
Providing Dynamic Update in an Operating System

Andrew Baumann, Gernot Heiser
University of New South Wales & National ICT Australia

Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Robert W. Wisniewski
IBM T.J. Watson Research Center

Jeremy Kerr
IBM Linux Technology Center

Abstract

Dynamic update is a mechanism that allows software
updates and patches to be applied to a running system
without loss of service or down-time. Operating systems
would benefit from dynamic update, but place unique de-
mands on any implementation of such features. These
demands stem from the event-driven nature of operating
systems, from their restricted run-time execution envi-
ronment, and from their role in simultaneously servicing
multiple clients.

We have implemented a dynamic update mechanism
in the K42 research operating system, and tested it us-
ing previous modifications of the system by kernel de-
velopers. Our system supports updates changing both
kernel code and data structures. In this paper we iden-
tify requirements needed to provide a dynamically up-
datable operating system, describe our implementation,
and present our experiences in designing and using the
dynamic update mechanism. We also discuss its applica-
bility to other operating systems.

1 Introduction

As computing infrastructure becomes more widespread,
there has been an increasing number of patches for func-
tionality, performance, and security reasons. To take ef-
fect, these patches traditionally require either restarting
system services, or often rebooting the machine. This
results in downtime. Sometimes this downtime can be
scheduled, if for example the patch adds a feature, im-
proves performance, etc. However, in some situations,
such as applying a security patch, delaying the update is
not desirable. Users and system administrators are forced
to trade off the increased vulnerability of a security flaw
against the cost of unplanned downtime.

Dynamic update [26] is used to avoid such downtime.
It involves on-the-fly application of software updates to
a running system without loss of service. The increased

unplanned down-time of computing infrastructure to ap-
ply updates, combined with the demand for continuous
availability, provides strong motivation to investigate dy-
namic update techniques for operating systems.

In addition to the above mentioned impact on avail-
ability, dynamically updatable systems have other bene-
fits. Such systems provide a good prototyping environ-
ment. They allow, for example, a new page replacement,
file system, or network policy to be tested without re-
booting. Further, in more mature systems such as main-
frames, some user constraints prevent the system from
ever being shutdown. In such an environment, users can
only get new functionality into the system by performing
a dynamic update.

An operating system is a unique environment with
special constraints, and additional challenges must be
solved to provide dynamic update functionality. We have
addressed these challenges in the implementation of a
dynamic update mechanism for K42, an object-oriented
research operating system supporting hot-swapping. The
focus of this paper is on the implementation and mech-
anisms needed to provide dynamic update. This work
builds on previously reported work [6, 28], and on other
K42 features. Some of the requisite characteristics we
identify for dynamic update exist in other systems or
have recently been incorporated [22], while others re-
quire additional support. Where appropriate, we point
out the generality of our techniques to other operating
systems, as well as what infrastructure would be required
to take full advantage of dynamic update techniques. In
addition to describing our implementation, we describe
our experiences applying dynamic update in K42, using
three motivating examples taken from changes made by
K42 kernel developers.

The rest of this paper is organised as follows: Sec-
tion 2 discusses the system requirements for supporting
dynamic update, Section 3 describes our implementation
of dynamic update in K42, and Section 4 discusses how
the same functionality might be implemented in other op-
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erating systems. Next, Section 5 describes our experi-
ences applying dynamic update to K42 using three mo-
tivating examples, Section 6 discusses the limitations of
our implementation and our plans for future work, Sec-
tion 7 compares related work, and Section 8 concludes.

2 Requirements for dynamic update

There are several fundamental requirements in provid-
ing a dynamic update capability. Here we identify them,
in Section 3.2 we describe how we satisfy them in K42,
and then in Section 4 we generalise to other operating
systems.

2.1 Classification of updates

At a minimum, dynamic update needs to support changes
to the code of a system, however there are varying levels
of support possible for updates which also affect data.
We classify dynamic updates in this way:

1. Updates that only affect code, where any data struc-
tures remain unchanged across the update. This is
easier to implement, but imposes significant limita-
tions on what updates may be applied dynamically.

2. Updates that affect both code and global, single-
instance, data. Examples of this might include
changes to the Linux kernel’s unified page cache
structure, or to K42’s kernel memory allocator.

3. Updates that affect multiple-instance data struc-
tures, such as the data associated with an open
socket in Linux, or an open file.

2.2 Requirements

Having classified the possible updates, we now introduce
a set of fundamental requirements for dynamic update.

