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Abstract

If we wish to distribute audio in a large room, building,
or even a campus, we need multiple speakers. These
speakers must be jointly managed and synchronized.
The Ethernet Speaker (ES) system presented in this pa-
per can be thought of as a distributed audio amplifier
and speakers, it does not “play” any particular format,
but rather relies on off-the-shelf audio applications (e.g.,
mpgl23 player, Real Audio player) to act as the au-
dio source. The Ethernet Speaker, consists of three ele-
ments: (a) a system that converts the audio output of the
unmodified audio application to a network stream con-
taining configuration and timing information (rebroad-
caster), (b) the devices that generate sound from the au-
dio stream (Ethernet Speakers), and (c) the protocol that
ensures that all the speakers in a LAN play the same
sounds.

This paper covers all three elements, discussing design
considerations, experiences from the prototype imple-
mentations, and our plans for extending the system to
provide additional features such as automatic volume
control, local user interfaces, and security.

Keywords: virtual device drivers, OpenBSD, audio,
multicast.

1 Introduction

Consider a situation where you want to listen to some au-
dio source in various rooms in your house, alternatively
you may want to send audio throughout a building. In
such situations the traditional approach would be to set
up amplifiers, speakers and connect them all up into one
large analog audio network (e.g., [4]). If laying wires is

*This work was supported by NSF under Contract ANI-0133537.

not an option, then wireless solutions also exist where
the audio signal is sent over radio frequencies and the
speakers are essentially radios that listen on a preset fre-
quency.

In this paper we discuss our implementation of a similar
architecture using an Ethernet network and small em-
bedded computers as speakers (Figure 1).

Our motivation for undergoing this project was that we
believe that using an existing network infrastructure may
allow the deployment of large scale public address sys-
tems at low cost. Moreover, having an embedded com-
puter next to each speaker offers numerous opportunities
for control of the audio output, such as remote playback
channel selection, volume levels, perhaps even the abil-
ity to use the built-in microphone to determine the ap-
propriate volume level depending on ambient noise lev-
els.

Numerous solutions exist for transferring audio over the
Internet, but since most local networks are Ethernet-
based we wanted to use this experiment to determine
whether we can come up with a number of simplifica-
tions to the architecture by assuming that all the speak-
ers are located on the same Ethernet segment. This ties
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Figure 1: Rebroadcasting WAN Audio into the LAN.
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Figure 2: Overview of the Virtual Audio Device.

in very well with the greatly improved range and size
of modern Ethernet LANs. In section 2 we discuss the
impact of this assumption on the design and implemen-
tation of our system.

Another issue that we faced was how to generate the au-
dio streams that would feed these (Ethernet) speakers.
We did not want to design yet another audio library or
streaming service, or to have to modify existing appli-
cations so that they would use our system. The solution
we selected was to redirect the audio stream from inside
the kernel so that instead of going out the built-in audio
card, the stream would be channelled directly to the net-
work or to some other user-level application. This led to
the design of the virtual audio device (VAD) that virtu-
alizes the audio hardware in the same way as the Unix
system uses pseudo terminals (pty (4)).

The advantage of this approach is that the application
cannot determine whether it is sending the audio to a
physical device or to a virtual device and hence off-the-
shelf applications (even proprietary ones) can be used to
send audio to our Ethernet Speakers (Figure 2).

In the rest of this paper we describe the basic elements of
the Ethernet Speaker (ES) system, including the VAD,
the communications protocol used to send audio data
and configuration information to the Ethernet Speakers
and the platform used to implement the ES. We also de-
scribe our prototype and the lessons we learned from its
implementation. Finally, we discuss some of our plans
for adding some security and remote management fea-
tures to the system.

2  Design

2.1 The Virtual Audio Device (VAD)

In this section we discuss the modifications we made to
the OpenBSD kernel to support the virtual audio device
(VAD). Although we have used the OpenBSD kernel,
our modifications should be easy to port to any system
that uses a similar architecture for the audio driver.

