obvious scalability problems.
On the contrary, the use of a load limit helped in constraining
the amount of work a host does for the system, independent
of system size.

7.3 Recovering from a catastrophe
We now examine the bandwidth requirements for recovering
from an Internet catastrophe. In a catastrophe, many hosts
will lose their data. When the failed hosts come online again,
they will want to recover their data from the remaining hosts
that survived the catastrophe. With a large fraction of the
hosts recovering simultaneously, a key question is what band-
width demands the recovering hosts will place on the system.

The aggregate bandwidth required to recover from a catas-
trophe is a function of the amount of data stored by the
failed hosts, the time window for recovery, and the fraction
of hosts that fail. Consider a system of 10,000 hosts that have
software configurations analogous to those presented in Sec-
tion 4, where 54.1% of the hosts run Windows and the re-
maining run some other operating system. Next consider a
catastrophe similar to the one above in which all Windows
hosts, independent of version, lose the data they store. Ta-
ble 6 shows the bandwidth required to recover the Windows
hosts for various storage capacities and recovery periods. The
first column shows the average amount of data a host stores
in the system. The remaining columns show the bandwidth
required to recover that data for different periods.

The first four rows show the aggregate system bandwidth
required to recover the failed hosts: the total amount of data
to recover divided by the recovery time. This bandwidth re-
flects the load on the network during recovery. Assuming a
deployment over the Internet, even for relatively large backup
sizes and short recovery periods, this load is small. Note that
these results are for a system with 10,000 hosts and that, for
an equivalent catastrophe, the aggregate bandwidth require-
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Size (GB) 1 hour 1 day 1 week
Aggregate bandwidth

0.1 1.2 Gb/s 50 Mb/s 7.1 Mb/s
1 12 Gb/s 0.50 Gb/s 71 Mb/s
10 120 Gb/s 5.0 Gb/s 710 Mb/s
100 1.2 Tb/s 50 Gb/s 7.1 Gb/s

Per-host bandwidth (L = 3)
0.1 0.7 Mb/s 28 Kb/s 4.0 Kb/s
1 6.7 Mb/s 280 Kb/s 40 Kb/s
10 66.7 Mb/s 2.8 Mb/s 400 Kb/s
100 667 Mb/s 28 Mb/s 4.0 Mb/s

Table 6: Bandwidth consumption after a catastrophe.

ments will scale linearly with the number of hosts in the sys-
tem and the amount of data backed up.
The second four rows show the average per-host bandwidth

required by the hosts in the system responding to recovery
requests. Recall that the system imposes a load limit L that
caps the number of replicas any host will store. As a result,
a host recovers at most L other hosts. Note that, because
of the load limit, per-host bandwidth requirements for hosts
involved in recovery are independent of both the number of
hosts in the system and the number of hosts that fail.
The results in the table show the per-host bandwidth re-

quirements with a load limitL = 3, where each host responds
to at most three recovery requests. The results indicate that
Phoenix can recover from a severe catastrophe in reasonable
time periods for useful backup sizes. As with other coop-
erative backup systems like Pastiche [8], per-host recovery
time will depend signiÞcantly on the connectivity of hosts in
the system. For example, hosts connected by modems can
serve as recovery hosts for a modest amount of backed up
data (28 Kb/s for 100 MB of data recovered in a day). Such
backup amounts would only be useful for recovering partic-
ularly critical data, or recovering frequent incremental back-
ups stored in Phoenix relative to infrequent full backups using
other methods (e.g., for users who take monthly full backups
on media but use Phoenix for storing and recovering daily
incrementals). Broadband hosts can recover failed hosts stor-
ing orders of magnitude more data (1ñ10 GB) in a day, and
high-bandwidth hosts can recover either an order magnitude
more quickly (hours) or even an order of magnitude more data
(100 GB). Further, Phoenix could potentially exploit the par-
allelism of recovering from all surviving hosts in a core to
further reduce recovery time.
Although there is no design constraint on the amount of

data hosts back up in Phoenix, for current disk usage patterns,
disk capacities, and host bandwidth connectivity, we envision
users typically storing 1ñ10 GB in Phoenix and waiting a day
to recover their data. According to a recent study, desktops
with substantial disks (> 40 GB) use less than 10% of their
local disk capacity, and operating system and temporary user
Þles consume up to 4 GB [3]. Recovery times on the order of
a day are also practical. For example, previous worm catas-

trophes took longer than a day for organizations to recover,
and recovery using organization backup services can take a
day for an administrator to respond to a request.

8 Conclusions

In this paper, we proposed a new approach called informed
replication for designing distributed systems to survive In-
ternet epidemics that cause catastrophic damage. Informed
replication uses a model of correlated failures to exploit soft-
ware diversity, providing high reliability with low replication
overhead. Using host diversity characteristics derived from
a measurement study of hosts on the UCSD campus, we de-
veloped and evaluated heuristics for determining the number
and placement of replicas that have a number of attractive
features. Our heuristics provide excellent reliability guaran-
tees (over 0.99 probability that user data survives attacks of
single- and double-exploit pathogens), result in low degree of
replication (less than 3 copies for single-exploit pathogens;
less than 5 copies for double-exploit pathogens), limit the
storage burden on each host in the system, and lend them-
selves to a fully distributed implementation. We then used
this approach in the design and implementation of a coop-
erative backup system called the Phoenix Recovery Service.
Based upon our evaluation results, we conclude that our ap-
proach is a viable and attractive method for surviving Internet
catastrophes.
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