Updatable unit: In order to update a system, it is nec-
essary to be able to define an updatable unit. Depending
on the class of update supported, and the implementa-
tion of the system, a unit may consist of a code module,
or of both code and encapsulated data. In both cases,
there must be a clearly defined interface to the unit. Fur-
thermore, external code should invoke the unit in a well-
defined manner, and should not arbitrarily access code or
data of that unit.

While creating updatable units is easier with support
from languages such as C++, it is still possible without
such support. Primarily, providing updatable units means
designing with good modularity and obeying module
boundaries. The structure of the system dictates what
is feasible.

Safe point: Dynamic updates should not occur while
any affected code or data is being accessed. Doing so
could cause undefined behaviour. It is therefore impor-
tant to determine when an update may safely be applied.
In general however, this is undecidable [15]. Thus, sys-
tem support is required to achieve and detect a safe point.
Potential solutions involve requiring the system to be
programmed with explicit update points, or blocking ac-
cesses to a unit, and detecting when it becomes idle, or
quiescent.

An operating system is fundamentally event-driven,
responding to application requests and hardware events,
unlike most applications, which are structured as one or
more threads of execution. As discussed later, this event-
based model can be used to detect when an updatable unit
of the system has reached a safe point. Additional tech-
niques can be employed to handle blocking I/O events or
long running daemon threads.

State tracking: For a dynamic update system to sup-
port changes to data structures, it must be able to locate
and convert all such structures. This requires identifying
and managing all instances of state maintained by a unit
in a uniform fashion, functionality usually provided in
software systems using the factory design pattern [12].
Note that the first two classes of update, dynamic update
to code and dynamic update to single-instance data, are
still possible without factories, but it is not possible to
support dynamic update affecting multiple-instance data
without some kind of state tracking mechanism.

State transfer: When an update is applied affecting
data structures, or when an updated unit maintains inter-
nal state, the state must be transferred, so that the updated
unit can continue transparently from the unit it replaced.
The state transfer mechanism performs this task, and is
how changes to data structures can be supported.

Redirection of invocations: After the update occurs,
all future requests affecting the old unit should be redi-
rected. This includes invocations of code in the unit. Fur-
thermore, in a system supporting multiple-instance data
structures, creation of new data structures of the affected
type should produce the updated data structure.

Version management: In order to package and apply
an update, and in order to debug and understand the run-
ning system, it it necessary to know what code is actually
executing. If an update depends on another update hav-
ing previously been applied, then support is required to
be able to verify this. Furthermore, if updates are from
multiple sources, the versioning may not be linear, caus-
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ing the interdependencies between updates to become
complex and difficult to track.

The level of support required for version management
is affected by the complexity of update interdependen-
cies, but at a minimum it should be possible to track a
version number for each update present in the system,
and for these version numbers to be checked before an
update is applied.

3 Dynamic update in K42

We now describe our implementation of dynamic update
in K42. As noted previously, some of the techniques used
in the implementation are specific to K42, but other oper-
ating systems are becoming more amenable to dynamic
update, as discussed in the next section.

3.1 K42

The K42 project is developing a new scalable open-
source research operating system incorporating innova-
tive mechanisms and policies, and modern programming
technologies. It runs on 64-bit cache-coherent PowerPC
systems, and supports the Linux API and ABI. It uses a
modular object-oriented design to achieve multiproces-
sor scalability, enhance customisability, and enable rapid
prototyping of experimental features (such as dynamic
update).

Object-oriented technology has been used throughout
the system. Each resource (for example, virtual mem-
ory region, network connection, open file, or process) is
managed by a different set of object instances [5]. Each
object encapsulates the meta-data necessary to manage
the resource as well as the locks necessary to manipu-
late the meta-data, thus avoiding global locks, data struc-
tures, and policies. The object-oriented nature enables
adaptability, because different resources can be managed
by different implementations. For example, each running
process in the system is represented by an in-kernel in-
stance of the Process object (analogous to the process
control block structure present in other operating sys-
tems). Presently two implementations of the Process
interface exist, ProcessReplicated, the default, and Pro-
cessShared, which is optimised for the case when a pro-
cess exists on only a single CPU [2]. The K42 kernel
defaults to creating replicated processes, but allows for a
combination of replicated and shared processes.

K42 uses clustered objects [4], a mechanism that en-
ables a given object to control its own distribution across
processors. Using the object translation table facility
provided by clustered objects, hot-swapping [4, 28] was
implemented in K42. Hot-swapping allows an object in-
stance to be transparently switched to another implemen-

tation while the system is running, and forms the basis of
our dynamic update implementation.

