
Linux Physical Memory Analysis

Paul Movall
International Business Machines Corporation

3605 Highway 52N, Rochester, MN

Ward Nelson
International Business Machines Corporation

3605 Highway 52N, Rochester, MN

Shaun Wetzstein
International Business Machines Corporation

3605 Highway 52N, Rochester, MN

Abstract

We present a tool suite for analysis of physical memory
usage within the Linux kernel environment. This tool
suite can be used to collect and analyze how the physi-
cal memory within a Linuxenvironment is being used.

��� �����	
�����

Embedded subsystems are common in today's computer
systems. These embedded subsystems range from the
very simple to the very complex. In such embedded sys-
tems, memory is scarce and swap is non-existent. When
adapting Linux for use in this environment, we needed
to keep a close eye on physical memory usage.

When working on such a subsystem, we experienced
various out of memory situations, ranging from signifi-
cant application performance problems due to thrashing
of executable pages to the killing of selected processes
by the automated out of memory handling of the kernel.

After numerous Internet searches, we determined that
there was no publicly available tool suite to analyze
physical memory usage in real time on a running system
using the Linux kernel. There are many tools, such as
mpatrol [1] or memprof [2], which can be used for memo-
ry analysis. These tools focus on dynamically allocated
virtual memory usage within a particular process. How-
ever our requirement was for systematic view physical
memory usage across all usage types.

A significant amount of this information can alo be
found in the /proc filesystem provided by the kernel.
These /proc entries can be used to obtain many statis-
tics including several related to memory usage. For ex-
ample, /proc/<pid>/maps can be used to display a pro-
cess' virtual memory map. Likewise, the contents of /
proc/<pid>/status can be used to retreive statistics
about virtual memory usage as well as the Resident Set
Size (RSS).

In most cases, this process level detail is sufficient to
analyze memory usage. In systems that do not have
backing store, more details are often needed to analyze
memory usage. For example, it's useful to know which
pages in a process' address map are resident, not just
how many. This information can be used to get some
clues on the usage of a shared library. Also, since this
information is process based, there is no way to tell if
the resident pages are shared between processes. Yet
this sharing of pages is a very important optimization
performed by the kernel that can not be tracked with the
existing tools.

We researched the Linux VMM from [3] and started the
process of developing a tool suite to analyze the use of
physical memory within a subsystem. This included the
usage of memory by the kernel and user space applica-
tions. This paper focuses on the analysis of user space
applications. Kernel usage was determined using the
slab information.

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 23

� ���������
��

The basic requirement of the tool suite is to be able to
determine physical memory usage in real time of an op-
erational system with minimal impact to that system. In
addition, in the case where a kernel panic did occur and
a dump was available, the tool suite should be able to
extract the pertinent information from the dump and pro-
vide the same analysis capability based off of the dump.

��� ������ �����

The design goals were to keep it simple, keep it small,
and provide useful information in a very quick turn
around time.

The tool suite was divided into data collection and data
analysis tools. This allows each tool to be customized
to the particular environment in which it must run. It
also allows for a separation of the functionality and
staging of the deliveries. In fact the initial delivery of
the tool set contained only the data collection tools.
The data was analyzed manually within a spreadsheet.
The analysis tools were added later to help automate
the analysis process.

�� ��������������

As mentioned previously, the tool suite is split into a
data collection tool and a data analysis tool. The follow-
ing sections describe each tool independently.

���� ��������������

The data collection tool started out with two versions.
The first version was a loadable kernel module that was
installed into the kernel and provided a user interface to
extract the data. It used the global internal kernel data
structures of the VMM to collect the various informa-
tion of virtual and physical memory usage. The internal
VMM structures need to be collected as the virtual
memory of a process is created at the request of the pro-
cess, but the physical memory is only assigned when it
has been accessed. Without the VMM structures, there
is no way to determine which virtual pages have physi-
cal pages associated with them.

The second version was a user space application that
probed the kernel memory through the /dev/kmem de-
vice. This version is more difficult to build and maintain
than the module as kernel structures are being used in
user space. Also, the impact of the user application on
the running system was larger than that of the kernel
module. Lastly, there was some function that was not
possible to implement with the user space application.
Due to these factors, only the kernel module is support
for data collection on a running system.