The audio subsystem of most modern Operating Sys-
tems provides a path from the application to the audio
hardware. While this arrangement works most of the
time, it has a number of deficiencies that can be quite
frustrating. These include:

e The numerous encoding formats of the audio data
require the use of different audio players, each with
its own user interface. Some of the players (e.g.,
real audio player) offer only graphical user inter-
faces making them unusable on embedded plat-
forms or systems that offer only character-based
user interfaces.

o The tight binding between the audio device and the
audio hardware means that the sound must be gen-
erated close to the computer running the audio ap-
plication.

e Certain streaming services offer no means of stor-
ing the audio stream for later playback (time shift-

ing).

Despite the numerous audio formats in use, the services
offered by the audio device driver (audio (4) ) are well
defined and relatively straightforward in terms of for-
mats and capabilities. This implies that by intercept-
ing an audio stream at the kernel interface (system call
level), we only need to deal with a small set of formats.
In other words, the various audio applications perform
the conversion from the external (possibly proprietary)
format to one that is standardized. We, therefore, require
a mechanism that allows the audio output of a process to
be redirected to another process. The redirection occurs
inside the kernel and is totally transparent to the process
that generates the audio stream. Our system utilizes a
virtual audio device (VAD) that plays a role similar to
that of the pseudo terminals that may be found on most
Unix or Unix-like systems. The VAD consists of two
devices (a master and a slave). The slave device looks
like a normal audio device with the difference being that
there is no actual sound hardware associated with it.

152

FREENIX Track: 2005 USENIX Annual Technical Conference

USENIX Association



The audio application opens the slave device and uses
ioctl calls to configure the device and write calls to
send audio data to the device. Another application can
then open the master device and read the data written to
the slave part (Figure 2).

2.1.1 The OpenBSD Audio System

The OpenBSD audio driver is an adaptation of the
NetBSD audio driver and consists of two parts: the de-
vice independent high level driver and the device depen-
dent low level driver. The high level driver deals with
general issues associated with audio I/O (e.g., handling
the communications with user-level processes, inserting
silence if the internal ring-buffer runs out of data, etc.),
while the low-level drives the audio hardware. User-
level applications deal entirely with the high-level audio
driver.

In the OpenBSD kernel there is one instance of the high-
level audio driver and as many instances of the low-level
as types of audio cards connected to the system. The
first audio device is associated with the /dev/audio0
device, the second with /dev/audiol and so on.

Applications use 1octl calls to set various parameters
(such as the encoding used, the bit rate, efc.) in the driver
and the usual file I/O calls to read and write data to the
device.

The interface between the two levels of the audio device
driver is well documented (audio (9) ) so adding a new
audio device is fairly straightforward.

In the case of the Virtual Audio Drive, we had to con-
struct a low-level audio device that is recognised by the
OpenBSD kernel as a valid device. Using terminol-
ogy borrowed from the pseudo terminal implementation
(pty (4)), we note that the VAD driver provides sup-
port for a device-pair termed a virtual audio device. A
virtual audio device is a pair of audio devices, a mas-
ter device and a slave device. The slave device pro-
vides to a process an interface identical to that described
in audio (4). However, whereas all other devices
which provide the interface described in audio (4)
have a hardware device of some sort behind them, the
slave device has, instead, another process manipulating
it through the master half of the VAD. That is, anything
written on the slave device (vads) is given to the master
device (vadm) as input (currently vads only supports
audio output).

The master (or control) device has its own entry in the
/dev directory providing an access point for user-level
applications.

In addition to the audio data, the slave device passes con-
trol information (e.g., values set using the ioctl (2)
system call) to the control side. Thus the application ac-
cessing vadm can always decode the audio stream cor-
rectly.

2.1.2 Why a Virtual Audio Device?

An audio application does more than just send audio
data to the audio device. The control information, men-
tioned above, is vital to the correct playback of the audio
stream. The audio application establishes these settings
by configuring the audio device. Moreover the appli-
cation may check the status of the audio device from
time to time. All of the above indicate that we cannot
simply replace the audio device (/dev/audio) with
something like a named pipe; our redirector must behave
like a real audio device and be able to communicate the
configuration updates to the process that receives the au-
dio stream via the master side of the VAD.

2.2 The Audio Stream Rebroadcaster

The data extracted from the master side of the VAD may
be stored in a file, processed in some way and then sent
to the physical audio device, or transmitted over the net-
work to the Ethernet Speakers. In this section we discuss
the Audio Stream Rebroadcaster which is an application
that gateways audio information received from the pub-
lic Internet to the local area network (see Figure 3).