3.2 Support for dynamic update

Requirements

In Section 2.2, we identified several requirements for dy-
namic update of an operating system. In K42, these re-
quirements are addressed by our implementation of the
dynamic update mechanism, as follows:

Updatable unit: A good choice for the dynamically
updatable unit in K42 is the same as for hot-swapping,
namely the object instance. K42 is structured as a set of
objects, and the coding style used enforces encapsulation
of data within objects. Each object’s interface is declared
in a virtual base class, allowing clients of an object to
use any implementation, and for the implementation to
be changed transparently by hot-swapping.

Safe point: K42 detects quiescent states using a mech-
anism similar to read copy update (RCU) in Linux
[22, 23]. This technique makes use of the fact that each
system request is serviced by a new kernel thread, and
that all kernel threads are short-lived and non-blocking.

Each thread in K42 belongs to a certain epoch, or gen-
eration, which was the active generation when it was cre-
ated. A count is maintained of the number of live threads
in each generation, and by advancing the generation and
waiting for the previous generations’ counters to reach
zero, it is possible to determine when all threads that ex-
isted on a processor at a specific instance in time have
terminated [13].

The implementation blocks new invocations of an ob-
ject being updated, and then uses the generation-count
mechanism to detect quiescence [28].

State tracking: state-tracking is provided by factory
objects, which are described in detail in Section 3.3.

State transfer: Once the object being swapped is qui-
escent, the update framework invokes a state transfer
mechanism which transfers state from the old object to
the new object, using a transfer negotiation protocol to
allow the negotiation of a common intermediate format
that both objects support [28]. Object developers must
implement data conversion functions to and from com-
mon intermediate formats.

This generalised technique was developed to support
hot-swaps between arbitrary implementations of an ob-
ject. In the case of dynamic update, usually the replace-
ment object is merely a slightly modified version of the
original object, with similar state information, so the
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conversion functions perform either a direct copy, or a
copy with slight modifications.

In cases where a lot of state is maintained, or when
many object instances must be updated, a copy is an un-
necessary expense, because the updated object is deleted
immediately afterwards. For example, the process object
maintains a series of structures which describe the pro-
cess’ address space layout. To avoid the cost of deep-
copying and then discarding these structures, the data
transfer functions involved simply copy the pointer to the
structure and set a flag in the old object. When the object
is destroyed it checks this flag and, if it is set, does not
attempt destruction of the transferred data structures. Ef-
fectively ownership of the structure is transferred to the
new object instance. This only works in cases where the
new object uses the same internal data format as the old
object. This is true in many dynamic update situations.
In cases where this is not true, the negotiation protocol
ensures that a different transfer function is used.

Redirection of invocations: K42 uses a per-address-
space object translation table. Each object has an entry
in the table, and all object invocations are made through
this reference. In the process of performing a dynamic
update, the translation table entries for an object are up-
dated to point to the new instance, which causes future
calls from clients to transparently invoke the new code.
The object translation table was originally introduced
into K42 to support the clustered object multiprocessor
scalability mechanism [13], and we have been able to
utilise it to implement hot-swapping and thus dynamic
update.

When an object that has multiple instances is updated,
we must also redirect creations of that type. This redi-
rection is provided by the factory mechanism, described
in Section 3.3.

Version management: We have implemented a simple
versioning scheme for dynamic updates in K42. Each
factory object carries a version number, and before an
update proceeds these version numbers are checked. Fur-
ther details follow in Section 3.3.

Hot-swapping

Because hot-swapping forms the basis of dynamic up-
date, we outline its implementation here. Further details
are available in previous papers [4, 28].

As we have mentioned, the object translation table
adds an extra level of indirection on all object invoca-
tions. This indirection enables an interposition mecha-
nism whereby an object’s entry in the object translation
table is modified, causing all accesses to that object to
transparently invoke a different interposer object. The

interposer can then choose to pass the call along to the
original object. This mechanism is used by the hot swap-
ping and dynamic update implementations.

Hot-swapping operates by interposing a mediator ob-
ject in front of the object to be hot-swapped. The media-
tor passes through several phases, first tracking incoming
calls until it knows (through the generation-count mech-
anism) that all calls are being tracked, then suspending
further calls until the existing tracked calls complete. At
this point the object is quiescent. The mediator then
performs state transfer format negotiation, followed by
the state transfer between the old and the new object in-
stances. Finally, it updates the object translation table
reference to the new object, and forwards the blocked
calls.