A third version of the data collection is available for the
����� utility as described in [4]. The tool suite pro-
vides a data collection module that can extend the
����� utility when the ����� form of the Linux kernel
dump is used. This provides data in the same format as
the kernel module so that the same analysis tools can be
used.

All versions of the collection tools collect the same in-
formation in the same format. This is required to be able
to feed into the same analysis tool. The data starts out
with the process information. This includes the process
identifier (PID), the command used to start the process,
the value of the pointer to the memory management
(MM) structures, page fault numbers, and used time
counters.

These last numbers have recently been added. The anal-
ysis tool can parse them but does not currently perform
any analysis on them. The page fault numbers have
been added to get an indication of how many pages
faults happen over a period of time. That metric can be
used as an indication of approaching the point of
thrashing.

After the process information is dumped, the data is
dumped in a set of three values. The first part of this trio
is the virtual memory area (VMA). This provides the vir-
tual start address, length, and various flags. The second
part of this trio is a summary of the page table entries
(PTEs) that are associated to that VMA. The third part
of the trio is the detailed mappings from virtual page to
physical page that is provided by the PTE. There is also
a set of flags with this information.

The output is in a terse format to minimize space and
limit the performance and memory requirements to col-
lect and store the data. It dumps this information for all
Linux tasks, resulting in a requirement on the analysis
tool to sort out thread from processes. This can be done
using the MM pointers. Sample output of the collected
data is provided later in this document and shown in
Figure 1.

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association24

��� ������������

The data analysis tool takes as input the output from
the data collection tools and produces a variety of for-
matted output. In its simplest mode, it provides a comma
separated value file that can be imported into a spread-
sheet for further analysis manually. It can also provide
graphic output, in the form of PostScript, of various
metrics of physical and virtual memory usage.

The data analyzer parses information in the following
forms.

� Basic process information, available in either physi-
cal or virtual memory views as PostScript or comma
separated values, which includes:

� total number of read-only and read/write pages
assigned to a process,

� number of pages assigned to the process stack,

� number of pages assigned to global data areas
(both .bss and .data),

� number of pages assigned to heap space,

� number of pages assigned to the application exe-
cutable code,

� number of pages in shared library global data
(.data and .bss),

� number of pages in shared library executable
code;

� A view of the unique virtual memory areas (VMAs)
within the process including virtual and physical
sizes and the mapping of physical pages within the
virtual space;

� A view of all unique executable entities (application
code and shared libraries) coalesced across all pro-
cesses that shows the virtual and physical sizes as
well as the mapping of physical pages within the vir-
tual space;

� For all unique executable entities (application code
and shared libraries) a view of the count of physical
pages for the executable (i.e., .text) and global data
(i.e., .data and .bss) areas of each entity, available as
a physical or virtual view as PostScript or comma
separated values;

� Detection within a virtual memory area of single and
multiple use pages (more on this later);

� The total number of physical pages used by user
space applications;

� A dump of the physical page structures used within
the kernel that are assigned to user space processes
for further manual analysis.

Sample output of the various analyzed data is provided
later in this document.

���� ��������� ������������

The kernel module supports both PPC and Intel proces-
sor architectures. It uses only architecture independent
structures, interfaces, and macros, and should be easily
ported to other processor architectures.

The dump data extractor supports a PPC dump being an-
alyzed on an Intel Linuxenvironment. There are some ar-
chitecture dependent structures used in this environ-
ment and therefore would be harder to port.

The data analysis tool supports Intel Linux and Intel
Cygwin operating environments. It uses a simple text
based selection mechanism and has no graphical user
interface. It should port easily to other GNU C environ-
ments.

��� �����

The following sections provide sample invocations and
output of the various portions of the tool suite.

���� ���� ����������

The primary collection tool is the kernel module. It can
be installed using the insmod command.

	
������������	
������

The output of the kernel module is extracted from a spe-
cial character device. In the current implementation, this
device is created using devfs. A device interface was
used as the amount of data can be quite significant. It
also minimized the complexity in the driver by not hav-
ing to provide a simple character stream for the data. All

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 25

of the buffering has been pushed out of the kernel and
into user space. A simple mechanism to extract this in-
formation is to use the dd command. In order to keep
the kernel module simple, the device actually blocks all
of the task data into one read command. To determine
the minimumread size, use the information in the follow-
ing file.

