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Abstract

As personal computing becomes more popular and af-
fordable, the availability of peripheral devices is also
increasing rapidly. However, these peripheral devices
can usually only be connected to a single machine at
time. The ability to share peripheral devices between
computers without any modification of existing com-
puting environments is, consequently, a highly desir-
able goal, as it improves the efficiency and usability of
such devices. Existing device sharing technologies in the
pervasive computing area are not sufficient for periph-
eral devices designed for personal computers, because
these technologies do not provide the degree of network-
transparency necessary for both applications and device
drivers.

In this paper, we propose USB/IP as a peripheral bus
extension over an Internet Protocol (IP) network. This
novel device sharing approach is based on the sophis-
ticated peripheral interfaces that are supported in most
modern operating systems. Using a virtual peripheral
bus driver, users can share a diverse range of devices
over networks without any modification in existing op-
erating systems and applications. Our experiments show
that USB/IP has sufficient I/O performance for many
USB devices, including isochronous ones. We also de-
scribe performance optimization criteria that can be used
to achieve further performance improvements.

1 Introduction

Recent innovations in computing technology have en-
abled people to establish their own computing environ-
ments that comprise multiple personal computers con-
nected together via a local area network. In such an
environment, the ability to access peripheral devices at-
tached to one computer, seamlessly and on-demand from
another computer, is a highly desirable attribute. For ex-
ample, a user who brings back a mobile computer to the

office may want to make the backup of working files di-
rectly onto the DVD-R drive of a shared computer, rather
than directly use the shared computer or move the DVD-
R drive. The user may also wish to work on the mo-
bile computer using an ergonomic keyboard and a mouse
which is already attached to another a desktop computer,
but without connecting to a KVM switch. In the context
of resource management, the key technology for these
scenarios is network-transparent device sharing by which
one computer can interact seamlessly with another com-
puter’s devices in addition to directly-attached devices.

Many device sharing technologies have been proposed
in the pervasive computing area, to aggregate accesses
to network-attached devices and improve their usabil-
ity. These technologies address dynamic discovery, on-
demand selection, and automatic interaction among de-
vices. However, little work has been done to ensure net-
work transparency for existing device access interfaces,
so that existing applications can access remote shared de-
vices without any modification.

In this paper, we propose USB/IP as a peripheral bus
extension over an Internet Protocol (IP) network. Our
philosophy is to allow a computer to extend its local pe-
ripheral buses over an IP network to another computer.
The main component of this extension is a virtual periph-
eral bus driver which provides a virtual extension of the
standard peripheral bus driver. The driver resides at the
lowest layer in the operating system so that most appli-
cations and device drivers can access remote shared de-
vices through existing interfaces. We believe that this ap-
proach particularly suits recently emerging sophisticated
peripheral interfaces and broadband networks.

Our device sharing approach presents several advan-
tages over the conventional approaches. First, computers
can access the full functionality of a remote shared de-
vice. The control granularity of the shared device is the
same as for a directly-attached device. In our system,
all the low-level control commands for a device are en-
capsulated into IP packets and then transmitted. Second,
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computers can access a shared device using standard op-
erating systems and applications. By installing only a
few additional device drivers, it is possible to control
a remote device as if it was directly attached to the lo-
cal peripheral bus. Third, various computers with differ-
ent operating systems can share their devices with each
other, because the low-level device control protocols do
not depend on any operating system specific information.
Last, most devices can be shared in this way, because a
virtual peripheral bus driver is independent of other de-
vice drivers, and supports all the devices on its peripheral
interface.

In the remainder of this paper, we expand on our vision
of the peripheral bus extension. Section 2 explains the
research motivation and the advantages of USB/IP from
the viewpoint of the device sharing architecture. Sec-
tion 3 describes the design and implementation details of
USB/IP. Section 4 shows the evaluation of USB/IP and
clarifies its characteristics. Section 5 provides some ad-
ditional discussion and then Section 6 examines related
work. We conclude our study in Section 7. The avail-
ability of USB/IP is noted in Section 8.

2 Peripheral Bus Extension

This section describes the importance of USB/IP as a
new device sharing approach for peripheral bus exten-
sion. We explain what motivates the new sharing ap-
proach in contrast to conventional techniques. Finally,
we explain the concept of the peripheral bus extension
in the context of the device driver models of operating
systems.

2.1 Motivation

The responsibility of an operating system is to manage
various resources on a computer or network and to pro-
vide applications with access to these resources through
generalized interfaces. A peripheral device attached to a
computer is managed as one of these resources, and so
is accessed by applications through a common interface
which provide an abstract representation of hardware de-
vice functions (e.g., read and write). Most conventional
device sharing models only allow applications to use re-
mote devices through these abstract functions; computers
do not share any more fine-grained operations than the
abstract functions. Since shared devices in these models
are controlled with only a few high-level operations, it is
possible to manipulate the remote shared devices under
narrow bandwidth restrictions, or where large network
delays are present. In addition, concurrent access to a
remote device can be controlled using a locking mech-
anism that is applied to the abstract data unit of the re-
source.
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Figure 1: Relation between Device Abstraction and De-
vice Sharing (an example of storage device sharing by
NFS)

Taking a storage device as an example, the most pop-
ular unit of data manipulation is a file. Files are or-
ganized into file systems and applications interact with
them through system calls. When a hard disk is shared
by NFS [15], computers control the remote shared stor-
age device with the remote procedure calls similar to the
system calls provided for direct file operations. Though
the computers cannot deal with the remote storage de-
vice directly, this mechanism works fine as long as it is
limited to storing and retrieving data.