In addition to providing input to the Ethernet Speakers,
the rebroadcaster service may be used as a proxy if the
hosts in the LAN do not have a direct connection to the
public Internet and thus require the use of a gateway
(which has access to both the internal and the external
networks) to rebroadcast the audio stream.

Another reason may be that if we have large numbers
of internal machines listening to the same broadcast, we
may not want to load our WAN link with multiple uni-
cast connections from machines downloading the same
data. By contrast, the rebroadcaster can multicast the
data received from a single connection on the WAN link.

Moreover, by having a known format for the multicast
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Traditional Approach Virtual Audio Device with Internet Speaker client
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' /dev/audiol /dev/va:dsoo /dev/vadm00 'socket socket ' /dev/audiol
kernel interface | kernel interface
' The Rebroadcast \—\
! application sends
Audio Driver packets via the Audio Driver
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network to a '
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Figure 3: Application 1 plays audio to the normal audio device, while Application 2 plays to the VAD, which sends

the audio data to a remote machine via the network.

audio data, we can play back any stream with a single
player. These players do not need to be updated when
new audio formats are introduced.

The Audio Steam Rebroadcaster consists of two appli-
cations, the producer that runs on the same machine as
the virtual audio device (and hence the application that
receives the audio stream over the public Internet) and
one or more consumers running on other hosts in the
LAN. The producer sends the audio stream as multicast
packets to reduce the load on the network.

Early versions of our design [10], sent onto the network
the raw data as it was extracted from the VAD. How-
ever this created significant network overhead (around
1.3Mbps for CD-quality audio). On a fast Ethernet this
was not a problem, but on legacy 10Mbps or wireless
links, the overhead was unacceptable. We, therefore, de-
cided to compress the audio stream.

Fortunately, there are a wide variety of audio compres-
sion technologies that more than satisfy our needs. We
decided on the use of Ogg Vorbis (w.xiph.org) for mul-
tiple reasons. It is completely patent free and it’s im-
plementation is distributed under the General Public Li-
cense. Additionally, being a lossy psycho-acoustic algo-
rithm, it provides excellent compression, comparable to
proprietary solutions such as MP3.

The introduction of Ogg Vorbis into the Ethernet speaker
architecture brings about several interesting considera-

tions. It is commonly known that the combination of
multiple lossy codecs onto the same set of data can lead
to greater quality loss than necessary. This is because the
algorithms may choose to eliminate very different seg-
ments of data in order to achieve the same goal. The best
one can hope for would be that the audio quality would
not get any worse. If a user were to take their favorite
MP3 file and play it over the Ogg Vorbis equipped Eth-
ernet Speaker it would pass through two very different
lossy audio compression algorithms. In order to try and
compensate for this loss of quality we simply set the Ogg
Vorbis quality index to its maximum. This causes the al-
gorithm to throw away as little data as possible while
still providing adequate compression. Luckily, our ex-
perience so far has not revealed any audible defects to
the stream.

Audio channels with low bit-rates are still sent uncom-
pressed because the use of Ogg Vorbis introduces la-
tency and increases the workload on the sender (Fig-
ure 4). The selective use of of compression can be en-
hanced by allowing the rebroadcast application to select
the Ogg Vorbis compression rate. This will allow more
aggressive compression to be performed on high bit-rate
audio channels where audio quality is less of a concern.

154

FREENIX Track: 2005 USENIX Annual Technical Conference

USENIX Association



2.3 The Communication Protocol

Early in the design of the Ethernet Speaker System, we
decided that the communication will be restricted to a
single Ethernet LAN. The reason for this decision was
that a LAN is a much friendlier environment to com-
municate providing low error rates, ample bandwidth,
and most importantly, well behaved packet arrival. So
far at Drexel, even though the main campus network of-
ten sees large peaks in traffic, we have not experienced
packet loss or transient network disruptions that allowed
the input buffer of the ESs to empty and thus affect the
audio signal.