��������	����	
�����������������

The content of this file will specify the maximumsize of
an output block. Using this information, the following
command can be used to extract the physical per pro-
cess usage.

�� 	����������������� ���������

�	��� ��������� �	�� ���� ���������

	����	
������������������

Now the output will be located in <output file>. Since
this information can be quite large, it is unlikely that the
information will be able to be stored directly on the em-
bedded system. In our usage, an NFS mount was used
to store the output file.

Sample output of the collected data is shown in Figure
1. This example provides a good sample of the data. The
task line starts with the T: and provides information on
the kernel task. This data includes the command use to
start the task, the process identifier, the pointer to the
memory map, the CPU number that this process is asso-
ciated with, page fault information, and usage times. The
memory map pointer is used by the analysis tools to de-
termine the difference between a pthread within a pro-
cess (with the same memory map) and a unique process
with the same name (different memory map). The other
information, such as the page faults, can be used to de-
tect thrashing. The time measurements could be used by
performance analyzers to determine the usage patterns
across various processes across time.

For each of the tasks, the virtual memory areas (VMAs)
are listed and each starts with V:.Each VMA item shows
the starting and ending virtual address of the area, the
size in virtual, the size that is physically resident in mem-
ory, various flags, and the executable unit to which this
VMA belongs. The various flags are critical to analyze
the usage of the VMA. From the flags, it can be deter-
mined if the VMA is used for text, data, or stack areas.
Also, the executable unit is used in the analysis. For

 ! �"��� # �# ��������# �# �# �# �# �# �# $%&'&

 ! 	
	� # (# ��()����# �# $%'*%+# (&�# &%)*+# (+,*&%#)++(# $�(%$

-! �./%,���# �..0�...# ��((1���# ���*1���# �����,('# ������+*# ��	���	���'�'�*���

2! %$# �# %$# �# %$

3! �./%,�����')+&�('# ''# ���,'�44 5 �./%*�����'),%�('# ''# ���,'�44 5 �./%&�����'),)�('# ''# ���,'�44 5

�./%+�����'),+�('# ''# ���,'�44 5 �./%)�����'),&�('# ''# ���,'�44 5 �./%%�����'),*�('# ''# ���,'�44 5

�./%6�����'),,�('# ''# ���,'�44 5 �./%0�����'),$�('# ''# ���,'�44 5

���

-! �..0(���# �..0$...# ����$���# ��������# �����,�'# ������+�# ��	���	���'�'�*���

2! �# �# �# �# �

3!

-! �..0,���# �..4+...# ���(,���# ����)���# �����,('# ������++# ��	���	���'�'�*���

2!)# �# *#)# �

3! �..4������')*+�%'# (# ������*, 5 �..4(�����')*&,%'# (# ������1, 5 �..4'�����')**,%'# (# ������1, 5

�..4$�����'$/(*1'# (# ����'�4, 5 �..4,�����')+�&%'# (# ����'�1, 5 �..4*�����')*$,%'# (# ������1, 5

�..4&�����'646*1'# (# ����'�4, 5 �..4+�����''*.+1'# (# ����'�4, 5

-! �..4)���# �..44...# ����*���# ����,���# �����,('# ������++# 7899

2! ,# �# $# ,# �

3! �..4)�����')&�&%'# (# ���''�1, 5 �..4%�����')(%,%'# (# ������1, 5 �..46�����'+%'�%'# (# ������*, 5

�..40�����(1$/*1'# (# ����'�4, 5

���

 ! ����
�� # '# ��������# �# �# �# �# �# �# ''%

 ! �����	�:# $# ��������# �# �# �# �# �# �# '$(

 ! �	
�����# (%# ��()�'��# �# (,# +# �# �# +&'# (%+(

-! �.4$6���# �.4,,...# ����0���# ����$���# �����,('# ������+*# ��	���	����������(

2! $# �# $# �# $

3! �.4$6�����'*0$�('# (*# ���,'�44 5 �.4$0�����'*61'('# (*# ���,'�44 5 �.4,,�����'*0�'('# (*# ���,'�44 5

-! �.4,*���# �.4,%...# ����*���# ��������# �����,�'# ������+�# ��	���	����������(

2! �# �# �# �# �

3!