While the conventional device sharing models were
acceptable approaches in the past, they do not work well
for sharing many of the new peripheral devices. The de-
vice sharing system should be able to maximize the use
of new-featured remote devices, and also provide appli-
cations with seamless and on-demand access to both lo-
cal and remote devices. However, the conventional de-
vice sharing models do not fill these requirements for the
following reasons:

First, only abstract operations are sharable, so the
more fine-grained and device-specific operations are not
supported (Figure 1). This precludes the use of remote
shared devices in the same way as directly-attached de-
vices.

Since NFS is implemented using the virtual file system
(VFS) layer in the UNIX operating system, it is not able
to share either the common APIs for block devices nor
the native I/O operations for ATA or SCSI disks, both of
which are lower-level functions than the VFS. For exam-
ple, the NFS protocol does not define methods to format
a remote storage device, or to eject a remote removable
media device.

Second, while the original functions of both a remote
device and a locally-attached device are identical, the
control interfaces for both devices are often different.
Most control procedures for locally-attached devices are
implemented in device drivers. However, sharing mech-
anisms to access remote devices are often implemented
in the upper layer of the operating system, such as user-
land applications or libraries. This gap between both in-
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terfaces forces developers to implement a new dedicated
application, or to modify existing applications to support
this functionality.

For instance, VNC [12] provides framebuffer sharing
with remote computers by transmitting the screen image
data continuously. However, a VNC client implemented
as a userland application does not provide the same ac-
cess interface as the local physical framebuffer. The ap-
plications or drivers that directly handle physical frame-
buffers, such as console terminal drivers, cannot get the
benefit of the framebuffer sharing through VNC.

Third, to achieve a high degree of interoperability is
sometimes difficult for a device sharing system because
of the complex differences between operating systems.
Some device sharing applications (those that just extend
the existing abstraction layer to forward device requests)
usually only support the same operating system and can-
not interoperate with other operating systems which do
not have such an abstraction layer. Furthermore, the in-
teroperability sometimes conflicts with the above first is-
sue; the abstraction for bridging different operating sys-
tems usually disables some specific functions of shared
devices.

RFS [13] provides transparent access to remote files
by preserving most UNIX file system semantics, and al-
lows all file types, including special devices and named
pipes, to be shared. RFS allows access to remote devices
by mounting the remote device files in the local file sys-
tem tree. However, RFS is not even generic enough to
connect between different versions of the UNIX operat-
ing system because of the diverse semantics of certain
operations, such as ioctl() arguments.

Finally, peripheral devices with new features are con-
stantly being developed. These features are often not
compatible with the existing ones, and so cannot be
shared without extensions to the device sharing system.
In pervasive computing, the ability to adopt new technol-
ogy as soon as it becomes available is a key goal. Provid-
ing remote device sharing for these new devices as soon
as they are released requires a more general device shar-
ing mechanism that can be applied to any device easily.

2.2 Peripheral Bus Extension Philosophy

In traditional operating systems, the device driver is re-
sponsible for communication with the physical device,
and for providing an interface to allow userland appli-
cations to access the device functionality (Figure 2 left).
This model forces conventional device sharing systems
to evolve with the drawbacks described in Section 2.1.

Major advances in computer technology are now
changing many of the technical issues that have com-
pelled the conventional device sharing approach. Com-
puter hardware is rapidly improving, and the wide avail-

ability of intelligent peripheral buses (e.g., USB and
IEEE1394) is now commonplace. These peripheral
buses have advanced features such as serialized I/O,
plug-and-play, and universal connectivity. Serialized
I/O, which supports devices with a wide range of I/O
speeds, minimizes hardware and software implementa-
tion costs by reducing (or eliminating) the need for the
legacy interfaces (e.g., PS/2, RS-232C, IEEE1284 and
ISA). It also improves the I/O performance by employ-
ing an efficient bus arbitration mechanism for data trans-
mission. Plug-and-play simplifies device connection by
allowing dynamic attachment and automatic configura-
tion of devices. Universal connectivity provides multiple
transport modes, including isochronous transfer for mul-
timedia devices, which improves the usability of the bus
for a wide range of devices.

Device drivers are generally responsible for data trans-
mission and communication with the attached device,
while the operating system must provide the manage-
ment framework for dynamic device configuration. Fur-
thermore, a device driver is normally separated into a bus
driver for manipulation of peripheral interfaces, and a
per-device driver for control of devices on the peripheral
interfaces. (Figure 2 center).

The USB/IP device sharing approach extends the pe-
ripheral bus over an IP network using a virtual bus driver
(Figure 2 right). The virtual bus driver provides an inter-
face to remote shared devices by encapsulating periph-
eral bus request commands in IP packets and transmit-
ting them across the network. This approach has the
advantage of being able to utilize the existing dynamic
device management mechanism in the operating system,
for shared devices.

Our approach resolves the drawbacks of the conven-
tional approaches, and also has several advantages:

Full Functionality. All the functions supported by re-
mote devices can be manipulated by the operating sys-
tem. The shared operations are implemented in the low-
est layer, so the abstraction at the bus driver layer con-
ceals only the bus differences and does not affect the
per-device operations. In the kernel structure, both the
locally-attached devices and the remote devices are posi-
tioned in the same layer.

Network Transparency. In this paper, we define the
network transparency as “shared devices on the network
can be controlled by existing operating systems and ap-
plications without any modification”. The virtual bus
driver can conceal the implementation details of network
sharing mechanisms. Shared devices are controlled by
existing device drivers through the virtual bus driver.
Other components of the operating system (e.g., file sys-
tem, block I/O and virtual memory) and applications do
not notice any difference between the access interfaces
of shared devices and locally-attached ones.
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Figure 2: Evolution of Device Driver Framework

Device driver models are illustrated; conventional peripheral interfaces (left), sophisticated peripheral interfaces
(center) and our proposed approach (right). PDD is the abbreviation of per-device driver.