3.3 Dynamic update implementation

Module loader

To perform updates, the code for the updated object must
be present. The normal process for adding an object to
K42 was to recompile the kernel, incorporating the new
object, and then reboot the system. This is insufficient
for dynamic update, so we have developed a kernel mod-
ule loader that is able to load the necessary code for an
updated object into a running kernel or system server.

A K42 kernel module is a relocatable ELF file with
unresolved references to standard kernel symbols and li-
brary routines (such as err printf, the console output rou-
tine). Our module loader consists of a special object
in the kernel that allocates pinned memory in the ker-
nel’s text area, and a trusted user-space program that has
access to the kernel’s symbol table. This program uses
that symbol table to resolve the undefined symbols in the
module, and load it into the special region of memory
provided by the kernel object. It then instructs the kernel
to execute the module’s initialisation code.

Our module loader operates similarly to that used in
Linux [8], but is simpler. Linux must maintain a dy-
namic symbol table and support interdependencies be-
tween modules, we avoid this because all objects are in-
voked indirectly through the object translation tables. A
module can (and to be useful should) contain code that
is called by the existing kernel without requiring its sym-
bols to be visible. Its initialisation code simply instan-
tiates replacement objects and performs hot-swap oper-
ations to invoke the code in those object instances. Our
module loader performs the relocations and symbol table
management at user-level, leaving only the space alloca-
tor object in the kernel.
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Factory mechanism

Hot-swapping allows us to update the code and data of
a single specific object instance. However, K42 is struc-
tured such that each instance of a resource is managed
by a different instance of an object. To dynamically up-
date a kernel object, the infrastructure must be able to
both locate and hot-swap all instances of that object, and
cause any new instantiations to use the updated object
code. Note that, as we have mentioned, this problem is
not unique to K42; to support dynamic updates affect-
ing data structures requires a mechanism to track all in-
stances of those data structures and update them.

Previously in K42, object instances were tracked in a
class-specific manner, and objects were usually created
through calls to statically-bound methods. For example,
to create an instance of the ProcessReplicated object (the
implementation used by default for Process objects), the
call used was:

ProcessReplicated::Create(
ProcessRef &out, HATRef h, PMRef pm,
ProcessRef creator, const char *name);

This leads to problems for dynamic update, because
the Create call is bound at compile-time, and cannot eas-
ily be redirected to an updated implementation of the
ProcessReplicated object, and also because we rely on
the caller of this method to track the newly created in-
stance.

To track object instances and control object instanti-
ations, we used the factory design pattern [12]. In this
design pattern, the factory method is an abstraction for
creating object instances. In K42, factories also track
instances that they have created, and are themselves ob-
jects. Each factory object provides an interface for cre-
ating and destroying objects of one particular class, and
maintains the set of objects that it has created.

The majority of the factory implementation is factored
out using inheritance and preprocessor macros, so that
adding factory support to a class is relatively simple. Us-
ing our previous example, after adding the factory, the
creation call changed to:

DREF_FACTORY_DEFAULT(ProcessReplicated)
->create(...);

where (...) represents the arguments as before.
The macro above hides some implementation details,
whereby the default factory for a class is referenced us-
ing a static member; it expands to the following:

(*ProcessReplicated::Factory::factoryRef)
->create(...);

Using a factory reference allows us to hot-swap the
factory itself, which is used in our implementation of dy-
namic update.

To provide rudimentary support for configuration
management, factories carry a version number identi-
fying the specific implementation of the factory and its
type. The factories in the base system all carry version
zero, and updated factories have unique non-zero version
numbers. We assume a strictly linear model of update,
when an update occurs the current version number of the
factory is compared to the version number of the update,
and if the update is not the immediately succeeding ver-
sion number, the update is aborted. To support reverting
updates in this scheme, we could reapply the previous
version with an increased version number.

Performance and scalability influenced our implemen-
tation of the factories. For example, object instances are
tracked for dynamic update in a distributed fashion using
per-CPU instance lists. Moreover, we found that adding
factories to K42 was a natural extension of the object
model, and led to other advantages besides dynamic up-
date. As an example, in order to choose between Pro-
cessReplicated and ProcessShared, K42 had been using
a configuration flag that was consulted by the code that
creates process objects to determine which implementa-
tion to use. Using the factory model, we could remove
this flag and allow the scheme to support an arbitrary
number of implementations, by changing the default pro-
cess factory reference to the appropriate factory object.

Steps in a dynamic update

We use factories to implement dynamic update in K42.
To perform a dynamic update of a class, the code for the
update is compiled along with some initialisation code
into a loadable module. When the module is loaded, its
initialisation code is executed. This code performs the
following steps (illustrated in Figure 1):

1. A factory for the updated class is instantiated. At
this point the version number of the updated factory
is checked against the version number of the exist-
ing factory, if it is incorrect the update is aborted.