-! �.4,6���# �.4**...# ����4���# ����'���# �����,('# ������++# ��	���	����������(

2! '# �# '# '# �

3! �.4*,�����'*6*�%'# (# ������*� 5 �.4**�����'*6/'%'# (# ����'�*� 5

���

Figure 1 Sample Data Collector Output

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association26

anonymous areas, the executable unit is NULL. This is
typical for heap areas and bss areas.

Also with the VMA is the page table entry summary for
that particular VMA. This is started with the P: key. The
information in this stanza of the output is the number of
user space pages, executable pages, read-only pages,
single-use pages, and shared pages. All of these are in
terms of physically resident pages.

For those VMAs with physically resident pages, the
mapping from virtual to physical is also provided by the
M: stanza. The information provided here includes the
virtual address, the physical address, the usage count
of this physical page, and various page flags. Note that
these are separated with a unique character to ease
parsing in the analyzer.

��� ��� ��������� ! ��������

Now that the data has been collected, it must be ana-
lyzed for meaningful usage. As discussed earlier in this
paper, the analyzer is capable of performing 8 different
types of analysis. Some of these have various forms in-
cluding comma separated values, graphical in
PostScript, or simple text. Each of these is described be-
low and samples are provided.

����� "���� ��#��������

This option provides basic summary information on an
application (or process) basis. This information consists
of the number of pages for the following:

� Stack

� Heap and global uninitialized data (.bss) for the ap-
plication

� Global initialized data (.data) for the application

All of the above fields can be provided in both virtual
pages and physical pages. The physical pages option
provides only the actually resident page counts, where-
as the virtual option provides the full virtual size re-
quested. In addition in the virtual option, the graphical
output has both physical and virtual indicators so that
direct comparisons can be made.

An example of the comma separated value output for
this option is provided in Figure 2. An example of the
graphical output displaying this for both virtual and
physical is provided in Figure 3. In this example, the
tiny_sys application has over 800 pages of virtual ad-
dress space and almost 300 pages of physically resident
memory. Each of the various memory types is represent-
ed by a separate color on the graph.

���� ��#�������� ��� $%�

This option of the analyzer provides information on how
a VMA is mapped to physical pages. This information
can be used to determine how much of a library is used.
It can also be used to arrange data areas within a VMA
to make the accesses of these areas have better affinity.
An example of this information is provided in Figure 4.

Some things to note in this example are the various us-
age counts of the pages. This is shown in the mapping
as 1 through 9 for that number of physical mappings to
that page, or as a '#' for 10 or more mappings to that
physical page. To make the map readable, it is broken
down into 64 pages per line. In the case that the VMA is
not a 64 page multiple, spaces are used to indicate that
no virtual space occupies that part of the map. For virtu-
al pages that do not have a physical page, a period is
used. In addition, the flags are decoded into a human
readable form with the following mapping:

� 'S' is for stack;

7���# ;< 4��
�# ;= 4��
�# ����# 7���# >����# �1���# � �?�# @��# 9	� ����# 9	� �����# 9	� ���?�# >	
���# 3���	

�"���# �# �# �# �"���# �# �# �# �# �# �# �# �# �

	
	�# ',# ($�# (*,# 	
	�# ,# (# ('# ,# *# (�# (()# �# (()

�	
�����# ,�# ',$# ')$# �	
�����# '# (# '# '#)# '+# ',(# �# ',(

�������# '�# (('# ($'# �������# '# (# (# $# *# %# (((# �# (((

�	
����
# ',# ($'# (*&# �	
����
'# (# '%#)# ,# %# (�$# �# (�$

	
���# ',# ((*# ($%# 	
���# '# (# ,# *# &# (�# (((# �# (((

Figure 2 Sample Basic Output In Comma Separated Value Format

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 27

� 'X' is for association directly to the application and
not to any of the shared libraries required by the ap-
plication;

� 'r', 'w', 'x', for read, write, and execute permissions re-
spectively;

� 'B' for .bss or heap data areas.

After the VMA mappings, the application summary of
how each of the physical pages are used is also provid-
ed. These are all shown in this example.

����� ��#�������� #�� �&��
��'�� ����� ������ ���

 ��������

The previous information provided a view of each VMA
for each particular process. This option provides similar
information, but this time across all processes. This in-
formation can be used to determine the total usage of a
shared library. This can be useful information for the
amount of overhead associated with all shared libraries
across the entire system.

