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Abstract

A simulation infrastructure for wireless network em-
ulation based on User Mode Linux and on the vir-
tualisation of the hostap driver is proposed. The in-
terconnection of these components is first described
and the architecture of the resulting network emula-
tor is explained. Two practical applications are then
detailed : the testing of an implementation of the
AODV routing protocol in a highly realistic environ-
ment and the study of the interactions between the
hostap driver and the card it drives.

1 Introduction

User Mode Linux (UML [1]) has proven to be very
useful for kernel debugging ([9], chap. 4), for the
implementation of new functionalities in the kernel
and as a testing and teaching tools. The Openswan
developers, for instance, report in [7] the use of UML
as a testing and development tools for their project.
It is also used in [2] for network protocol testing with
the VNUML project. UML is also used to implement
web hosting solutions, honeypots and redundant ser-
vices.

Some customs drivers exist in UML that provide,
as an example, network connectivity. One of the ex-
isting Ethernet driver, for instance, works by open-
ing a tap interface on the host side and by present-
ing this interface at the UML kernel side as the
usual net device structure with the suitable inter-
facing functions. From the point of view of the user
land tools such as ifconfig or ip, this interface can
therefore be manipulated as any other real Ethernet
interface would.

∗This paper presents research results of the Belgian Pro-
gramme on Interuniversity Attraction Poles, initiated by the
Belgian Federal Science Policy Office. The scientific respon-
sibility rests with its author(s).

However, these custom UML drivers are differ-
ent from the native Linux drivers and the benefits
mentioned above are therefore lost. Those benefits
could nevertheless be recovered if the virtualisation
process was carried on at a lower level. In this pa-
per, we describe how this process can be successfully
achieved by implementing a new bus, that we call
netbus, which implements the functionalities found
at the PCI level. This new bus allows for inserting
native PCI Linux driver inside UML providing that
some piece of code exists to emulate the hardware
device that the driver is manipulating. To this end,
the implementation of a software 802.11 card that
can be operated by the hostap [6] driver is presented.

These software cards are then connected to each
other trough a network server that we have de-
veloped (sources available at [3]) in QT/C++ and
which provides a physical layer emulation as well as
a graphical tool to represent the virtual machines in
a 2-dimensional world (See figures later in the text).
The advantages of such a system are as follows :

• It provides a complete wireless network emula-
tor which is highly realistic and which can be
used to test and develop new wireless related
protocols. We report the implementation of the
name resolution manet draft using this system
in [4]. In this paper, we focus on the testing
of the AODV multihop adhoc routing protocol.
The implementation under investigation is the
NIST kernel AODV module [5]. This implemen-
tation has been chosen because users from a wifi
community [8] have reported random failures in
the routing after many hours of operation. Di-
agnosing the cause of the failure on site might
be a real nightmare and the solution is usually
to reboot the device immediately. Reproducing
the failure in the emulator might therefore be
very valuable and help in development of such
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citizen networks.

• It can be used as a teaching tool to understand
how a driver works.

In Section 2, the architecture of the emulator is
first described and in Section 3 and 4 it is shown
how it can be used to efficiently debug the AODV
routing protocol and to help in understanding the
interactions between a driver and the hardware it
drives. Some related works are mentioned in Section
5 and the conclusion is given in Section 6

2 Emulator architecture

As described in the introduction, the main compo-
nents used in the emulator are the User Mode Linux
kernel code and a wireless driver. For this work,
we chose the hostap driver [6] because it supports
different kind of hardware and its hardware depen-
dent code is therefore neatly separated. Further-
more, the hostap driver may be setup as an access
point and supports software-based encryption. The
advantages of the Linux kernel are, among others,
availability of the source code, availability of ad-
vanced networking features, increasing use in embed-
ded network devices and huge amount of networking
related softwares. In the context of this paper, the
availability of a stable User Mode port is of course
essential.

Linking the hostap driver with the User Mode
kernel requires the resolution of all symbols from
the kernel’s exported symbol table which is not
possible as User Mode Linux does not contain
any bus implementation. Unresolved symbols,
whose names are self-explanatory are for instance
: pci enable device, writew and readw.

