
A Tool for Automated iptables Firewall Analysis

Robert Marmorstein
Department of Computer Science
The College of William & Mary

Williamsburg, VA 23185
rmmarm@CS.WM.EDU

Phil Kearns
Department of Computer Science
The College of William and Mary

Williamsburg, VA 23185
kearns@CS.WM.EDU

Abstract
We describe ITVal, a tool that enables the efficient anal-
ysis of an iptables-based firewall. The underlying basis
of ITVal is a library for the efficient manipulation of
multi-way decision diagrams. We represent iptables rule
sets and queries about the firewall defined by those rule
sets as multi-way decision diagrams, and determine an-
swers for the queries by manipulating the diagrams. In
addition to discussing the design and implementation of
ITVal, we describe how it can be used to detect and cor-
rect common firewall errors.

1 Introduction

As firewalls have become a cornerstone of many security
policies, they have grown in power and in complexity. In
addition to packet filtering, a typical firewall now pro-
vides stateful inspection and packet mangling. One side
effect of these changes is the increasing difficulty of cor-
rectly configuring a firewall rule set. Subtle errors in a
firewall configuration can be difficult to detect, but can
open the doors to a malicious intruder or a denial of ser-
vice attack.

Integrated into the Linux kernel is a firewall system
called netfilter[16, 13, 4], which provides the internal
hooks for the iptables packet filter. Both stateful inspec-
tion and advanced packet mangling are supported by ipt-
ables.

To configure iptables, a system administrator creates
chains of filtering rules in which order is significant. This
means that inserting rules in the wrong order can intro-
duce errors. Additionally, because the number and size
of the chains determines the complexity of the rule set,
a firewall with many large chains can be very difficult to
understand. Sometimes it is difficult even to know which
requests for important network services are allowed to
pass through the firewall filter.

Configuration errors can be extremely difficult to iden-
tify in a real world system. Figure 1 shows a fire-

wall that secures an internal network 192.168.2.0/24
from intrusions by hosts on an unsecured wireless net-
work 192.168.1.0/24. All traffic, including HTTP traffic,
should be dropped from that insecure network. Rule 1
drops any incoming ICMP packets. Rule 2 drops traffic
from the insecure network. The remaining rules secure
various services and let in traffic to the web server. All
other traffic is dropped, unless it comes from a secure
subnet 113.192.10.0/24.

Let’s say the administrator decides to modify this con-
figuration to allow IPP printing traffic (port 631) from
trusted machines to pass through the firewall to the se-
cure network. If she inserts an accept rule in the wrong
place, she can produce the incorrect configuration in fig-
ure 2. This configuration allows printing service from
the insecure network, because the new rule has been in-
serted before the rule which restricts the insecure subnet.
Switching rules 2 and 3 yields a correct configuration.
This sort of error becomes harder to detect as the num-
ber of rules grows and the complexity of their structure
increases.

Consider also the firewall rule set described in figure
3, which protects an internal subnet 192.168.2.0/24 from
the outside world. Can mail be forwarded through this
filter from an arbitrary host using SMTP? The answer
is yes. At first glance, it appears that only hosts from
192.168.2.0/24 can access SMTP (they are granted ac-
cess in rule 5). Rule 6, however, gives access to any
host on any port, provided it is part of an established
connection. In order for SMTP traffic to pass from an
outside host through the firewall, one of the machines in
the 192.168.2.0/24 subnet must establish an SMTP con-
nection to the unauthorized host. Once a connection has
been established (via TCP handshake), rule 6 will allow
arbitrary access. This scenario could happen if an in-
ternal machine is compromised by a virus or Trojan. It
could then open up a mail server, connect to the external
host, and forward spam to anyone on the internal net-
work.

1
FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 71

Chain FORWARD (policy DROP)
target prot opt source destination flags

1 DROP ICMP – anywhere 192.168.2.0/24
2 DROP all – 192.168.1.0/24 192.168.2.0/24
3 DROP TCP – anywhere 192.168.2.0/24 TCP dpt:domain
4 ACCEPT TCP – anywhere 192.168.2.0/24 TCP dpt:HTTP
5 DROP TCP – anywhere 192.168.2.0/24 TCP dpt:RSH
6 ACCEPT all – 113.192.10.0/24 192.168.2.0/24

Figure 1: A sample firewall that secures subnet 192.168.2.0/24 against intrustions from untrusted network
192.168.1.0/24

Chain FORWARD (policy DROP)
target prot opt source destination flags

1 DROP ICMP – anywhere 192.168.2.0/24
2 ACCEPT all – anywhere 192.168.2.0/24 TCP dpt:631
3 DROP all – 192.168.1.0/24 192.168.2.0/24
4 DROP TCP – anywhere 192.168.2.0/24 TCP dpt:domain
5 ACCEPT TCP – anywhere 192.168.2.0/24 TCP dpt:HTTP
6 DROP TCP – anywhere 192.168.2.0/24 TCP dpt:RSH
7 ACCEPT all – 113.192.10.0/24 192.168.2.0/24

Figure 2: A misconfigured firewall that allows the untrusted network to access printing services

While these errors can easily be avoided by a careful
system administrator, far more subtle and complicated
errors can evolve as a firewall rule set grows and is mod-
ified to permit new services or patch new security vul-
nerabilities.