An example of this information is show in Figure 5. Note
that this is different than the previous example as this
information is organized by executable unit rather than
by process. Also note that the mapping of virtual pages
to physical pages follows the same format as in the pre-
vious example, with a period meaning no physical map-
ping.

���(�)����%���������� ��� �&��
��'�� ����

This output provides the information on the total memo-
ry usage of a particular executable unit. As with the per
process view, this output is provided in both virtual
memory and physical memory pages. This provides the
total usage across all portions of the executable unit in-
cluding code and global data. In this view, pages as-
signed to a particular process, such as stack and heap
space, are not included. This option is to help analyze
shared library usage of memory.

An example of this is shown in Figure 6. Again, this ex-
ample provides both a virtual and a physical view of re-
quired and used pages. For example, libc requires just
over 400 virtual pages and approximately 175 physical
pages across all processes. The virtual requirement is
split into approximately 25 pages of uninitialized global
data, 100 pages of initialized data, and 275 pages of
code. This data is also available in the comma separated
value format suitable for import into a spread sheet.

���*� +��,�����	 ���� �� -����	 .�'������

The next analyzer output shows the virtual memory ar-
eas that have both single use and shared use pages. If
this VMA is used in another process, all of the single
use pages are copied into each process instead of being
shared. An example of this is shown in Figure 7. As
shown in the example, the flags for the VM areas have
read and execute permissions, indicating that these are

Figure 3 Sample Basic Output in Graphical Format

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association28

	
	�!

��	��! ')*# �	
���! �# ������! %$# �����! ����?�# �=�./%,���# �=�..0�...#
���! ��	���	���'

ABBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�������������������BBBB�B���������C

A����������BBB�B����BBBB�BB��������BBBB����BB�BBBBBBBBB�BBBBBB���C

A����������������BBBBB����BB���BB�����������������������B������BBC

AB������B��B�B�B���B�C

A���������������BB�BBBBB�B���� C

��	��! $# �	
���! �# ������! �# �����! ������# �=�..0(���# �=�..0$...#
���! ��	���	���'

A��� C

��	��! '�# �	
���!)# ������! �# �����! ���"?�# �=�..0,���# �=�..4+...#
���! ��	���	���'

A������������((((((((C

��	��! *# �	
���! ,# ������! �# �����! ���"?0# �=�..4)���# �=�..44...#
���! 7899

A((((� C

��	��! $# �	
���! �# ������! '# �����! ����?�# �=�..11���# �=�..1....#
���! ��	���	���	
	�

AB$� C

��	��! ($# �	
���! �# ������! �# �����! ������# �=�../����# �=�../4...#
���! ��	���	���	
	�

A������������� C

��	��! $# �	
���! (# ������! �# �����! ���"?�# �=�../1���# �=�../....#
���! ��	���	���	
	�

A��(C

��	��! (*# �	
���! �# ������! ('# �����! �=��?�# �=(�������# �=(���/...#
���! ��	
���	
	�

A��''''�'''''''' C

��	��! (# �	
���! (# ������! �# �����! �=�"?�# �=(��(/���# �=(��(/...#
���! ��	
���	
	�

A(C

��	��! +# �	
���! ,# ������! �# �����! �=�"?0# �=(��(.���# �=(��'*...#
���! 7899

A(((�(�� C

��	��! '$# �	
���! �# ������! '$# �����! ����?�# �=$�������# �=$��(&...#
���! ��	�����'

ABBBBBBBBBBBBBBBBBBBBBBB C

��	��! (# �	
���! (# ������! �# �����! ���"?�# �=$��'&���# �=$��'&...#
���! ��	�����'

A(C

��	��! (# �	
���! (# ������! �# �����! ���"?0# �=$��'+���# �=$��'+...#
���! 7899

A(C

��	��! ,# �	
���! ,# ������! �# �����! >��"?�# �=+...4���# �=+.......#
���! 7899

A((((C

2������ D	
	�D ��� ', �" �
� ($� �? ����# E(*, ���� �����F

.�� A	
	�C! , �����# (����# (' ���?�# , ���

.�� �	����	��! * ����# (� �����# (() ���?�

� ��� ���� �
�� 	
 ��	� ������# (() ��� ������

Figure 4 Sample Output of VMA Information per Process

��	���	���' 	� ���� * �	��� "	�� ')* �	����� ���� �
� (�% ���	��
� ���� �
� ����� ����?� ��� ��� �����"	
� ��!