Interoperability. The device sharing system based
uses the low-level control protocols of the peripheral de-
vices, which are the same as those of locally attached
devices. These protocols, which are defined by several
standards, are independent of the operating system im-
plementation. By using these protocols for sharing, com-
puters with different operating systems can easily share
and control devices remotely.

Generality. Most devices can be shared in this way,
because a virtual bus driver is independent of the per-
device drivers, and supports all the devices on its periph-
eral interface. This allows the sharing of diverse devices
over an IP network.

There are some issues that need to be considered when
applying the USB/IP model in practice. First, the pro-
posed approach is not able to provide concurrent access
to a remote peripheral device, since the raw device func-
tions are being shared. In contrast, conventional device
sharing often allow concurrent access. However, our
approach affects a lower layer of an operating system
than the conventional approaches do; it is possible that
both approaches are complementary to each other. Also,
devices which support multiple simultaneous accesses,
such as shared SCSI, can be shared by employing a net-
work lock mechanism.

Second, the control protocols used by peripheral buses
are not designed for transmission over IP networks. Us-
ing these protocols over an IP network raises some issues
about network delay and jitters. However, high-speed
network technologies, such as Gigabit Ethernet, are now
able to provide bandwidths that are of the same order as
those of modern peripheral interfaces. In addition, the
rapid progress of networking technologies will alleviate
many of these issues in the near future.

In the next section, we demonstrate the suitability
of peripheral bus extension of sophisticated device in-
terfaces by describing a prototype implementation and
showing its validity through various experiments. We
also discuss issues for the control of devices over IP net-

works that have arisen from these results.

3 USB/IP

In this section, we describe a practical example of the
peripheral bus extension for the USB protocol, called
USB/IP. We first discuss the USB device driver model
and the granularity of operations, and then describe a
strategy for IP encapsulation of the USB protocol.

3.1 USB Device Driver Model

USB (Universal Serial Bus) is one of the more sophisti-
cated peripheral interfaces, providing serialized I/O, dy-
namic device configuration and universal connectivity.
The USB 2.0 specification, announced in April 2000,
specifies that a host computer can control various de-
vices using 3 transfer speeds (1.5Mbps, 12.0Mbps, and
480Mbps) and 4 transfer types (Control, Bulk, Interrupt,
and Isochronous).

Data transmission using the Isochronous and Interrupt
transfer types is periodically scheduled. The Isochronous
transfer type is used to transmit control data at a con-
stant bit rate, which is useful for reading image data
from a USB camera, or for writing sound data to a
USB speaker. The shortest I/O transaction interval sup-
ported using Isochronous transfers, called a microframe,
is 125us. The Interrupt transfer type negotiates the max-
imum delay allowed for a requested transaction. This is
primarily used for USB mice and keyboards, which re-
quire a small amount of data to be sent periodically in a
short interval.

The Control and Bulk transfer types are asyn-
chronously scheduled into the bandwidth remaining after
the periodic transfers have been scheduled. The Control
transfer type is used primarily for enumeration and ini-
tialization of devices. In 480Mbps mode, 20% of the to-
tal bandwidth is reserved for Control transfer. The Bulk
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Figure 3: USB Device Driver Model

transfer type is used for the requests that have no tem-
poral restrictions, such as storage device I/O. This is the
fastest transfer mode when the bus is available.

The device driver model of USB is layered as illus-
trated in Figure 3. At the lower layer, the granularity of
operations is fine-grained; the data size and temporal re-
striction of each operation are smaller than in the upper
layer.

3.1.1 USB Per-Device Driver

USB Per-Device Drivers (PDDs) are responsible for con-
trolling individual USB devices. When applications or
other device drivers request I/O to a USB device, a USB
PDD converts the I/O requests to a series of USB com-
mands and then submits them to a USB Core Driver
in the form of USB Request Blocks (URBs). A USB
PDD uses only a device address, an endpoint address,
an I/O buffer and some additional information required
for each transfer type, to communicate with the device.
USB PDDs do not need to interact with the hardware in-
terfaces or registers of the host controllers, nor do they
modify the IRQ tables.

3.1.2 USB Core Driver

A USB Core Driver is responsible for the dynamic con-
figuration and management of USB devices. When a new
USB device is attached to the bus, it is enumerated by the
Core Driver, which requests device specific information
from it and then loads the appropriate USB PDD.

A USB Core Driver also provides a set of common in-
terfaces to the upper USB PDDs and the lower USB Host
Controller Drivers. A USB PDD submits a USB request
to the device via the Host Controller Driver. This request
is in the form of a URB. Notification of the completed re-
quest is provided using a completion handler in the URB.
This is an asynchronous process from the view point of
the I/O model.

3.1.3 USB Host Controller Driver

A USB Host Controller Driver (HCD) receives URBs
from a USB Core Driver and then divides them into
smaller requests, known as Transfer Descriptors (TDs),
which correspond to the USB microframes. TDs are
scheduled depending on their transfer types and are
linked to the appropriate frame lists in the HCD for de-
livery. TDs for Isochronous or Interrupt transfer types
are linked to the Periodic Frame List and Bulk and Con-
trol transfer types are linked to the Asynchronous Frame
List. The actual work of the I/O transaction is performed
by the host controller chip.