2. The old factory object is located using its statically
bound reference, and hot-swapped to the new fac-
tory object; during this process the new factory re-
ceives the set of instances that was being maintained
by the old factory.

3. Once the factory hot-swap has completed, all new
object instantiations are being handled by the new
updated factory, and therefore go to the updated
class. However, any old instances of the object have
not yet been updated.

4. To update the old instances, the new factory tra-
verses the set of instances it received from the old
factory. For each old instance it creates an instance
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Safe point: Linux has recently incorporated the quies-
cence detection mechanism known as RCU [22], which
is similar to the generation count mechanism used in
K42. We expect that other operating systems would also
be able to add RCU-style quiescence detection, which
offers other benefits, such as improved scalability.

State tracking: A state tracking mechanism, such as
a factory, is needed when dynamic update supports
changes to the format of multiple-instance data, to lo-
cate all instances of that data. The factory design pat-
tern is a generally well-understood software construction
technique, and we would expect that factories could be
added to an existing system. For example, in the Linux
kernel, modules already maintain reference count and
dependency information to prevent them from being un-
loaded while in use [25]. If the addition of factories was
required, the modules could also be made responsible for
tracking instances of their own state.

State transfer: The implementation of state transfer is
something fairly unique to hot-swapping and dynamic
update. In a system with clearly defined updatable units,
it should be straightforward to implement the equivalent
of K42’s transfer negotiation protocol and state transfer
functions.

Redirection of invocations: Few systems include a
uniform indirection layer equivalent to K42’s object
translation table. Many systems such as Linux do use in-
direction to implement device driver abstractions or the
VFS layer, and these pointers could be used to implement
dynamic update. However, the lack of a uniform indirec-
tion mechanism would limit the applicability of dynamic
update to those specific areas of the system.

For dynamic update to multiple-instance data struc-
tures to be supported, it is desirable that each instance be
individually updatable. For example, the VFS layer’s use
of one set of function pointers per node, rather than one
set for the entire file system, allows the file system’s data
structures to be converted incrementally. The alternative
would be to block all access to all file system nodes while
they are updated, effectively halting the whole system.

Version management: Versioning is an open problem
for dynamic update. If our simple model of factory ver-
sion numbers proves sufficient, it can be implemented in
other systems.

Beyond these requirements, the dynamic update imple-
mentation also relies on a module loader to make the
code for the update available in the running system.

Loadable modules are already widely used, most operat-
ing systems include a kernel module loader or equivalent
functionality, so this is not a significant constraint.

5 Experiments

5.1 Performance measurements

We have performed a number of measurements to eval-
uate the performance penalty imposed by our dynamic
update mechanism. All the experiments were conducted
on an IBM pSeries 630 Model 6E4 system, with four
1.2GHz POWER4+ processors and 8GB of main mem-
ory.

Overhead of factory mechanism

We ran microbenchmarks to directly measure the code
of adding the factory mechanism. Using a factory for an
object implies extra cost when creating the object, be-
cause the creation must be recorded in the factory’s data
structures.

We measured the cost of creating three different ob-
jects using a factory and using a statically bound method,
this includes allocating storage space for the object, in-
stantiating it, and invoking any initialisation methods.
Each test was repeated 10,000 times, and the total time
measured using the processor’s cycle counter. Our re-
sults are summarised in Table 1.

The first object, a dummy object, was created specifi-
cally for this test, and encapsulates a single integer value.
This result represents the worst-case for adding a factory,
with an overhead of 12% over the base creation cost of
2.22µs. The next object is an FCM (file cache manager),
an instance of which is maintained by K42 for every
open file in the system. Creating an FCM object is 5.6%
slower with a factory, but this number overstates the true
impact, because in practice FCM creation is usually fol-
lowed by a page fault, which must be satisfied either by
zero-filling a page, or by loading it from disk. Finally,
we measured the cost of creating a process object, a rel-
atively expensive operation because it involves initialis-
ing many other data structures, and found that in such
a case, the additional cost imposed by the factory was
very small, even before considering the additional costs
involved in process creation such as context switches and
initial page faults.