In a survey of 37 corporate firewalls, Wool[18] dis-
covered an average of 7 configuration errors per system.
While his study did not examine iptables systems, it is
not unreasonable to assume that the error rate for Linux
systems is comparable to those of Checkpoint firewalls.

In [2], Alexander points out that because firewalls are
hard to configure, they often fail to prevent spoofing at-
tacks from one internal subnet to another, which can
compromise vital financial and planning information.

1.1 Existing Tools

There have been several different attempts to address
the problem of firewall misconfiguration. These solu-
tion can be broken into two basic categories: active test-
ing and passive testing. Active testing uses tools such as
SATAN[9], nessus[3], or Ftester[5] to subject a firewall
to a sequence of carefully crafted packets and see which
ones get through. Passive testing involves an offline anal-
ysis of the firewall configuration.

Since it is impossible to test every possible packet, ac-
tive tools test only a portion of the firewall configuration.
This makes them well-suited for detecting specific vul-

nerabilities and for detecting implementation bugs in the
firewall software, but not for generating trust in the over-
all security of a firewall configuration. It also means that
testing can interfere with normal network activity.

The current state of the art in passive analysis is
a commercial tool produced by Algorithmic Security
called “Algosec Firewall Analyzer”, which is available
for PIX and Checkpoint FW-1 firewalls. It is a closed-
source commercial project based on Wool’s Fang[1] and
Lumeta[17] engines. Fang allowed the user to perform
simple queries such as “what packets can reach the mail
server.” In Lumeta, the developers replaced Fang’s query
functionality with a graphical tool that checks for spe-
cific configuration errors. Algosec is a more powerful
commercial version of Lumeta. Each of their systems
is capable of analyzing multiple firewalls in a specified
network topology.

Another branch of research has focused on simplify-
ing a firewall configuration by removing redundant and
conflicting rules. In [10], Gouda and Liu present an al-
gorithm for constructing a firewall decision diagram and
applying reduction techniques to derive a complete, com-
pact, and consistent firewall. Their technique can reduce
the complexity of a poorly configured firewall and un-
cover some configuration errors, but has a different pur-
pose than such engines as Algosec and SATAN. Gouda
and Liu’s work focuses on errors in the structure of a
firewall rule set rather than its substance.

2
FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association72

Chain FORWARD (policy DROP)
target prot opt source destination flags

1 ACCEPT ICMP – anywhere 192.168.2.0/24
2 ACCEPT TCP – anywhere 192.168.2.0/24 TCP dpt:ssh flags:SYN,ACK/SYN
3 ACCEPT UDP – anywhere 192.168.2.0/24 UDP dpt:domain
4 ACCEPT all – 113.117.1.4 192.168.2.0/24
5 ACCEPT all – 192.168.2.0/24 anywhere
6 ACCEPT all – anywhere anywhere state RELATED,ESTABLISHED

Figure 3: A stateful ruleset which allows SMTP access for established connections.

None of these techniques is widely available in an
open source tool which can be used with iptables.

An interesting intermediary between active and pas-
sive tools is Russell’s netfilter simulator[14]. The simu-
lator is intended to be used for debugging kernel hooks
in netfilter, and provides very low-level access to the in-
ternals of netfilter, so it is not by itself suitable as a query
tool for non-developers, but could perhaps be used as the
basis of a more general query library.

2 ITVal, An Open Source Tool

In this paper, we present ITVal, an open-source fire-
wall analysis tool for iptables. The tool takes as in-
puts a firewall rule set as generated by the output of the
“iptables -L -n” command and a query file writ-
ten in a simple language we describe in section 3. It then
calculates the set of packets which can be accepted by
the firewall and produces the answers to each query in
the query file.

In the query file, the user can ask questions such as
“What services can be reached on host X?” or “Which
machines can be reached with SSH?” The analysis en-
gine resolves the queries using a very efficient decision
diagram data structure and prints the results on standard
output. The analysis engine can handle many of the fea-
tures of iptables, including stateful inspection.

Using this tool, the system administrator can check
important security properties before and after making a
change to the firewall. If the query engine returns an un-
expected result, he can examine his changes for errors
and reapply the security check.

The analysis engine is implemented using FDDL[12],
a Multi-way Decision Diagram (MDD) library.
We chose to use MDDs[8] over Binary Decision
Diagrams(BDDs)[6] because they are better suited for
representing integral values such as ports and IP address.