Another advantage of using a LAN is that we get mul-
ticast support by default. Once packets have to cross
routers, then multicasting becomes an option few net-
work administrators are likely to support. Nevertheless,
by using multicast packets, we avoid the need to have
the Ethernet Speakers contact the Rebroadcaster in or-
der to receive the audio stream. As noted earlier, the
VAD is sending configuration information as well as au-
dio data. The configuration information must be passed
on to the Ethernet Speakers so that they can decode the
audio stream. We do this by having the Rebroadcaster
send control packets at regular intervals with the config-
uration of the audio driver. The Ethernet Speaker has to
wait till it receives a control packet before it can start
playing the audio stream.

The advantage of this approach is that (a) the Rebroad-
caster does not need to maintain any state for the Ether-
net Speakers that listen in, and (b) clients do not need to
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Figure 4: Compression impact on CPU load, as we in-
crease the number of compressed streams transmitted by
the local rebroadcaster. Each stream is a separate CD-
quality stereo audio stream.

contact the Rebroadcaster to retrieve the audio configu-
ration block.

In this way our Ethernet Speakers function like ra-
dios, i.e., receive-only devices. This design requirement
simplifies the architecture of the audio producer enor-
mously: the Rebroadcaster is just a single-threaded pro-
cess that collects audio from the master-side VAD and
delivers it to the LAN.

2.4 The Ethernet Speaker

The task of refining the design of the ES runtime envi-
ronment was made much easier by the fact that we had
previous experience with such systems from work in em-
bedded systems such as VPN gateways [11] and network
monitoring stations [12]

We were, thus, aware that the ES has to be essentially
maintenance-free so that once deployed, the administra-
tors will not have to deal with it. This requirement in
turn leads to two possible configurations: one that boots
off the network or one that boots off a non-volatile RAM
chip (Flash memory).

In either case the machine will have to receive its config-
uration from the network. Network setup may be done
via DHCP, but we also need additional data such as the
multicast addresses used for the audio channels, channel
selection, etc.

We established that the machine runtime should be based
on a ramdisk configuration. The rationale behind this de-
cision is that if we use a Flash boot medium, we would
not be able to have it mounted read-write because a
power (or any other) failure may create a non-bootable
machine. In the case of the network-based system, hav-
ing machines mount their root and swap filesystems over
the network would lead to scalability problems.

The requirement that we should be able to update the
software on these machines without having to visit each
machine separately made the network boot option more
appealing.

We thus decided to use a ramdisk-based kernel that is
loaded over the network. The ramdisk is part of the
kernel, so that when an ES loads its kernel, it gets
the root filesystem and a set of utilities which include
the rebroadcast software. The ramdisk contains only
programs and data that are common to all ESs. Each
machine’s network-related configuration is acquired via
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DHCEP, the rest are in a tar file that is scp’d from a boot
server (note that the boot server’s ssh public keys are
stored in the ramdisk).

The procedure for constructing the ramdisk kernel is
similar to the creation of the installation floppy or
CDROM that is part of the OpenBSD release.

The configuration tar file is expanded over the skeleton
/etc directory, thus the machine-specific information
overwrites the any common configuration.

The network boot was possible because the machines
we use as Ethernet Speakers use the PXE network boot
protocol. We found that the network boot procedures
for the 1386 platform were not sufficiently explained in
the OpenBSD documentation, so we produced a netboot
“How To” document that is included in our distribution.
This document has been submitted to the OpenBSD
project for possible inclusion in the project’s documen-
tation.

3 Implementation

The virtual audio driver currently runs under OpenBSD
3.4, but we believe that since the audio subsystems be-
tween the various BSD-derived Operating Systems are
quite similar, porting the VAD to NetBSD and perhaps
FreeBSD will not be too difficult.

In this section we discuss some of the technical issues
we had to address in developing the VAD and the Audio
Steam Rebroadcaster application.

3.1 Rate Limiter, or why does a 5 minute song
take 5 minutes?

In a conventional system involving actual audio hard-
ware, the producer-consumer relationship established
between the driver and the hardware itself is inherently
rate limited. If a five second audio clip is sent to the
sound device than it will take five seconds for the ac-
tual hardware to play that sound clip. The audio driver
cannot send audio data down any faster than this. If an
application tries to write to the audio device at rate faster
than the hardware can play, it will eventually fill up the
ring buffer and the call will begin to block until space is
freed.