To get a more complete picture of the overhead im-
posed by the presence of factories, we used the SPEC
software development environment throughput (SDET)
benchmark [11]. This benchmark executes one or more
scripts of user commands designed to simulate a typical
software-development environment (for example, edit-
ing, compiling, and various UNIX utilities). The scripts
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object static create factory create overhead
dummy 2.22µs 2.49µs 12%
file 4.37µs 4.61µs 5.6%
process 61.1µs 61.5µs 0.73%

Table 1: Cost of creating various kernel objects with and
without a factory.

are generated from a predetermined mix of commands,
and are all executed concurrently. It makes extensive
use of the file system, process, and memory management
subsystems.

We ran SDET benchmarks with four configurations of
the system:

1. the base system with no factories in use,

2. a factory on FCM objects,

3. a factory on process objects,

4. factories on both FCM and process objects.

We found that in these cases the use of factories im-
poses no noticeable performance degradation on system
throughput, as measured by SDET. We have not yet ex-
tended factories to other objects in the system, however
we expect the performance impact to also be minor, since
FCMs and processes constitute a significant portion of
the kernel objects created.

Time to perform an update

The cost of performing a dynamic update itself is more
significant, in some initial experiments we measured
20ms to update one hundred live instances of the dummy
object. This is because the hot-swapping implementation
is not yet optimised for the case where large numbers of
objects are swapped concurrently. We plan to improve
this, although since a dynamic update does not block the
entire system while it is applied, the overall time taken
for an update is less critical.

5.2 Experiences applying dynamic update

To demonstrate the effectiveness of dynamic update, we
present three examples of system changes of increasing
complexity that we have applied using dynamic update.
These examples relate to the memory management code
of the K42 kernel [3, 19].

New kernel interfaces for partitioned memory region

Benchmarking of a memory-intensive parallel appli-
cation showed poor scalability during its initialisation

phase. Analysis of the problem determined that a bot-
tleneck occurred during the resizing of a shared hash
table structure, and a new partitioned memory manage-
ment object was developed that did not suffer from the
problem. This object added a new interface to the kernel,
allowing user programs to create a partitioned memory
region if they specified extra parameters.

Adding a new piece of code to the kernel and making
it available through a new interface is the simplest case
of dynamic update, because we can avoid replacing old
code or transferring state information. This update was
implemented as a simple loadable module, consisting of
the code for the new region object and some initialisation
code to load it and make it available to user programs.
This module could be shipped with programs requiring
it, or could be loaded into the kernel on demand when a
program requires the new interface, either way avoiding
a reboot.

This scenario demonstrates the use of a module loader
combined with an extensible kernel interface to add new
functionality to a running kernel. There is nothing in-
herently new here, existing systems also allow modules
to be loaded, for example to provide new file systems
or device drivers. However, K42’s modularity makes it
possible to replace a portion of the page-fault path for a
critical application with a new set of requirements, which
could not be done on an existing system such as Linux.

Fix for memory allocator race condition

This scenario involves a bug fix to a kernel service, one
of the key motivations for dynamic update. In the course
of development, we discovered a race condition in our
core kernel memory allocator that could result in a sys-
tem crash when kernel memory was allocated concur-
rently on multiple CPUs.

Fixing this bug required adding a lock to guard the al-
location of memory descriptors, a relatively simple code
change. In fact, only two lines of code were added, one
to declare the lock data structure, and another to acquire
(and automatically release on function return) the lock.
A recompile and reboot would have brought the fix into
use. However, even with continual memory allocation
and deallocation occurring, we were able to avoid the re-
boot and dynamically apply the update using our mecha-
nism.

The replacement code was developed as a new class
inheriting almost all of its implementation from the old
buggy object, except for the declaration of the lock and a
change to the function that acquired and released it. This
caused the C++ compiler to include references to all the
unchanged parts of the old class in the replacement ob-
ject code, avoiding programmer errors. Simple copying
implementations of the state transfer functions were also
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provided to allow the object to be hot-swapped. The key
parts of the replacement code are shown in Figure 2.

The new class was compiled into a loadable module,
and combined with initialisation code that instantiated
the new object and initiated a hot-swap operation to re-
place the old, buggy instance. Because this object was a
special case object with only a single instance, it was not
necessary to use the factory mechanism.

This scenario demonstrates the use of hot-swapping as
part of our dynamic update mechanism, combined with
a kernel module loader, to dynamically update live code
in the system.

File cache manager optimisation

This scenario involves an optimisation to the implemen-
tation of file cache manager objects. An FCM is instan-
tiated in the K42 kernel for each open file or memory
object in the system.

We discovered that the unmapPage method did not
check if the page in question was already unmapped be-
fore performing expensive synchronisation and IPC op-
erations. These were unnecessary in some cases.