Decision diagrams have been previously used to rep-
resent firewall rules. In [15], Hazelhurst et al. showed
that firewalls could be represented using Binary Decision
Diagrams and implemented a limited number of queries

using formal logic. In [11], they shifted their focus to-
ward improving firewall performance by representing the
rule set using decision diagrams. Christiansen and Fleury
took this a step further in [7] by implementing an Interval
Decision Diagram based packet filter for use with netfil-
ter.

These projects, and that of Gouda cited above, have
a different motivation from that of ITVal. While these
projects sought to enhance performance and provide a
formal characterization of firewall rule sets, our aim is
to provide a simple, plain English query language that
simplifies accurate firewall configuration.

3 Query Language

The analysis tool provides a straightforward query lan-
guage which allows complex queries to be built from
simple primitives. An example query file is shown in
figure 4. The query file consists of a set of group and
service definitions followed by one or more query state-
ments. The first four lines of figure 4 are definitions. The
next four lines are query statements.

3.1 Query Statements

Query statements begin with the word QUERY followed
by a subject, an optional input chain, a condition, and a
semicolon. The subject of the query specifies what in-
formation should be printed about packets that match the
query. For instance, in line 5, the subject “DADDY” indi-
cates that the destination address should be printed. The
valid subjects are:

• SADDY : Source Address

• DADDY : Destination Address

• SPORT : Source Port

• DPORT : Destination Port

• STATE : Connection State

3
FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 73

1 GROUP internalnet 68.10.120.* 68.10.121.*;
2 GROUP wlan 68.10.122.*;

3 SERVICE mail TCP 25 TCP 110;
4 SERVICE ftp TCP 21 TCP 20;

5 QUERY DADDY FROM wlan AND (FOR mail OR FOR TCP 80);
6 QUERY SPORT OUTPUT TO internalnet AND FOR ftp AND IN NEW;

7 QUERY SADDY TO internalnet AND FOR 68.11.230.45 AND
(NOT IN NEW AND NOT IN RELATED);

8 QUERY DPORT FROM internalnet AND TO wlan AND
(IN NEW OR IN ESTABLISHED);

Figure 4: An example query file

A query statement can optionally contain the name of
an input chain to use. The input chain must be one of the
three built-in chains: INPUT, FORWARD, or OUTPUT.
If no input chain is explicitly given, the analysis engine
assumes that the FORWARD chain should be considered.
Line 6 of the example specifies that the OUTPUT chain
should be considered rather than the FORWARD chain.
The rest of the query statement consists of a condition
which specifies the packets to consider.

3.2 Simple Conditions

The query engine allows the user to build complex condi-
tions out of very simple conditions. Conditions are built
from seven simple primitives:

• FROM <address group> : Specifies one or more
source addresses to match.

• TO <address group> : Specifies one or more desti-
nation addresses to match.

• ON <service> : Specifies one or more source ports
to match.

• FOR <service> : Specifies one or more destination
ports to match.

• WITH <flag> : Specifies TCP flags to match
against.

• IN <state> : Specifies a connection state to match.

• LOGGED : indicates that exists a rule potentially
logging the arrival of the packet

Each of the primitives selects those packets that are ac-
cepted and that match the specified criteria. For instance
“FROM 127.0.0.1” specifies those packets accepted by
the firewall which are outbound from localhost.

For the FROM and TO queries, the address group can
either be the name of a predefined address group or the
numeric IP address of a host. Asterisks may be used in
numerical addresses to describe an entire subnet at once.

For the ON and FOR queries, the service can be ei-
ther the name of a predefined service or the numeric port
number of the service preceded by the protocol type. An
asterisk can be used to match all packets of the given pro-
tocol type. The protocol type can either be TCP, UDP,
BOTH, or ICMP. If ICMP is chosen, the ICMP packet
type number should be specified instead of a numeri-
cal port. If BOTH is specified, the analysis engine will
match both TCP and UDP packets.

For the WITH primitive, the recognized TCP flags are
URG, PSH, RST, FIN, SYN, and ACK.

For the IN primitive, the connection state can be either
INVALID, NEW, ESTABLISHED, or RELATED.

The LOGGED primitive stands on its own without any
parameters. It indicates that a packet may have been
logged by the firewall. Since iptables LOG rules can
specify time-related and other external criteria for log-
ging, there is no guarantee that every matching packet
will actually be logged.

3.3 Complex Queries

The boolean connectives NOT, AND, and OR allow the
user to posit queries of arbitrary complexity. These oper-
ators work as one would expect. “NOT FROM TCP 21”
matches against all accepted packets which are not TCP
packets on port 21. “FOR mail OR FROM 127.0.0.1”
selects both mail packets and packets outbound from lo-
calhost. Parentheses may be used to disambiguate subex-
pressions containing multiple operators.