However, with the VAD there is no underlying hardware
to impose a data rate limit. Depending upon the users
needs this can be either useful or troublesome. For the
purposes of the Ethernet Speaker this creates a serious
problem. Without any rate limiting the rebroadcaster
will send data that it receives from the VAD as fast as
it is written. Assuming that the rebroadcaster is receiv-
ing an audio stream from a an MP3 player, then the only
speed constraint would be the speed of the I/O and the
processor. The producer will essentially send the en-
tire file at wire speed causing the buffers on the Ethernet
Speakers to fill up, and the extra data will be discarded,
resulting in noticeable audio quality loss. In the above
example of the MP3 player you will only hear the first
few seconds of the song.

The solution is to instruct the rebroadcaster to sleep for
the exact duration of time that it would take to actually
play the data, we will effectively limit the rate enough to
ensure that it cannot be sent faster than it can be played.
The actual duration of this sleep is calculated using the
various encoding parameters such as the sample rate and
precision.

While we could have integrated this rate limiting into
the driver itself we decided against that and developed it
separately into the Audio Rebroadcast application. We
did not want to limit the functionality of the VAD by
slowing it down unnecessarily. Other uses for the VAD
might require different needs; we did not wish to make
these decisions for the user.

3.2 Synchronization

With the original goal being the placement of any num-
ber of Ethernet Speakers on a LAN, issues of synchro-
nizing the playback of a particular audio stream arise.
As an Ethernet Speaker accepts data from a stream it
needs to buffer the data in order to handle the occasional
network hiccup or extraneous packet. It is this buffer-
ing that causes problems in synchronizing the playback
of the same stream on two different Ethernet Speakers.
In earlier versions of the system this problem was most
severe when ESs were started at different times in the
middle of the stream.

The solution that we implemented is fairly straightfor-
ward. Inside, each periodic stream control packet we
place a timestamp that serves as a wall clock for the ESs.
In addition to this “producer time,” we send a timestamp
within each audio data packet that instructs the ES when
it should play the data. The wall clock and the audio data
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packet’s timestamp are relative to each other, thus allow-
ing the ES to know whether it is playing the stream too
quickly or slowly. With this information we can adjust
accordingly by either sleeping until it is time to play or
throwing away data up until the current wall time. It is
important to note however that it is necessary to provide
an epsilon value that provides the ES with some leeway.
If this is not done than data will be unnecessarily thrown
out and skipping in playback will be noticeable.

The aim of this implementation was to ensure that syn-
chronization issues with the various Ethernet Speakers
would not be audible. This looser synchronization al-
lowed us to make certain assumptions. Firstly, we com-
pletely ignore any latency in the transmission of our
packets, essentially assuming that transmission delays
over a LAN are uniform (i.e., that everybody receives
a multicast packet at the same time). For example, con-
sider a scenario in which one ES receives the wall clock
synchronization slightly after another. Both ESs will be-
lieve that they have the correct time and will thus play
their data, resulting in one being behind the other. Also,
there is the issue of slight phase differences that could
develop when two ESs have different hardware config-
urations (e.g., processor speed, audio hardware imple-
mentation, and so on). Such changes affect the time con-
sumed by the audio decompression, but more crucially
the time delay between writing a block to the audio de-
vice and the corresponding sound coming out from the
speaker. One could imagine that in combination these
two delays may result in serious synchronization prob-
lems. However, our initial testing indicates that any
phase difference attributed to network delay or otherwise
is inaudible.

3.3 VAD implementation

The preliminary design of the VAD device involved a
single driver that would attach to the hardware indepen-
dent audio driver (dev/audio.c). The VAD would
then be able to intercept and process any audio data writ-
ten to the audio device file. With full access to this raw
audio data, the driver would then send it directly out onto
the LAN from within the kernel. The benefits of such a
setup were simplicity and efficiency. If all the function-
ality of the VAD is resident in the kernel then the result-
ing system is significantly more compact and straight-
forward. The overall system performance is also slightly
better because the kernel-based design avoids the over-
head of multiple context switches and the resulting copy-
ing of data between kernel and user spaces.

Context Switch Rate
Data gathered by vmstat over a sixty second period at one second intervals.
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Figure 5: Comparison of context switch rate between
a streaming application contained with the VAD driver
inside the kernel and a user-level application.