We developed a new version of the FCM object that
performed the check before unmapping, and prepared
it as a loadable module. Applying this update dynami-
cally required the factory mechanism, because the run-
ning system had FCM instances present that needed to
be updated, and because new instantiations of the FCM
needed to use the code in the updated module.

This scenario demonstrates all the components of our
dynamic update implementation, using a module loader
to load the code into the system, a factory to track all
instances of state information that are affected by an up-
date, and hot-swapping to update each instance.

6 Open issues

The implementation we have accomplished thus far pro-
vides a basic framework for performing dynamic update.
This is a rich area for investigation, and is becoming im-
portant for providing usable and maintainable systems.
Here we discuss areas for future work.

Changing object interfaces: Due to a limitation of the
current hot-swapping implementation, and because there
is no support for coordinated swapping of multiple inter-
dependant objects, we cannot dynamically apply updates
that change object interfaces. We could enable this by
extending the hot-swapping mechanism to support si-
multaneous swaps of multiple objects, namely the object
whose interface is to be changed and all objects possibly
using that interface.

This is our next step in expanding the effectiveness of
dynamic update. When considering various changes to
K42 to use as example scenarios for this work, many had
to be rejected because they involved interface changes.
While such changes might be less common in a produc-
tion system, rather than a rapidly evolving experimental
system such as K42, the restriction on changing object
interfaces is currently the most serious limitation of this
work.

Updates to low-level exception code: Another open
issue is what code can be dynamically upgraded. Cur-
rently our mechanism requires the extra level of indirec-
tion provided by the object translation table for track-
ing and redirection. Low-level exception handling code
in the kernel is not accessed via this table, and as such
can not currently be hot-swapped or dynamically up-
dated. It may be possible to apply some dynamic updates
through the indirection available in the exception vectors,
or through careful application of binary rewriting (for ex-
ample, changing the target of a branch instruction), but it
is difficult to envision a general-purpose update mecha-
nism for this code. There is an open issue for both K42
and other operating systems should we desire the ability
to update such low-level code.

Updates affecting multiple address spaces: Our up-
date system does not yet support updates to code outside
the kernel, such as system libraries or middleware. At
present, it is possible to perform an update in an applica-
tion’s address space, but there is no central service to ap-
ply an update to all processes which require it. We intend
to develop operating system support for dynamically up-
dating libraries in a coordinated fashion. As part of this
work we may need to extend the factory concept to multi-
ple address spaces. We also need to consider the possible
implications of changing cross-address-space interfaces,
such as IPC interactions or the system call layer.

Timeliness of security updates: For some updates,
such as security fixes, it is important to know when an
update has completed, and to be able to guarantee that
an update will complete within a certain time frame. It
may be possible to relax the timeliness requirement by
applying updates lazily, marking objects to be updated
and only updating them when they are actually invoked,
as long as we can guarantee that the old code will not
execute once an object has been marked for update.

State transfer functions: State transfer between the
old and new versions of an object is performed by the
hot-swap mechanism using state transfer methods: the
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class PageAllocatorKernPinned_Update : public PageAllocatorKernPinned {
public:

BLock nextMemDescLock;

void pinnedInit(VPNum numaNode) {
nextMemDescLock.init();
PageAllocatorKernPinned::pinnedInit(numaNode);

}

virtual void* getNextForMDH(uval size) {
AutoLock<BLock> al(&nextMemDescLock); // locks now, unlocks on return
return PageAllocatorKernPinned::getNextForMDH(size);

}

DEFINE_GLOBALPADDED_NEW(PageAllocatorKernPinned_Update); // K42-ism
};

Figure 2: Update source code for second example scenario (memory allocator race condition).

old object provides a method to export its state in a stan-
dard format, which can be read by the new object’s im-
port method. This works well enough, but it requires the
tedious implementation of the transfer code, even though
most updates only make minor changes, if any, to the in-
stance data (for example, adding a new data member).
It may be possible to partially automate the creation of
state transfer methods in such cases, as has been done in
other dynamic update systems [17, 21].

An alternative approach to this problem is used by
Nooks to support recoverable device drivers in Linux
[31]. In this system, shadow drivers monitor all calls
made into and out of a device driver, and reconstruct a
driver’s state after a crash using the driver’s public API.
Only one shadow driver must be implemented for each
device class (such as network, block, or sound devices),
rather than for each driver. A similar system could be
used for dynamic update, instead of relying on objects
to provide conversion functions, a shadow object could
monitor calls into each updatable kernel object, recon-
structing the object’s state after it is updated. This ap-
proach suffers from several drawbacks. First, there is a
continual runtime performance cost imposed by the use
of shadows, unlike conversion functions which are only
invoked at update time. Secondly, the use of shadow
drivers is feasible because there is a small number of de-
vice interfaces relative to the number of device drivers,
but this is generally not the case for arbitrary kernel ob-
jects, which implement many different interfaces.