4
FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association74

3.4 Group and Service definitions

If the user had to explicitly mention every host address
explicitly in every query, creating a query file would be
a tedious and error prone process. To address this is-
sue, we allow named groups of addresses to be defined
and used throughout the query file. The syntax for spec-
ifying a group is the word GROUP followed by a name
and a space separated list of addresses. Asterisks may
be used to include entire subnets at once. Group names
must consist entirely of letters and may not match any
keyword of the query language.

Similarly, named groups of services may be defined.
The syntax for defining a service is the word SERVICE
followed by a name and a space separated list of proto-
cols and ports.

4 Implementation

When invoked on an iptables rule set as given in the out-
put of

iptables -n -L

and a query file, the ITVal analysis engine parses the
rule set and builds an MDD representing the set of pack-
ets accepted by the firewall for each of the built-in chains.
Then it parses the query file and generates an MDD rep-
resenting the set of packets which match the condition
of each query. Using an efficient MDD intersection op-
erator, it calculates the set of packets that are both ac-
cepted by the firewall and match the condition of the
query. Then it displays the information specified in the
subject of the query.

4.1 Using Decision Diagrams

A multi-way decision diagram(MDD) is a directed
acyclic graph in which the nodes are organized into K+1

levels and all arcs from a node at non-terminal level
k > 0 point to nodes at level k − 1. In this application,
every path through the MDD represents a packet poten-
tially received by the firewall. Each of the non-terminal
levels of the MDD corresponds to a specific attribute of
the packet. For instance, in figure 5, the MDD corre-
sponding to the rule set of figure 1, level 20 represents
the first octet of the source address.

Level 0 is a special terminal level which, for rule set
MDDs, represents the target of the firewall rule (AC-
CEPT, DROP, LOG, or a user-defined chain) as a unique
integer index. We also reserve terminal index 0 to mean
“not yet specified.” For the query MDDs, nodes at the
terminal level express whether or not the packet matches
the query criteria. Terminal node 0 represents “does not
match” and terminal node 1 represents “matches”.

0 113 ... 192 ... 255...

0255 0 255192 1680...255

0...255

0...255

0... ... 25510 0... ...2551

0...255 0 ...255

192 192 192

168 168 168

2 2 2

0 ...255 0 ...255 0...255

TCP ICMP TCP... TCPUDPICMP

0 0...255 0 ...2550...255

80 0 ...255 0...255 530...255514

ACCEPT

0...255

0...255 0...255 0...255 0...255

0... 255 0...255 0 ...255

DROP

Levels 7-1 have been omitted
for space. Level 7 represents
the connection state. Levels
6-1 represent the TCP flags.

Level 8: Destination Port 2

Level 9: Destination Port 1

Level 10: Source Port 2

Level 11: Source Port 1

Level 12: Protocol

Level 13: Dest. Address 4

Level 14: Dest. Address 3

Level 15: Dest. Address 2

Level 16: Dest. Address 1

Level 17: Src. Address 4

Level 18: Src. Address 3

Level 19: Src. Address 2

Level 20: Src. Address 1

Figure 5: MDD for the rule set in figure 1

A non-terminal node at level k represents a subset of
packets that share some attributes. An arc from a node
at level k to a node at level k − 1 represents a choice of
value for the attribute represented at level k.

When many arcs from a node point to the same child,
we use ellipses in the figure to save space. In the actual
MDD there would be arcs for each value we have hidden
in this manner.

Nodes at each level are stored in a dynamic array and
are referenced by a unique integer index. At every level,
we reserve index 0 for a special node, node zero, which
represents the empty set. This can be thought of as a node
with all its arcs pointing to node zero at the level below.
To save a small amount of memory, we do not explicitly
store node zero. We denote node n of level k as <k, n>

and the ith arc of that node as <k, n>[i].
To see that an HTTP packet from 68.10.1.3 to

192.168.2.10 is accepted by the firewall, start with the
node at level 20 of the MDD. Since the first source octet
of the packet is 68, which falls between 0 and 113, fol-
low the first arc to the highlighted node at level 19. Now
there is only one arc to follow. Since 10 falls between
0 and 255, follow the highlighted arc to the next level.
Again, 1 falls between 0 and 255 so follow the arc to
level 17. The last octet of the source address is 3, which
falls between 0 and 255, so follow the highlighted arc to
the node at level 16.

5
FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 75

node index MakeMDDFromRule(ParsedRule pr)
1 old = LookUpTarget(pr.target).
2 for k = 1 to K:
3 node n = NewNode(k).
4 for i = 0 to MaxValue(k):
5 if i < pr.low[k] and i > pr.high[k]:
6 <k, n>[i]=old.
7 old =CheckForDuplicates(n).
8 return n.