However, in the course of implementation we encoun-
tered problems with this design. Since we are develop-
ing in kernel space the code must remain relatively sim-
ple. If we decided to add complexity to the code in the
form of off the shelf compression or security, we would
run into problems. Consequently, it became apparent to
us as we began developing the VAD that it might be a
good idea to separate the streaming functionality from
the actual driver itself to make it more modular. Essen-
tially the VAD is supposed to provide a way for us to
access the uncompressed audio data written to it so that
we can be unconcerned with the prior format it was in.
It is our goal to stream this audio data out over a LAN to
multiple clients. However, if we separate the streaming
functionality from the driver than we allow it to be used
for any purpose. With a virtual audio device configured
in a system, any application can now have access to un-
compressed audio, irrespective of the original format of
the audio. By putting only the data access functionality
into the driver we have made an addition to the kernel
that gives any user space application access to the au-
dio stream. In this way, applications may be developed
to process the audio stream (e.g., time-shifting Internet
radio transmissions).

Despite our original concerns, relocating the streaming
component in user space, does not introduce signifi-
cant overheads. In Figure 5 we see that introducing a
user-level application for data streaming is more expen-
sive, but not significantly so. Moreover, this overhead
is swamped by the cost of compression (Figure 5 shows
uncompressed streams).

More importantly, there was an interesting aspect of the
OpenBSD audio driver architecture that made imple-
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menting this design difficult as well. When data is writ-
ten to the device it enters the hardware independent au-
dio layer and is stored in a ring buffer. For the first block
of data ready to be played, the independent audio driver
invokes the hardware specific driver attached to it. Then,
in the typical example, it is the job of the hardware spe-
cific driver to initiate a direct producer-consumer rela-
tionship between the hardware and the independent au-
dio driver. Usually this is done by triggering a DMA
transfer of the data to the actual hardware. The hardware
specific driver passes an interrupt function, provided by
the independent audio driver, to the DMA routines that is
called every time a transfer is completed, usually by the
audio hardware interrupt service routine. This interrupt
function notifies the hardware independent driver that a
block of data has been transferred and can be discarded.
With this relationship intact, the hardware specific driver
is essentially out of the picture, cutting out the middle-
man so to speak. Therefore it is only invoked once, when
the first block of data is ready to be played.

The problem arises when there is no actual hardware to
create such a relationship with. Our VAD driver takes
the place of the hardware specific driver however there
is no actual sound hardware. So when the first block of
data is written the independent audio driver assumes that
the VAD driver will set up the DMA and pass along the
interrupt function. In our case, the independent audio
driver assumes the VAD is just the middleman, expect-
ing it’s interrupt routine to be called by the hardware, it
never invokes the VAD entry points again. A strong ex-
ample of the fact that the OpenBSD audio architecture
was not meant to support pseudo devices. Our solutions
to this problem were inelegant and involved either modi-
fying the independent audio driver or creating a separate
kernel thread to periodically call the interrupt routine.

3.4 Platform

The machines we used for the Ethernet speaker re-
flect our belief that a mass produced low-cost Ethernet
Speaker platform will be relatively resource poor. We
have, therefore, used Neoware EON 4000 machines that
have a National Semiconductor Geode processor run-
ning at 233MHz and 64Mb RAM, non-volatile memory
(Flash) and built-in audio and Ethernet interfaces (Fig-
ure 6).

While weak compared to the capabilities of current
workstations, the hardware is perfectly adequate for the
intended application. Moreover, the use of such low-cost
hardware will allow the Ethernet Speaker to have a cost

Figure 6: The Ethernet Speaker is based on the Neoware
EON 4000.

of less the $50.

Our test environment also included a SUN Ultra 10
workstation in order to make sure that our programs and
communication protocol worked across platforms.

The slow speed of the processor on the EON 4000 com-
puter, revealed a problem that was not observed during
our testing on faster machines; namely the need to keep
the pipeline full. If we use very large buffers, the de-
compression on the ES has to wait for the entire buffer
to be delivered, then the decompression takes place and
finally the data are fed to the audio device at a rate dic-
tated by the audio sampling rate. If the buffers are large,
then time delays add up, resulting in skipped audio. By
reducing the buffer size, each of the stages on the ES
finishes faster and the audio stream is processed without
problems.