A******************************����������(((������****�*���������C

A����������***�,����*$$$($,��������*,,$����$,�,,******,(******�(�C

A����������������,$,,,����''���**((��(��(��������������,,������,*C

A*�'���$*��$�$�*���''*�C

A���������������*,�*$,**(,(��� C

��	���	���' 	� ���� * �	��� "	�� $ �	����� ���� �
� � ���	��
� ���� �
� ����� ������ ��� ��� �����"	
� ��!

A��� C

��	���	���' 	� ���� * �	��� "	�� '� �	����� ���� �
�) ���	��
� ���� �
� ����� ���"?� ��� ��� �����"	
� ��!

A������������******** C

��	���	���' 	� ���� * �	��� "	�� * �	����� ���� �
� * ���	��
� ���� �
� ����� ���"?0 ��� ��� �����"	
� ��!

A**$*(C

��	�����' 	� ���� * �	��� "	�� '$ �	����� ���� �
� '$ ���	��
� ���� �
� ����� ����?� ��� ��� �����"	
� ��!

A*********************** C

��	�����' 	� ���� * �	��� "	�� (�	����� ���� �
� (���	��
� ���� �
� ����� ���"?� ��� ��� �����"	
� ��!

A* C

��	�����' 	� ���� * �	��� "	�� (�	����� ���� �
� (���	��
� ���� �
� ����� ���"?0 ��� ��� �����"	
� ��!

A* C

Figure 5 Sample Output of VMA Information per Executable Unit

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 29

���/� +
�'�� �# ������� ���� ���	

In order to track the usage of physical pages from one
code version to the next, the analyzer can simply output
the number of physical pages used by user space pro-
cesses. This information can then be easily tracked
across each version of code. This is useful to insure
that as changes are made and new function is added,
that we do not approach the limit of physical memory.
An example of the output is shown below in Figure 8.

In this example, 439 pages of physical memory where
used by user space processes.

Note that all of the output has been in terms of pages.
This keeps the entire tool suite, from the collection tools
to the analyzer, to be architecture independent. To cor-
relate to the actual number of bytes, the number of

pages must be multiplied by the physical page size. For
32 bit PowerPC and Intel x86, the physical page size is
4kB.

���0� �
���# ������� ��� -��
��
���

As shown in previous examples, the output of the ana-
lyzer can be provided in a format for further manual anal-
ysis. Typically this includes the CSV format so that the
data can be imported into a spread sheet application. In
this case, the output is in a human readable formfor eas-
ier manual analysis.

The data provided for this option is the physical ad-
dress, the PTE and VMA flags for that page, the sym-
bolic representation of the VMA flags, the flags for the

6����G -36 A��	���	���'C 	
 D�	
����
D ��� ' �	
��� ����� �
� & ������ �����# ����� � ������++

6����G -36 A7899C 	
 D�	
����
D ��� & �	
��� ����� �
� ' ������ �����# ����� � '���(�++

6����G -36 A7899C 	
 D�	
����
D ��� (�	
��� ����� �
� (������ �����# ����� � �����(++

Figure 7 Sample Output for Non-shared Pages in Shared Libraries

Figure 6 Sample Output of Total Memory Used per Executable Unit

8�������������!�,$%

Figure 8 Sample Output of Total Pages Used

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association30

page within the ����������, the usage count of the
page, and the executable unit to which the page is as-
signed. Details on the ��� ������ can be found in
[3]. This information can be analyzed to find any type of
usage pattern or any other type of information that may
become apparent upon inspection.

An example of this output is shown in Figure 9. In this
example the first page shown is a text page (as noted by
the flags of 'r.x') from /lib/ld-2 with a usage count of 35.

�(� 1��
���

We have uncovered numerous improper usage of mem-
ory in our testing using this tool suite. Below are some
examples of the changes that have been made based on
the output of this tool suite. None of these would have
been easy to detect without this tool suite.