Figure 6: Algorithm for building an MDD from a rule

Level 16 represents the first octet of the destination
address, which for our example is 192. Since there is an
arc for 192, proceed to level 15. If the destination address
had been 193.1.1.1, you would know that the packet is
dropped by the firewall, since there is no arc for 193 and
DROP is the default policy. Instead, at level 15, examine
the second octet of the destination address. Since there
is an arc for 168, proceed to level 14. Continue in this
manner to level 12.

At level 12, there is an arc for TCP and an arc for
ICMP. Since HTTP is a TCP protocol, follow the arc for
TCP to the highlighted node at level 11. Continue in
this manner until you reach the node at terminal level 0.
Since it is the ACCEPT node, the packet will be accepted
by the firewall.

4.2 Building an MDD for a Filter Rule

In order to construct an MDD for a rule, we first
parse the rule into target, source address, destination ad-
dress, source port, destination port, protocol, state, and
flag components. From these components, we create a
parsedrule, which represents each component as an in-
teger. We define an operation MakeMDDFromRule,
show in figure 6, which takes the parsed firewall rule and
returns the root node <K, n> of an MDD representing
that rule.

The algorithm starts at level 0 and builds upward to-
ward the root node. At each level, it creates new nodes
that represent the criteria of the parsed rule. In line
1, Node < 0, n > is determined directly by finding the
equivalent integer index of the rule target. For ACCEPT,
DROP, and LOG targets this is a predefined constant less
than 4. For user-defined rules, the index comes from a
pre-generated table that maps the user-defined chains, in
the order of their discovery during parsing, to integers
greater than 3.

Lines 2 − 7 construct nodes at levels 1 through K .
The call to NewNode in line 3 creates a new node and
initializes all its arcs to point at node zero. Lines 4 − 7

examine each potential value i of filter rule attribute k. If
i falls within the range specified by the parsed rule, arc

mdd ConvertChain(rule* tup, mdd inMDD)
1 if tup ==NULL:
2 return inMDD.
3 inMDD = ConvertChain(tup.next, inMDD).
4 interMDD = MakeMDDFromRule(tup).
5 if target(tup) == DROP or target(tup) == ACCEPT:
6 return Replace(K, inMdd, interMDD).
7 otherwise:
8 chain = LookUpChain(target(tup)).
9 interMDD = ConvertChain(chain.first rule, interMDD).

10 interMDD = FilterTerminals(interMDD).
11 return Replace(K, inMDD, interMDD).

Figure 7: Algorithm for Constructing a Chain MDD

<k, n>[i] is connected to node <k− 1, old>. Otherwise,
the arc is left at its default value, which points to node
zero.

In line 7, we have considered all the potential values of
attribute k, so we now call CheckForDuplicates, which
uses hashing to identify any nodes that exactly duplicate
node <k, n>. If such a node exists, <k, n> is freed and
CheckForDuplicates returns the index of the duplicate
node. Otherwise, it returns <k, n>.

4.3 Converting chains to MDDs

In order to construct the MDD for an entire rule set, we
consider chains using the algorithm shown in figure 7. To
simplify this discussion, we omit the handling of LOG
rules from the algorithm. LOG rules are implemented
by maintaining an additional MDD for each chain which
describes the set of logged packets.

The algorithm, ConvertChain, takes as inputs a chain,
represented as a linked list of parsed rules, and an MDD
storing the set of packets accepted by the rules seen so
far. It recursively traverses the chain one rule at a time (in
reverse order) to build an MDD representing the entire
chain.

We initially call ConvertChain by passing in the first
rule of the parsed FORWARD, INPUT, or OUTPUT
chain and an MDD describing the default policy. This
initial MDD consists of a single node, <k, n>, at each
level. All arcs of the node at level 1 point to the index of
the default target. All arcs of the nodes at levels k > 1

point to node <k − 1, n>.
Lines 1 through 3 of ConvertChain place the rules

of the chain on the call stack so that the rules can be
processed in reverse order. The algorithm traverses the
linked list until it reaches the end and then returns so that
tup points to the last rule of the chain.

Line 4 creates an MDD representation of the rule as
described in section 4.2. If the rule is a simple ACCEPT
or DROP rule, line 6 uses a Replace operator to mask the

6
FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association76

mdd Replace(level k, node index p, node index q)
1 if p==0 then return p.
2 if q==0 then return p.
3 if p.level == 0 then return q.
4 if r =ReplaceCache[k,p,q] != −1 then return r.
5 r =NewNode(k).
6 for i = 0 to MaxValue(k):
7 u=Replace(k − 1, <k, p>[i], <k, q>[i]).
8 <k, r>[i]=u.
9 r = CheckForDuplicates(<k, r>).

10 ReplaceCache[k,p,q] = r.
11 return r.

Figure 8: MDD Replace Operation

new rule over any existing rules in the chain. Pseudocode
for Replace is shown in figure 8.