4 Related Work

4.1 Audio Streaming Servers

SHOUTecast ! is a MPEG Layer 3 based streaming server
technology. It permits anyone to broadcast audio content
from their PC to listeners across the Internet or any other
IP based network. It is capable of streaming live audio
as well as on-demand archived broadcasts.

Listeners tune in to SHOUTcast broadcasts by using

Thttp://www.shoutcast.com/support/docs/
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a player capable of streaming MP3 audio e.g.Winamp
for Windows, XMMS for Linux etc. Broadcasters use
Winamp along with a special plug-in called SHOUTcast
source to redirect Winamp’s output to the SHOUTcast
server. The streaming is done by the SHOUTcast Dis-
tributed Network Audio Server (DNAS). All MP3 files
inside the content folder are streamable. The server can
maintain a web interface for users to selectively play its
streamable content.

The Helix Universal Server from RealNetworks ? is a
universal platform server with support for live and on-
demand delivery of all major file formats including Real
Media, Windows Media, QuickTime, MPEG4, MP3 and
more. It is both scalable and bandwidth conserving as
it comes integrated with a content networking system,
specifically designed to provision live and on-demand
content. It also includes server fail-over capabilities
which route client requests to backup servers in the event
of failure or unexpected outages.

4.2 Audio Systems

There are also a number of products that may be de-
scribed as “internet radios”. The most well known is
Apple’s AirTunes for its Airport Express base station.
Such devices accept audio streams generated by servers
either in the LAN or in the Internet and play it back.
Their feature sets and capabilities are very similar to
those of the ES, with the exception that (at least the ones
we have tested) they do not provide synchronization be-
tween nearby stations. As such they may not be able to
be used in an ES context where we have multiple syn-
chronized audio sources within a given room.

4.3 Network Audio Redirectors

The Network Audio System [8] (NAS) developed by
NCD uses the client/server model for transferring audio
data between applications and desktop X terminals. It
aims to separate applications from specific drivers that
control audio input and output devices. NAS supports a
variety of audio file and data formats and allows mixing
and manipulating of audio data.

Similar to NAS are audio servers such as Gstreamer [14]
and aRts [5] that allow multiple audio sources to use the
workstation’s audio hardware.

Zhttps://www.helixcommunity.org/2002/intro/client

The most sophisticated of the lot is JACK [3], which is
a low latency audio server.

All the above are constrained by the fact that they need
to either have new applications created for them, or at
least to recompile existing applications with their own
libraries. Obviously this works only with source distri-
butions.

EsoundD [2] utilizes the fact that most applica-
tions use dynamically-linked libraries and uses the
LD_LIBRARY _PATH variable to insert its own libraries
before the system ones. The applications (apparently
the Real Audio Player is included) use the EsoundD li-
braries and thus benefit from the audio redirection and
multiplex features without the need for any recompila-
tion. Of course, if the application is statically linked (not
very popular lately), this approach fails.

The closest system to the VAD is the maudio [1] virtual
audio device for Linux. The maudio provides function-
ality that is very close to that of the VAD component of
our Ethernet Speaker System. Maudio also provides a
virtual driver for the audio device for the Linux kernel
and we have used it to port our audio rebroadcaster ser-
vice to Linux.

A similar application to the VAD is the Multicast File
Transfer Protocol [6] (MFTP) from StarBurst Commu-
nications. MFTP is designed to provide efficient and re-
liable file delivery from a single sender to multiple re-
ceivers.

MFTP uses a separate multicast group to announce the
availability of data sets on other multicast groups. This
gives the clients a chance to chose whether to participate
in an MFTP transfer. This is a very interesting idea in
that the client does not need to listen-in on channels that
are of no interest to it. We plan to adopt this approach
in the next release of our streaming audio server, for the
announcement of information about the audio streams
that are being transmitted via the network. In this way
the user can see which programs are being multicast,
rather than having to switch channels to monitor the au-
dio transmissions.