3.2 IP Encapsulation Strategy

To implement the peripheral bus extension of USB, we
have added a Virtual Host Controller Interface (VHCI)
driver as a virtual bus driver (as described in Section 2.2).
The VHCI driver is the equivalent of a USB HCD, and
is responsible for processing enqueued URBs. A URB
is converted into a USB/IP request block by the VHCI
driver and sent to the remote machine. A Stub driver is
also added as a new type of USB PDD. The Stub driver is
responsible for decoding incoming USB/IP packets from
remote machines, extracting the URBs, and then submit-
ting them to the local USB devices.

Using this strategy, any interface differences between
directly-attached USB devices and remote USB devices
is completely hidden by the HCD layer. USB PDDs,
other drivers, and applications can use remote USB de-
vices in exactly the same way. Once a USB Core Driver
enumerates and initializes the remote USB devices, un-
modified USB PDDs and applications can access the de-
vices as if they were locally attached.

An IP network typically has a significantly larger
transfer delay and more jitter than the USB network. In
addition, the native I/O granularity of USB is too small
to effectively control USB devices over an IP network.
The Isochronous transfer type needs to transmit 3KB of
data in every microframe (125us), and the Bulk transfer
type needs to transmit 6.5KB of data in a microframe.
Therefore, to transfer USB commands over the IP net-
work efficiently, USB/IP is designed to encapsulate a
URB (not a TD) into IP packets. This technique min-
imizes these timing issues by concatenating a series of
USB I/O transactions into a single URB. For example,
using the Isochronous transfer type, by combining 80 I/O
transactions that are executed every microframe into a
single URB, the packet can be delayed 10ms, while still
maintaining an I/O granularity of 125us. Similarly, using
the Bulk transport type, a URB that has a 100KB buffer
can be used to transfer 200 I/O transactions containing
512B of data each.
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Figure 4: USB/IP Design

These issues, while important for slower networks, are
minimized by new network technologies, such as Gigabit
Ethernet. The bandwidth of Gigabit Ethernet is signifi-
cantly greater than the 480Mbps used by USB 2.0, so it
is possible to apply the URB-based I/O model to control
remote USB devices over such a network. We evaluate
the use of URBs for USB/IP is more detail in Section 4.

3.3 Design and Implementation of USB/IP

The design of USB/IP is illustrated in Figure 4. A VHCI
driver acts as a USB HCD in the client host, and a Stub
driver acts as a USB PDD in the server host. The VHCI
driver emulates the USB Root Hub’s behavior, so when
a remote USB device is connected to a client host over
the IP network, the VHCI driver notifies the USB Core
Driver of the port status change. The USB/IP driver en-
sures that USB device numbers are translated between
the client device number and the server device number.
Additionally, USB requests such as SET ADDRESS and
CLEAR HALT are intercepted so that data maintained by
the USB Core Driver can be updated correctly.

Transmission of all URBs over the IP network is via
the TCP protocol. However, to avoid buffering delays
and transmit the TCP/IP packets as soon as possible, the
Nagle algorithm is disabled. The current USB/IP im-
plementation does not use UDP for any communication.
This is because the characteristics of transmission errors
for USB and UDP/IP are quite different. Though the host
controller does not resubmit failed Isochronous transac-
tions, USB PDDs and devices expect that most transac-
tions succeed. Also, transaction failures seldom occur in
USB unless there is some physical problem with devices
or cables. Therefore, in general, the transport layer for
URBs must guarantee in order data arrival and retrans-
mit lost packets.

The current implementation of USB/IP supports the
Linux Kernel 2.6 series. The VHCI driver and the
Stub driver are implemented as loadable kernel mod-
ules. Tools used to negotiate requested devices and set
up TCP/IP connections are all in userland.

Figure 5: A USB/IP Application

(Device Sharing for LAN)

% devconfig list list available remote devices

3: IO-DATA DEVICE,INC. Optical Storage
: IP:PORT : 10.0.0.2:3000
: local_state : CONN_DONE
: remote_state : INUSE
: remote_user : 10.0.0.3
: remote_module: USBIP

2: Logitech M4848
: IP:PORT : 10.0.0.2:3000
: local_state : DISCONN_DONE
: remote_state : AVAIL
: remote_user : NOBODY
: remote_module: USBIP

% devconfig up 3 attach a remote DVD Drive
% ...
% ... mount/read/umount a DVD-ROM
% ... play a DVD movie
% ... record data to a DVD-R media
% ...
% devconfig down 3 detach a remote DVD Drive

Figure 6: USB/IP Application Usage

As a practical application of USB/IP, we have also de-
veloped a device sharing system for LAN environments
(Figure 5). A key design of the device sharing system is
the support of multiple virtual buses in the operating sys-
tem. A virtual bus is implemented for each sophisticated
peripheral bus. For service discovery, Multicast DNS [3]
and DNS Service Discovery [2] are used to manage the
dynamic device name space in a local area network. An
example usage of this application is illustrated in Figure
6. This paper will focus primarily on the implementa-
tion of USB/IP. Details of the application of USB/IP for
device sharing will be given in another paper.

4 Evaluation

In this section, we describe the characteristics of the
USB/IP implementation. In particular, we show the re-
sults of several experiments that were carried out to mea-
sure the USB/IP performance. The computers used for
the evaluation are listed in Table 1. To emulate various
network conditions, we used the NIST Net [1] package
on Linux Kernel 2.4.18. A client machine and a server
machine were connected via a NIST Net machine, as
shown in Figure 7. Both the client and server machines
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Table 1: Machine Specifications for Experiments

CPU Intel Pentium III 1GHz
Memory SDRAM 512MB
NICs (client/server) NetGear GA302T
NICs (NIST Net) NetGear GA620
USB 2.0 Interface NEC µPD720100

Figure 7: Experiment Environment

run Linux Kernel 2.6.8 with the USB/IP kernel modules
installed.