Replace descends the MDD recursively, starting from
the root node. When it reaches a terminal node, it returns
node <k, q> if <k, p> and <k, q> are both non-zero.
Otherwise, it returns <k, p>.

Calling Replace on inMDD and interMDD pro-
duces a new MDD in which every rule of interMDD

masks any matching rule in inMDD.
Lines 8− 11 of ConvertChain handle the case where

the target of the new rule is a user-defined chain. In line
9, an MDD representing the criteria portion of the rule is
created using a recursive call to ConvertChain. Because
iptables does not allow cyclic references in chain targets,
the recursion is guaranteed to terminate.

When we return from the recursion, the ACCEPT and
DROP rules of the user-defined chain will have been ap-
plied to our intermediate MDD, but some paths through
the MDD may still lead to the chain-name target. These
paths represent packets that are unaltered by the chain.
We mask these out in line 10, and use the Replace oper-
ator to mask the new MDD over the result.

The MDD created by ConvertChain must only affect
packets that match the criteria for the rule under con-
sideration. The target chain, however, may have more
general rules that affect packets that do not match those
criteria. To avoid this problem, the replace operator only
modifies packets that do not map to the “unspecified” ter-
minal, terminal 0. Since the default policy matches ev-
ery packet to some terminal, this will always be the case
when applying ACCEPT and DROP rules to the top-level
chain. When applying rules to a target chain, however,
rules outside the criteria under consideration will map to
0 and be ignored by the replace operator.

4.4 Resolving Queries

The MDD for a query condition is constructed by join-
ing smaller MDDs together according to the structure of
the query. The MDD for a primitive, such as FROM, is

Source Address, Octet 1

Source Address, Octet 2

Source Address, Octet 3

Source Address, Octet 4

Destination Address
Octet 1

Destination Address
Octet 2

Destination Address
Octet 3

Destination Address
Octet 4

Destination Port, Byte 1

Protocol

Destination Port, Byte 2

FIN Flag

SYN Flag

RST Flag

PSH Flag

ACK Flag

URG Flag

Connection State Invalid New Related

Source Port, Byte 1

Source Port , Byte 2

Established

0 1

0 1

Level 20:

Level 19:

Level 18:

Level 17:

Level 16:

Level 15:

Level 14:

Level 13:

Level 12:

Level 11:

Level 10:

Level 9:

Level 8:

Level 7:

Level 6:

Level 5:

Level4:

Level 3:

Level 2:

Level 1:

Matches

0 1

0 1

0 1

0 1

25 80 110

0

0 ... 255

0 ... 255

TCP

0 ... 255

0 ... 255

0 ... 255

0 ... 255

0 ... 255

122

10

68

Figure 9: MDD for the query on line 5 of figure 4

7
FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 77

Source Address, Octet 1

Source Address, Octet 2

Source Address, Octet 3

Source Address, Octet 4

Destination Address
Octet 1

Destination Address
Octet 2

Destination Address
Octet 3

Destination Address
Octet 4

Destination Port, Byte 1

Protocol

Destination Port, Byte 2

FIN Flag

SYN Flag

RST Flag

PSH Flag

ACK Flag

URG Flag

Connection State Invalid New Related

Source Port, Byte 1

Source Port , Byte 2

Established

0 1

0 1

Level 20:

Level 19:

Level 18:

Level 17:

Level 16:

Level 15:

Level 14:

Level 13:

Level 12:

Level 11:

Level 10:

Level 9:

Level 8:

Level 7:

Level 6:

Level 5:

Level4:

Level 3:

Level 2:

Level 1:

1

0 1

0 1

0 1

0 1

80

0

0 ... 255

0 ... 255

TCP

0 ... 255

2

168

192

0 ... 255

122

10

68

Figure 10: The result MDD for the running example

node IntersectMDD(level k, node p, node q)
1 if k == 0:
2 if p==ACCEPT and q==1 then return 1.
3 else return 0.

Figure 11: Modifications to Intersection Operator

node IntersectMDD(level k, node p, node q)
1 if k == 0:
2 if p==1 and q==1 then return 1.
3 else return 0.
4 if p == 0 or q == 0 then return 0.
5 if (k,p,q) is in the cache, return the cached result.
6 result = NewMDDNode().
7 for value from 0 to MaxValue(k):
8 result[value] =

IntersectMDD(k-1, p[value], q[value]).
9 result = CheckForDuplicates(<k, result>).

10 store (k,p,q)=result in the cache
11 return result.

Figure 12: MDD Intersection Algorithm

built in the same manner as the MDD for a rule which
matches every packet specified by the operator. Instead
of ACCEPT, however, the terminal node is “matches”.