Another benefit from the use of this out-of-band cata-
log, is that it enables the server to suspend transmis-
sion of a particular channel, if it notices that there are
no listeners. This notification may be handled through
the use of the proposed MSNIP standard [7]. MSNIP
allows the audio server to contact the first hop routers
asking whether there are listeners on the other side. This
allows the server to receive overall status information
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without running the risk of suffering the “NAK implo-
sion” problem. Unfortunately, we have to wait until the
MSNIP appears in the software distributions running on
our campus routers.

5 Future Plans

5.1 Security

For the Audio Steam Rebroadcaster, security is impor-
tant. The ESs want to know that the audio streams they
see advertised on the LAN are the real ones, and not fake
advertisements from impostors.

Moreover, we want to prevent malicious hosts from in-
jecting packets into an audio stream. We do this by al-
lowing the ES to perform integrity checks on the incom-
ing packets.

In the current version some security can be maintained
by operating the Ethernet Speakers in their own VLAN.
Note, however, that there exist ways for injecting packets
into VLANSs, so this must be considered as an interim
measure at best.

Our basic security requirements are that (a) the ES
should not play audio from an unauthorized source, and
(b) the machine should be resistant to denial of service
attacks.

Having a machine that receives all its boot state from
the network creates an inherently unsafe platform. Any
kind of authentication that is sent over the network may
be modified by a malicious entity, thus creating the en-
vironment for the installation of backdoors that may ac-
tivated at any moment.

We are considering taking advantage of the non-volatile
RAM on each machine to store a Certification Authority
key that may be used for the verification of the audio
stream.

For the audio authentication digitally signing every au-
dio packet [15] is not feasible as it allows an attacker
to overwhelm an ES by simply feeding it garbage. We
are, therefore, examining techniques for fast signing and
verification such as those proposed by Reyzin et al [13],
or Karlof et al [9]. We are also looking into whether we
can take advantage of the services offered by the IEEE
802.1AE MAC-layer security standard.

5.2 Automation

Another area where we are working on is the ability for
the device to perform actions automatically. One ex-
ample will be to set the volume level automatically de-
pending on the ambient noise level and the type of audio
stream. So for background music the ES would lower
the volume if the area is quiet while ensuring that audio
segments recorded at different volume levels produce the
same sound levels.

Alternatively, if an announcement is being made, then
the volume should be increased if there is a lot of back-
ground noise so that announcements are likely to be
heard.

We plan to implement these features by taking advantage
of the microphone input available on our machines. This
input allows the ES to compare its own output against
the ambient levels.

5.3 Management

Our intention is to have multiple streams active at the
same time and ESs being able to switch from one chan-
nel to another. This implies the ability to receive input
from the user (e.g., some remote control device). Al-
ternatively all ESs within an administrative domain may
need to be controlled centrally (e.g., movies shown on
TV sets on airplane seats can be overridden by crew an-
nouncements). We want to investigate the entire range
of management actions that may be carried out on ESs
and create an SNMP MIB to allow any NMS console to
manage ESs.

6 Conclusions

Existing audio players adopt complex protocols and
elaborate mechanisms in order to deal with network
problems associated with transmission over WAN links.
These players are also largely incompatible with each
other while the use of unicast connections to remote
servers precludes the synchronization of multiple play-
ers within the same locality. Moreover, these multiple
connections increase the load both on the remote server
and on the external connection points of the network and
the work that has to be performed by firewalls, routers
etc. Finally, the large number of special purpose audio
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players (each compatible with a different subset of avail-
able formats), alienates users and creates support and ad-
ministrative headaches.

By implementing the audio streaming server as a virtual
device on the system running the decoding applications,
we have bypassed the compatibility issues that haunt any
general-purpose audio player. Our system confines the
special-purpose audio players to a few servers that mul-
ticast the audio data always using the same common for-
mat.

The existence of a single internal protocol without spe-
cial cases or the need for additional development to sup-
port new formats, allowed the creation of the Audio Re-
broadcast Application that allows clients to play audio
streams received from the network. The communica-
tions protocol also allows any client to “tune” -in or -
out of a transmission, without requiring the knowledge
or cooperation of the server.

The software for the VAD and Audio Rebroadcasting ap-
plication is available as Open Source Software and can
be downloaded at http://www.cs.drexel.edu/
“vp/EthernetSpeaker.
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