4.1 Performance Evaluation of USB Pure
Sink/Source

In the first evaluation, we used a pure sink/source USB
device rather than a real USB device in order to iden-
tify the performance characteristics of USB/IP itself. A
USB peripheral development board with a Cypress Semi-
conductor EZ-USB FX2 chip [5] was programmed to be
a sink/source for the USB data. The firmware and test
device driver were implemented as a USB PDD for the
experiments.

4.1.1 Bulk Transfer

The I/O performance of USB/IP depends to a large de-
gree on network delay and the data size of the operation
being performed. In the second evaluation, we derived
a throughput model for USB/IP from the results of the
experiments, and then determined a set of criteria for op-
timizing USB/IP performance.

The first step of the evaluation was to measure the
USB/IP overhead for USB requests of the Bulk trans-
fer type. As Figure 8 shows, the test driver submits a
Bulk URB to the remote source USB device, waits for
the request to be completed, and then resubmits the re-
quest continuously. As shown in the figure, the enqueued
URBs are transferred to the server’s HCD between 1 and
2, and vice versa between 3 and 4. The execution time

Figure 8: Summarized Driver Behavior of the Experi-
ments in Section 4.1.1
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Figure 9: Execution Time of a URB

for processing a URB in the client for various values of
URB data size and network round trip time (RTT) was
measured using the Time Stamp Counter (TSC) register
available on Intel Pentium processors. Note that when
NIST Net sets the network RTT to 0ms, the actual RTT
between the client and server machines is 0.12ms, as de-
termined by ping.

The results are shown in Figure 9. From the graph,
it can be seen that the relationship between the execu-
tion time of URBs and different data sizes is linear with
constant gradient. The CPU cost for the USB/IP en-
capsulation is quite low at only a few percent. TCP/IP
buffering does not influence the results because we use
the TCP NODELAY socket option. From the graph, the
execution time toverIP for data size s is given by

toverIP = aoverIP × s + RTT .

where aoverIP is the gradient value for the different
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Figure 10: Throughput from Model
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Figure 11: Throughput from Experiments

RTTs. The throughput thpt is then

thpt =
s

toverIP
=

s

aoverIP × s + RTT
. (1)

A regression analysis shows aoverIP is 6.30e-2 ms/KB
with a y-intercept for the 0ms case of 0.24 ms. The
throughput modeled by Equation (1) is shown in Fig-
ure 10. The actual throughput from the experiments is
illustrated in Figure 11, showing that the throughput of
the model is fully substantiated by the experimental re-
sults. Therefore, within the parameter range of the exper-
iments, this model is an accurate estimate of throughput
for different URB data sizes and network RTTs.

In the directly-attached case, adirect is 3.51e-2 ms/KB
with a y-intercept of 0.07ms. This implies a relatively
constant throughput of approximately 28.5MB/s except
for quite small URB data sizes. This value is also deter-
mined largely by the performance of the host controller.
The host controller in these experiments can process 6
or 7 Bulk I/O transactions per microframe (125us). In
480Mbps mode, one Bulk I/O transaction transfers 512B
of data to a USB device. In this case, the throughput is
equal to (7 × 512B)/125us = 28MB/s.

To summarize these experiments, we have estimated

Figure 12: Summarized Driver Behavior of the Experi-
ments in Section 4.1.2

the appropriate URB data size under various network
delays. We have also confirmed that when multiple
URBs were queued simultaneously, the throughput of
Bulk transfer is dependent on the total data size of
simultaneously-queued URBs. To maintain throughput
when there is some network delay, USB PDDs should
either enlarge each URB data size, or increase the queu-
ing depth of URBs. Moreover, in situations when a large
number of URBs are queued asynchronously, and there is
substantial network delay, the TCP/IP window size must
also be increased to ensure that the network pipe remains
full.

4.1.2 Isochronous Transfer

In this section, we examine the performance of USB/IP
when employing the isochronous transfer type. To en-
sure transfers for USB devices meet the Isochronous re-
quirements, starvation of transaction requests must be
avoided in the host controller. To achieve this, the USB
driver model allows USB PDDs to queue multiple URBs
simultaneously. In the case of USB/IP, it is also im-
portant to select a URB queuing depth that matches the
likely delays introduced by the IP network.

For this test, we developed the firmware and a test de-
vice driver for an Isochronous source device. The device
and drivers are configured as follows:

• A transaction moves 512B data in one microframe
(125us).

• A URB represents 8 transactions.

In this case, the completion handler of the URB is called
every 1ms (125us × 8). This 1ms interval was chosen
to be small enough so that it would be possible to exam-
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ine the isochrony of USB/IP. In general, the interval of
completion is set to approximately 10ms, which is an ac-
ceptable trade-off between smoothness of I/O operations
and the processing cost. Figure 12 shows the detail of
the driver behavior in the experiments. The USB PDD
sets up each URB with the pointer to an I/O buffer for
8 transactions, and then queues the multiple URBs. The
host controller then keeps pending I/O buffers on the Pe-
riodic Frame List, and the completion handler is called
every 1ms. The HCD moves the input data to the USB
PDD periodically. If there are no pending I/O buffers in
the Periodic Frame List, the host controller does not copy
data and isochronous data will be lost.

For a directly-attached source device, and the USB
PDD submitting only one URB, the completion inter-
val was 11.1ms because of request starvation. When the
USB PDD submitted 2 or more URBs simultaneously,
the completion intervals were 1ms, with a standard devi-
ation of approximately 20ns for any queuing depth.