Failure recovery: We do not currently handle all the
possible failures that could occur during an update.
While we cannot detect arbitrary bugs in update code,
it is possible for an update to fail in a recoverable man-

ner. For example, if the state transfer functions return
an error code, the update should be aborted. Further-
more, resource constraints may prevent an update from
being applied, because during an update both old and
new versions of the affected object co-exist, consuming
more memory. The system should either be able to check
that an update can complete before attempting to apply it,
or support transactions [27] to roll back a failed update.

Update preparation from source code: We need a
mechanism to automate the preparation of updates from
source code modifications. This could possibly be driven
by make, using a rebuild of the system and a comparison
of changed object files to determine what must be up-
dated. However, it would be extremely difficult to build
a completely generic update preparation tool, because
changes to the source code of an operating system can
have far-reaching and unpredictable consequences.

Configuration management: Our simple update ver-
sioning scheme assumes a linear update model, each up-
date to a given class depends on all previous updates hav-
ing been applied before it. Most dynamic update systems
that have automated the update preparation and applica-
tion process, have also assumed a linear model of up-
date [17, 21]. This is most likely inadequate for real use,
where updates may be issued by multiple sources, and
may have complex interdependencies.

More complex versioning schemes exist, such as in the
.NET framework, where each assembly carries a four-
part version number, and multiple versions may coexist
[24]. We will need to reconsider versioning issues once
we start automating the update preparation process, and
more developers start using dynamic updates.
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7 Related work

Previous work with K42 developed the hot-swapping
feature [28], including the quiescence detection, state
transfer, and object translation table mechanisms. Our
work extends hot-swapping by adding the state tracking,
module loader, and version management mechanisms,
and combining them to implement dynamic update.

To our knowledge, no other work has focused on dy-
namic update in the context of an operating system.
Many systems for dynamic updating have been designed,
and a comprehensive overview of the field is given by
Segal and Frieder [26]. These existing systems are gen-
erally either domain-specific [9, 10, 16], or rely on spe-
cialised programming languages [1,17,21], making them
unsuitable for use in an operating system implemented in
C or C++.

Proteus [29] is a formal model for dynamic update in
C-like languages. Unlike our system for achieving qui-
escence on a module level, it uses pre-computed safe up-
date points present in the code. Our system can also sup-
port explicit update points, however we have not found
this necessary due to the event-driven programming used
in K42.

Dynamic C++ classes [18] may be applicable to an
updatable operating system. In this work, automatically-
generated proxy classes are used to allow the update of
code in a running system. However, when an update oc-
curs it only affects new object instantiations, there is no
support for updating existing object instances, which is
important in situations such as security fixes. Our system
also updates existing instances, using the hot-swapping
mechanism to transfer their data to a new object.

Some commercial operating systems offer features
similar to Solaris Live Upgrade [30], which allows
changes to be made and tested without affecting the run-
ning system, but requires a reboot for changes to take
effect.

Component- and microkernel-based operating sys-
tems, where services may be updated and restarted with-
out a reboot, also offer improved availability. However,
while a service is being restarted it is unavailable to
clients, unlike our system where clients perceive no loss
of service. Going a step further, DAS [14] supported dy-
namic update through special kernel primitives, although
the kernel was itself not updatable.

Finally, extensible operating systems [7, 27] could po-
tentially be modified to support dynamic update, al-
though updates would be limited to those parts of the sys-
tem with hooks for extensibility, and many of the same
problems addressed here (such as state transfer) would
be encountered.

8 Conclusion

We have presented a dynamic update mechanism that al-
lows patches and updates to be applied to an operating
system without loss of the service provided by the code
being updated. We outlined the fundamental require-
ments for enabling dynamic update, presented our im-
plementation of dynamic update, and described our ex-
periences applying several example dynamic updates to
objects taken from changes made by kernel developers.
Our implementation also incurs negligible performance
impact on the base system.

Although dynamic update imposes a set of require-
ments on operating systems, as described in this paper,
those requirements are already being incrementally in-
corporated into systems such as Linux. This includes
RCU to detect quiescent points, more modular encapsu-
lated data structures, and the indirection needed to redi-
rect invocations. We expect that dynamic update will
become increasingly important for mainstream operating
systems.
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