The primitive MDDs are then joined using an MDD
union and the MDD intersection operator in figure 12 to
produce the final query condition. The union operator is
derived directly from the intersection operator by modi-
fying the base cases.

The function MaxValue returns the maximum value
for the field associated with level k. For instance, the
maximum value of level 20 is 255, since level 20 rep-
resents the first octet of the source IP address. A cache
is used to improve performance. Without the cache we
might need to compute the intersection of a pair of nodes
several times. Using the cache, we are guaranteed to
compute it only once.

In order to resolve a query, we use FDDL to com-
pute the intersection of the query MDD and the rule set
MDD. The intersection algorithm for combining a query
MDD and a rule MDD differs only slightly from the in-
tersection operator used to combine query MDDs. The
modified intersection algorithm replaces lines 1 − 3 of
figure 12 with those in figure 11 and produces an MDD
which represents those packets that both satisfy the query
and are accepted by the iptables rule set.

The intersection operation is linear in the product of
the number of nodes in each MDD. Since the number of
nodes can be exponentially smaller than the number of
possible packets, queries can be performed very rapidly.

The result of intersecting the MDDs in our running

8
FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association78

GROUP internalnet 68.10.120.* 68.10.121.*
GROUP wlan 68.10.122.8

SERVICE mail TCP 25 TCP 110
SERVICE ftp TCP 21 TCP 20

QUERY DADDY FROM wlan AND
(FOR mail OR FOR TCP 80)

Addresses: 192.168.2.*
256 results.

Figure 13: ITVal output for sample query

1 GROUP wlan 192.168.1.*;
2 SERVICE special ICMP * TCP 53 TCP 80 TCP 222;
3 QUERY DPORT FROM wlan;
4 QUERY DADDY FOR ICMP *;
5 QUERY SADDY FOR TCP 53;
6 QUERY SADDY FOR TCP 80;
7 QUERY SADDY FOR TCP 222;
8 QUERY SADDY NOT (FOR special OR FROM wlan);

Figure 14: Assertions for a hypothetical firewall

example is shown in figure 10. To see which packets are
represented by the MDD, we start with the node at level
20. This node has a single arc representing the value
68, so all packets in the result have a source address that
begins with 68.

Following the arc, we reach another node with a single
arc. This node represents all packets with second source
octet equal to 10. Continuing in this manner, we real-
ize that the source address of all packets in the result
must be in the group 68.10.122.* and the destination ad-
dress must be in the group 192.168.2.*. The protocol
must be TCP and the source port can have any value,
but the destination port must be port 80, the HTTP port.
When we continue down the graph, we realize that the
result contains packets with any TCP flag condition and
in any connection state. In other words, the result of our
query is exactly: all HTTP packets from 68.10.122.* to
192.168.2.*.

In the context of ITVal, the output of the sample
query applied to the sample rule set is shown in fig-
ure 13. Note that the human-readable output corresponds
directly to the output MDD of figure 10.

5 Using ITVal

To illustrate how a hypothetical system administrator
might use ITVal to detect and correct configuration er-
rors, we return to the rule set described in figure 1. The
query file shown in figure 14 can be used to verify all the

GROUP wlan 192.168.1.*;
SERVICE special ICMP * TCP 53 TCP 80

TCP 222;
QUERY DPORT FROM wlan;
Ports:
0 results.
QUERY DADDY FOR ICMP *;
Addresses:
0 results.
QUERY SADDY FOR TCP 53;
Addresses:
0 results.
QUERY SADDY FOR TCP 80;
Addresses: [0-191].*.*.*

192.[0-167].*.*
192.168.0.*
192.168.[2-255].*
192.[169-255].*.*
[193-255].*.*.*

4278190080 results.
QUERY SADDY FOR TCP 222;
Addresses:
0 results.
QUERY SADDY NOT (FOR special OR

FROM wlan);
Addresses: 113.192.10.*
256 results.

Figure 15: Output of ITVal on the initial rule set from
Fig. 1

important assertions about this network. For instance, the
first query lists all services which can be accessed by the
wireless network. The result of this query should be the
empty set, since we want to restrict all access from that
network. Similarly, the last query lists all hosts not on
the wireless network that can access a service other than
those explicitly permitted or denied. Only hosts from the
trusted 113.192.10.0/24 network should appear in the an-
swer to this query.

Running ITVal on the initial configuration gives the
output shown in figure 15. In order to save space, we
have grouped the output of the fourth query into ranges.
The actual output would explicitly list each distinguish-
able subnet. It is easy to verify that all the requirements
are satisfied. Suppose the administrator makes the incor-
rect change shown in figure 2. Running ITVal on this
new rule set produces figure 16.

Because the first query no longer produces an empty
result, it is evident that this rule set is incorrect. Realizing
her mistake, the system administrator can then move the
rule to its correct location in the rule set. Now the output
of the first query will once again be the empty set.