Figure 13 illustrates the mean completion intervals for
various network RTTs and the queuing depths of submit-
ted URBs for USB/IP. This shows that even under some
network delays, the USB PDD is able to achieve 1ms
completion intervals, provided that an adequate queuing
depth is specified. For example, when the network delay
is 8ms, the appropriate queuing depth is 10 or more. Fig-
ure 14 shows the time series of completion intervals in
this case. Immediately after the start of the transfer, the
completion intervals vary widely because the host con-
troller does not have enough URBs to avoid starvation.
Once enough URBs are available, the cycle becomes sta-
ble and the completion intervals remain at 1ms. Figure
15 shows the standard deviations of the completion in-
tervals. With the sufficient URBs, the measured standard
deviation is less than 10us, including the NIST Net’s de-
viations [1]. These values are less than one microframe
interval (125us) and adequate for most device drivers.
This is the case for the Linux kernel 2.6 series, where
process scheduling is driven by jiffies, which are in-
cremented every 1ms. TCP/IP buffering has no impact
on the timing, since the socket option TCP NODELAY is
set.

USB/IP periodic transfers are illustrated in Figure 16.
In this case, the USB PDD in the client host queues
3 URBs which are completed every x ms. For the
corresponding periodic completions in the server, the
host controller must always keep multiple URBs queued.
Therefore, with a queuing depth q, the time in which the
next URB is pending is

tnpending = (q − 1)x − RTT > 0.

The appropriate queuing depth q can then be calculated
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by

q >
RTT

x
+ 1. (2)

Comparing Figure 13 and Equation (2) shows the re-
quired queuing depth of URBs in the experiments.

To summarize these experiments, USB PDDs with pe-
riodic transfers must queue multiple URBs to at least the
depth q of Equation (2) to ensure a continuous stream of
I/O. In the wide area networks where there is significant
jitter or packet loss, q should be increased to ensure a suf-
ficient margin is available. The result can be also applied
to Interrupt transfer type URBs, which specify the max-
imum delay of completion. This examination continues
for common USB devices over an IP network in Section
4.2.2.

4.2 Performance Evaluation of USB De-
vices

In this section, we examine the USB/IP characteristics
for common USB devices. All USB devices we have
tested can be used as USB/IP devices. Figure 17 shows
a client host attached to a remote USB camera through
the VHCI driver. In this case, the USB device viewer
usbview [10] sees the device descriptors as if the cam-
era were locally attached. The only difference that is ap-
parent between USB and USB/IP is that the host con-
troller is VHCI. USB PDDs can also control their corre-
sponding remote USB devices without any modification.
In our LAN environment, the performance degradation
of USB/IP is negligible. Specific details of the perfor-
mance of each kind of USB/IP device are described in
more detail below.

Figure 17: usbview Output for a USB/IP Device

Table 2: Specifications of the Tested USB Hard Disk

Product Name IO-DATA HDA-iU120
Interface USB 2.0/1.1, iConnect
Capacity 120GB
Rotation Speed 5400rpm
Cache Size 2MB

4.2.1 USB Bulk Device

USB storage devices (e.g., hard disks, DVD-ROM
drives, and memory drives), USB printers, USB scanners
and USB Ethernet devices all use the USB Bulk trans-
fer type. All these devices are supported by USB/IP.
For USB storage devices, it is possible to create par-
titions and file systems, perform mount/umount opera-
tions, and perform normal file operations. Moreover, we
have shown that it is possible to play DVD videos and to
write DVD-R media in a remote DVD drive, using ex-
isting, unmodified, applications. As described in Section
4.1.1, the USB/IP performance of USB Bulk devices de-
pends on the queuing strategy of Bulk URBs. We have
tested the original USB storage driver of Linux Kernel
2.6.8 to show its effectiveness for USB/IP.

The experimental setup for this test was the same as
that described in Section 4.1.1. NIST Net was used
to emulate various network delays. We used the Bon-
nie++ 1.03 [4] benchmarks for ext3 file system on a
USB hard disk. The disk specifications are shown in
Table 2. The Bonnie++ benchmarks measure the per-
formance of hard drives and file systems using file I/O
and creation/deletion tests. The file I/O tests mea-
sure sequential I/O per character and per block, and
random seeks. The file creation/deletion tests execute
creat/stat/unlink file system operations on a
large number of small files.

Figure 18 and Figure 19 show the sequential I/O
throughput and the corresponding CPU usage for USB
and USB/IP respectively. Figure 20 shows sequential
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Figure 18: Bonnie++ Benchmark (Sequential
Read/Write Throughput on USB and USB/IP)
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Figure 19: Bonnie++ Benchmark (Sequential
Read/Write CPU Usage on USB and USB/IP)
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Figure 20: Bonnie++ Benchmark (Sequential
Read/Write Throughput on USB/IP)
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Figure 21: Bonnie++ Benchmark (Random Seek Speed
on USB/IP)

I/O throughput by USB/IP under various network delays.
For character write and block write, the throughput ob-
tained by USB/IP when NIST Net’s RTT is 0ms (0.12ms
by ping) is approximately 77% of the throughput ob-
tained by USB. Rewrite speeds are 66%, character read
79%, and block read 54% of that obtained by USB re-
spectively. Since the CPU usage for USB/IP is less than
those for USB, the bottleneck primarily results from in-
sufficient queuing data size for the I/Os to the remote
hard disk.

The Linux USB storage driver is implemented as a
glue driver between the USB and SCSI driver stacks.
For the SCSI stack, the USB storage driver is a SCSI
host driver. A SCSI request with scatter-gather lists is
repacked into several URBs, which are responsible for
each scatter-gather buffer. The Linux USB storage driver
does not support the queuing of multiple SCSI requests.
Therefore, the total I/O data size of URBs submitted si-
multaneously is the same as each SCSI request size. In
the case of block write, this is approximately 128KB.
This queuing data size is small for USB/IP under some
network delays, as we discussed in Section 4.1.1. To op-
timize the sequential I/O throughput for USB/IP, a rea-
sonable solution is for the USB storage driver to provide
SCSI request queuing.