� Many shared libraries were not being compiled with
the position independent code flag. This caused the
text (i.e., executable code) pages to be copied
uniquely into each process instead of being shared.

� The amount of overhead in physical pages for a pro-
cess for each shared library it uses. While this latter
fact would have been detected with easily available
information (such as /proc/<pid>/maps), it was not

obvious how this was contributing to the overall us-
age of physical memory.

� We have also been able to show that a number of
processes leak memory. Using the tool suite, we
were able to deduce an approximate leakage size.
This would allow a developer to more quickly find
their memory leak.

With the changes for position independent code,
shared library repackaging, and a reduction in the num-
ber of linked shared libraries, we have been able to suc-
cessfully reduce physical memory consumption. For ex-
ample, the change for the position independent code
flag on the compiled libraries saved over 4MB alone.

�*� -
�����

This tool suite identified many improper usages of
physical memory. It has usage across any constrained
memory system using Linuxas its operating system.

For the future, the inkernel data collection tool needs to
be ported to Linux 2.6. In addition, the analyzer should
be enhanced to use the page fault numbers to detect
trashing.

The source code for the tool suite is available from
USENIX along with the transcript of this paper. The
code is available as a tar.gz file that contains the source,
Makefiles, and Doxygen control files.

6������ 2 / .��� -36 .��� -36 >�� 2��� .���� 4��
� H"
��

�=��()1��� �=������(' �=�����)+* ����?� �=���,'�44 $* ��	�����'

�=��(%���� �=�����'(' �=�����)+* ����?� �=���,'�44 $* ��	�����'

�=��(%(��� �=�����'(' �=�����)+* ����?� �=���,'�44 $* ��	�����'

�=��(%'��� �=�����'(' �=�����)+* ����?� �=���,'�44 $* ��	�����'

�=��(%$��� �=�����'(' �=�����)+* ����?� �=���,'�44 $* ��	�����'

�=��,*'��� �=�����+1' �=�����(++ >��"?� �=����'�4, (
	�

�=��&)���� �=�����&(' �=����()+* �=��?� �=���,'�44 ' ��	
���	
	�

�=��&/���� �=�����,(' �=����()+* �=��?� �=���,'�44 ' ��	
���	
	�

�=��+,&��� �=�����*1' �=����()++ �=�"?� �=����'�,) (��	
�������?

�=��)4+��� �=�����,(' �=����()+* �=��?� �=���,'�44 ' ��	
���	
	�

�=��6,&��� �=�����&(' �=����()+* �=��?� �=���,'�44 ' ��	
���	
	�

�=��0�&��� �=�����*1' �='���(�++ �=�"?0 �=������44 (��	
���	
	�

�=��0*/��� �=�����&(' �=����()+* �=��?� �=���,'�44 ' ��	
���	
	�

�=��04(��� �=�����*1' �='���(�++ �=�"?0 �=����'�,� (��	
�������?

�=��0.%��� �=�����&(' �=����()+* �=��?� �=���,'�44 ' ��	
���	
	�

�=��4�$��� �=�����'%' �=�����)++ ���"?� �=����'�*, (��	�����'

�=��4'4��� �=�����+1' �=����()++ �=�"?� �=����'�44 (��	
���	
	�

�=�('6'��� �=�����*1' �='���(�++ �=�"?0 �=����'�,� (��	
�������?

�=�(0&.��� �=�����*1' �='���(�++ �=�"?0 �=������44 (��	
���	
	�

�=�(00'��� �=������%' �=������++ ���"?� �=����'�1, (��	���	���'

�=�(4�,��� �=�����,%' �='���(�++ �=�"?0 �=���''�1, ' ��	
�������?

Figure 9 Sample Output of Page Structures

FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 31

/� 1�#�������

[1] G. Roy, “mpatrol”, http://www.cbmamiga.demon.-
co.uk/mpatrol/

[2] O. Taylor, “MemProf - Profiling and leak detection”,
http://www.gnome.org/projects/memprof/

[3] M. Gorman, “Understanding the Linux Virtual Memo-
ry Manager”,
http://www.skynet.ie/~mel/projects/vm/guide/pdf/un-
derstand.pdf, February 2003.

[4] Mission Critical Linux, “In Memory Core Dump”,
http://oss.missioncriticallinux.com/projects/mcore/

FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association32