9
FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 79

GROUP wlan 192.168.1.*;
SERVICE special ICMP * TCP 53 TCP 80

TCP 222;
QUERY DPORT FROM wlan;
Ports: 631
1 result.
QUERY DADDY FOR ICMP *;
Addresses:
0 results.
QUERY SADDY FOR TCP 53;
Addresses:
0 results.
QUERY SADDY FOR TCP 80;
Addresses: [0-191].*.*.*

192.[0-167].*.*
192.168.0.*
192.168.[2-255].*
192.[169-255].*.*
[193-255].*.*.*

4278190080 results.
QUERY SADDY FOR TCP 222;
Addresses:
0 results.
QUERY SADDY NOT (FOR special OR

FROM wlan);
Addresses: *.*.*.*
4294967296 results.

Figure 16: Output of ITVal after an incorrect modifica-
tion on the rule set from Fig. 2

6 Conclusion

Using ITVal, a system administrator can quickly and eas-
ily verify that their firewall system important security re-
quirements. One advantage of the query language is that
generic queries generated for one firewall system can be
employed on another firewall system with few modifi-
cations. This means that even without a complete un-
derstanding of the query language syntax, a system ad-
ministrator can use ITVal to check fundamental secu-
rity properties. Furthermore, queries are easier to gen-
erate correctly than the firewall rule sets, because they
are more general, not order dependent, and don’t depend
on a complex interaction between independent chains.

There are a few areas in which ITVal needs further de-
velopment, however. First, several types of packet man-
gling, such as masquerading and NAT, should be sup-
ported. Second, to enhance the applicability of the tool
to real systems, it needs a mechanism for composition of
firewalls in an arbitrary topology. Third, the tool needs
a better output mechanism that can display results more
concisely and allow the user to specify query subjects
containing multiple fields.

Currently, queries that generate a large number of re-

sults can be difficult to interpret. A better interface could
hide or group irrelevant data so that critical information
stands out more clearly. In the long term, a graphical
or interactive interface for displaying output would be a
logical step.

The tool, as currently described, is available at
http://www.cs.wm.edu/˜rmmarm/ITVal/.

References

[1] Mayer. Avishai Wool Alain and Elisha Ziskind.
Fang: A firewall analysis engine. In Proceedings
of the IEEE Symposium on Security and Privacy,
MAY 2000.

[2] Steven Alexander. The importance of securing
workstations. ;login:, 30(1):23–26, February 2005.

[3] Harry Anderson. Introduction to Nessus, October
2003.

[4] Oskar Andreasson. Iptables tutorial 1.1.19, 2001.

[5] Andrea Barisani. Testing firewalls and ids with
ftester. In TISC Insight, volume 5, 2001.

[6] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, August 1986.

[7] Mikkel Christiansen and Emmanuel Fleury. Im-
proving firewalls using bric(k)s. BRICS Newsletter,
11:56–59, December 2001.

[8] Gianfranco Ciardo, Gerald Lüttgen, and Radu Si-
miniceanu. Efficient symbolic state-space construc-
tion for asynchronous systems. Lecture Notes in
Computer Science, 1825:103–??, 2000.

[9] Dan Farmer and Wietse Venema. SATAN: Secu-
rity Administrator’s Tool for Analyzing Networks,
1995.

[10] Mohamed G. Gouda and Alex X. Liu. Firewall de-
sign: Consistency, completeness, and compactness.
In Proceedings of the International Conference on
Distributed Computing Systems. IEEE Computer
Society, March 2004.

[11] Scott Hazelhurst. A proposal for dynamic access
lists for tcp/ip packet filtering. Technical Report
TR-Wits-CS-2001-2, University of Witwatersrand,
April 2001.

[12] Robert Marmorstein. Designing and imple-
menting a user library for manipulation of
multiway decision diagrams. MS Project
Report, Department of Computer Science,

10
FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association80

The College of William and Mary, 2004.
http://www.cs.wm.edu/˜rmmarm/
Pubs/710paper.pdf.

[13] Rusty Russel. Linux 2.4 Packet Filtering HOWTO,
2002.

[14] Rusty Russell and Jeremy Kerr. Netfilter Simulation
Environment, 2004.

[15] Anton Fatti Scott Hazelhurst and Andrew Hen-
wood. Binary decision diagram representation of
firewall and router access lists. Technical Report
TR-Wits-CS-1998-3, University of Witwatersrand,
October 1998.

[16] Harald Welte. netfilter/iptables FAQ, 2003.

[17] Avishai Wool. Architecting the lumeta firewall ana-
lyzer. In Proceedings of the 10th USENIX Security
Symposium, August 2001.

[18] Avishai Wool. A quantitative study of firewall con-
figuration errors. IEEE Computer, 37(6):62–67,
June 2004.

11
FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 81