The throughput of random seek I/O by USB/IP is il-
lustrated in Figure 21. This test runs a total of 8000
random lseek operations on a file, using three sepa-
rate processes. Each process repeatedly reads a block,
and then writes the block back 10% of the time. The
throughput obtained by USB for this test is 167KB/s.
The throughput difference between USB and USB/IP is
much smaller than that of sequential I/Os. The CPU us-
age in both the USB and USB/IP cases is 0%. This is
because the bottleneck for random seek I/O is the seek
speed of the USB hard disk itself, and is slower than that
of read/write I/Os. The rational speed of the USB hard
disk we tested is 5400rpm and its seek speed is approxi-
mately 10ms.

Figure 22 shows the speed of file creation and dele-
tion operations by USB/IP under various network delays.
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Figure 22: Bonnie++ Benchmark (Create/Delete Speed
on USB/IP)

The speeds obtained by USB are 682 op/s for sequential
creation, 719 op/s for random creation, and 2687 op/s
for file deletion. In all these cases, the CPU usage was
over 90%. The difference between USB and USB/IP is
quite small, and the results of each test are almost con-
stant under various network delays. The bottleneck for
the file creation/deletion tests is predominantly the CPU
resources.

4.2.2 USB Isochronous Device

USB multimedia devices, such as USB cameras and USB
speakers, use the USB Isochronous transfer type to trans-
mit data at periodic intervals. We have tested a USB
camera (which uses the OmniVison OV511 chip), and
a USB Audio Class speaker. These devices work com-
pletely transparently using USB/IP on a LAN. We were
able to demonstrate video capture from the camera, and
successfully played music using the speaker system.

The Linux USB Audio Class driver employs multi-
buffering by submitting 2 URBs simultaneously, where
each URB is responsible for 5ms of transactions. Equa-
tion (2) shows this driver will work with a remote USB
audio device provided that the network delay is 5ms or
less. For larger network delays, it is still possible to use a
remote audio device by increasing the completion inter-
val for each URB. The main drawback with this is that it
can result in degraded I/O response.

4.2.3 USB Interrupt Device

USB Human Input Devices, such as USB keyboards and
USB mice, use the USB Interrupt transfer type to trans-
mit data at periodic intervals, in a similar manner to inter-
rupt requests (IRQs). Other devices also use the Interrupt
transfer type to notify hosts of status changes. On our test
LAN, we were able to demonstrate the correct operation
of such devices using USB/IP for both consoles and the
X Window System.

Most USB HID drivers submit only one URB with a
completion delay of 10ms. After the URB processing
is completed, the driver resubmits the URB. The drivers
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Figure 23: Bonnie++ Benchmark (Sequential
Read/Write Throughput on USB and USB/IP with
IPSec)
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Figure 24: Bonnie++ Benchmark (Sequential
Read/Write CPU Usage on USB and USB/IP with
IPSec)

read the interrupt data, which is accumulated in the de-
vice endpoint buffer, every 10ms. Under large network
delays, it is possible that the device endpoint buffer may
overflow. When network delays approach 100ms, there
is likely to be significant degradation in the performance
of these devices. The former problem can be resolved
by queuing more URBs so that endpoint buffer overflow
is prevented. The latter problem is an underlying issue
that results from attempting human interaction over a
network.

5 Discussion

Security. Support for authentication and security
schemes is an important part of the USB/IP architec-
ture. As most of USB/IP is currently implemented in
the kernel (to avoid memory copy overhead), it is logi-
cal that an existing kernel-based security mechanism be
employed. IPSec [9], which provides a range of secu-
rity services at the IP layer, is one of the most suitable
technologies for this purpose. IPSec provides the fol-
lowing functionality: access control, connectionless in-
tegrity, data origin authentication, protection against re-
play attacks (a form of partial sequence integrity), con-
fidentiality (encryption), and limited traffic flow confi-
dentiality. Figure 23 and Figure 24 show the results of
the I/O benchmark described in Section 4.2.1, but with
IPSec ESP (Encapsulating Security Payload) employed
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for all traffic between the client and the server. The hash
algorithm used is HMAC-SHA1 and the encryption algo-
rithms are AES-CBC, Blowfish-CBC, and 3DES-CBC,
respectively. Since encryption entails a significant CPU
overhead, the performance degradation compared to non-
encrypted transfer is quite high. In the case of AES-CBC
encryption, the performance is less than 50% of that ob-
tained without IPSec. To achieve significantly higher
throughput, such as would be necessary for embedded
computers, some form of hardware acceleration is re-
quired. The optimization criteria, described in Section
4.1.1, may also be applied to determine the likely im-
pact of IPSec overhead on the operation of USB/IP. To
do this, IPSec overhead is considered as an estimate of
pseudo network delay. The issue of authentication and
security for USB/IP is an ongoing area of research, and
will be dealt with more fully in a future paper.

Error Recovery. The issue of error recovery is an
area that also needs to be considered for USB/IP. The er-
ror recovery methodology employed by USB/IP exploits
the semantics of error recovery in the USB protocol. A
dropped TCP/IP connection to a remote USB device is
detected by both the VHCI driver and the Stub driver.
The VHCI driver detaches the device, so it appears that
the device has been disconnected, and the Stub driver re-
sets the device. As with directly-attached USB devices
that are disconnected, some applications and drivers may
lose data. This recovery policy is appropriate in LAN
environments, because sudden disconnection of TCP/IP
sessions seldom occur. In addition, this error recovery
policy greatly simplifies the USB/IP implementation. To
use USB/IP with more unstable network environments,
such as mobile networks, a more dependable recovery
scheme is required. This is also an area of future re-
search.

Interoperability. The USB/IP architecture has been
designed so that it is interoperable between different op-
erating systems. USB driver stacks for many operat-
ing systems are very similar. In most cases the USB
driver stacks are designed with three layers: the USB
PDDs, the USB HCDs, and a glue layer. In addition,
the Linux, Microsoft Windows, and FreeBSD operating
systems also have similar USB request structures, (urb,
URB and usbd xfer respectively), which means that
USB/IP will be relatively easy to port. One area that this
paper does not focus on is details of the interoperability
features of the USB/IP protocol itself. Future work will
be required to develop the interoperable implementations
for these other operating systems.

6 Related Work

iSCSI [14] is designed to transport SCSI packets over a
TCP/IP network, and provide access to remote storage

devices. This protocol is commonly regarded as a fun-
damental technology for the support of SANs (Storage
Area Networks). However, because iSCSI is the exten-
sion of a SCSI bus over an IP network, the protocol has
been designed to ensure network transparency and inter-
operability. This means that the protocol could be ap-
plied to storage device sharing between computers using
our peripheral bus extension technique. Our device shar-
ing methodology is designed to provide virtual connec-
tions that are independent of device control details, so it
would be possible to utilize the iSCSI protocol, as one of
the control modules for the remote device. The main lim-
itation of iSCSI is that it supports only storage devices.
USB/IP has the advantage that all types of devices, in-
cluding isochronous devices, can be controlled over IP
networks.

University of Southern California’s Netstation [6] is a
heterogeneous distributed system composed of processor
nodes and network-attached peripherals. The peripherals
(e.g., camera, display, emulated disk, etc.) are directly
attached to a shared 640Mbps Myrinet or to a 100Mbps
Ethernet. The goal of Netstation is to share resources
and improve system configuration flexibility. In this sys-
tem, VISA (Virtual Internet SCSI Adapter) [11] emu-
lates disk drives using UDP/IP. This project is similar to
our peripheral bus extension, as both systems use IP net-
work to transfer data [7]. However, while Netstation is
a network-based computer architecture that allows easy
substitution of systems, our architecture aims to share
already-attached devices between heterogeneous com-
puters. We believe it offers the most practical approach
to exploiting today’s sophisticated peripheral buses and
their device drivers.

The Inside Out Network’s AnywhereUSB [8] is a
network-enabled USB hub. This hub employs propri-
etary USB over IP technology, and provides remote ac-
cess to USB devices attached to ports on the hub, though
in a somewhat limited manner. The hub supports only
USB Bulk and Interrupt devices operating at 12Mbps in
a LAN environment. Most USB storage devices, which
operate at 480Mbps, and USB isochronous devices are
not supported. In contrast, USB/IP supports all types of
USB devices operating at up to 480Mbps. Our evaluation
has shown that, in LAN environments, all the tested de-
vices work perfectly with the original PDD. Moreover,
we have shown that there is an optimization strategy
that will enable USB/IP to operate effectively even un-
der larger network delays.

There are a number of network appliances which ex-
port the resources of specific USB devices to an IP
network. Some NAS appliances share their attached
USB storages via NFS or CIFS. In addition, some home
routers have USB ports that can be used to share con-
nected USB printers or USB webcams. As we have de-
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scribed in Section 2.1, these appliances, which employ
coarse-grained protocols, do not support the low-level
operations which a required to allow the remote devices
to operate in a transparent manner.

A new technology which is under development is
Wireless USB [16], which employs UWB (Ultra Wide
Band) to provide expanded USB connectivity. This tech-
nology aims to eliminate USB cables altogether, however
the effective communication range is limited to 10 me-
ters. The implementation of Wireless USB is very simi-
lar to the physical layer of USB, so this technology will
complement USB/IP. This will allow USB/IP to be used
for Wireless USB devices, and enabling USB/IP to pro-
vide remote device access with virtually any IP network
infrastructure.

7 Conclusion

We have developed a peripheral bus extension over IP
networks, that provides an advanced device sharing ar-
chitecture for the support of recent sophisticated periph-
eral bus interfaces. The device sharing architecture meets
a range of functionality requirements, including network
transparency, interoperability, and generality, by utilizing
the low-level device control protocols of the peripheral
interfaces.

As a practical example of the peripheral bus extension,
we designed and implemented USB/IP, which allows a
range of remote USB devices to be used from existing
applications without any modification of the application
or device drivers. We also undertook a range of exper-
iments to establish that the I/O performance of remote
USB devices connected using USB/IP is sufficient for ac-
tual usage. We also determined the performance charac-
teristics of USB/IP, and developed optimization criteria
for IP networks.

There are three primary design criteria that need to be
considered in order to effectively support the transfer of
fine-grained device control operations over IP networks.
First, for asynchronous devices (known as bulk devices),
the device driver must queue enough request data to en-
sure maximum throughput for remote devices. Second,
synchronous devices (known as isochronous devices), re-
quire a smooth of I/O stream. To achieve this, the appro-
priate number of requests must be queued to avoid star-
vation of requests at the physical device. However, this
is a trade-off, because a large queue size reduces the re-
sponse of each device. Finally, most situations require
the response to a request to arrive within a certain time.
In some situations, it is possible to relax the restriction
by modifying a device driver or an application.

8 Availability

The USB/IP implementation is available under the open
source license GPL. The information is at http://
usbip.naist.jp/ .
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