The first component that had to be implemented
was therefore a simple bus suitable to export the re-
quired symbols for the hostap driver to be inserted
in the kernel. The modification of the hostap driver
is minimal and consists in replacing unresolved sym-
bols with the new ones, along with some minor mod-
ifications due to the simpler implementation of our
bus compared to a standard PCI bus. We refer to
this bus as “netbus” as its primary use is to con-
nect a network device to UML. The functionalities
of this bus, sending and receiving data as well as
transmitting interrupt signals are implemented with
TCP connections. Once the hostap driver is suc-
cessfully linked into the kernel, it must of course act
on a device which also has to be emulated.
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Figure 1: Interconnection of the driver with the
UML kernel

2.1 Interconnection of the compo-
nents

As any other device, our emulated wireless card has
to be connected or “virtually plugged” into the UML
via netbus. This situation is depicted in Fig. 1 show-
ing the different interconnections existing between
the components introduced above. The emulated
wireless card runs as a different process, which is
the emulator itself. This core program is written
in QT/C++ and also implements the physical layer
emulation as well as a visualisation system.

As mentioned above, netbus is built with TCP
connections and the core emulator is therefore writ-
ten as a TCP server.

The architecture of the emulator is depicted in
Fig. 2 where it can be seen that the hostap driver
is represented as a TCP client which is implemented
on top of netbus. When the driver tries to register
itself, it calls a function netbus register device
which tries to bind to the emulator server socket.
If the operation is successful, a new object imple-
menting the virtual wireless card is instantiated in
the emulator. The visualisation system displays an
icon representing the mobile node with a surround-
ing circle which represents the reachability zone of
the card (See more details later in the text).
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Figure 2: Architecture of our wireless emulator

2.2 Netbus implementation

As mentioned previously, the connection between
the emulated card and the driver is realised with
a TCP connection. Using TCP makes it possible to
run multiple UML machines on different hosts. The
simulation can therefore be distributed among mul-
tiple CPU’s. The TCP protocol has been chosen for
its reliability. Indeed, it is not desirable to introduce
uncertainty in the delivery of interrupt and data as
one would like to control in a deterministic fashion
if packet drops occur or not.

In our prototype, two different TCP connections
are used : one connection is used for data trans-
mission while the other is only used for interrupt
emission.

The client socket corresponding to the interrupt
line at the UML side is configured in ASYNC mode
and the associated SIGIO signal is registered in UML
as an interrupt signal associated with the wireless
card. The data line operates in blocking mode. This
is necessary as, from the UML point of view, the
read/write operation has to be “atomic” and must
be completed entirely before the UML may continue
to execute. Every command sent on the data line
is therefore followed by a blocking recv call which
waits for an acknowledgement from the card and
synchronises the kernel with the card.

As packets are transmitted by the hostap driver

Fixed nodes

Mobile nodes

Visualisation toolbar

Figure 3: The setup used for testing the AODV pro-
tocol

by a series of writew command (programmed IO),
the synchronisation mode described above induces a
high latency in packet transmission. Therefore, an
extra feature has been implemented in netbus which
permits to send a block of “len” bytes of data in a
single blocking operation. In some sense, this feature
is analogous to a DMA in a real hardware.

3 A testbed environment

With the spreading of roof-top wifi networks, ded-
icated devices such as the meshbox and dedicated
distributions such as OpenAP started to appear. Ba-
sically, these devices should be configured as AODV
routers, installed at the right position and forgot-
ten. Unfortunately, stability issues, interoperability
problems or unexpected circumstances often prevent
such an ideal situation to occur. In this Section, we
report our attempt to reproduce a typical breakdown
in a multihop ad-hoc network.

The setup is shown in Fig. 3 and a zoom on the
fixed nodes is depicted in Fig. 4. A video captured
during the experiment can be downloaded at [3].
The machine named UMLx received and IP adresse
of 192.168.0.x.

Obviously, this setup puts the system at loads and
AODV messages are printed on the nodes console as
soon as other nodes are coming in their reachability
zone (as depicted by the yellow circles in Fig. 3).
After letting the system run for a while, it was then
found that a ping from UML6 to UML3 would only
receive a single reply while a ping from UML3 to
UML6 would receive no reply at all.
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A first tool at our disposal to understand what
is happening is the use of the tcpdump packet cap-
ture program and the ethereal analyser. The trace
acquired at UML5 is shown in Fig. 5. It can be
seen in lines 35-38 that the ping request is arriving
at UML5 and forwarded toward UML3 as is the
first ping reply in the reversed direction. Lines 45-
47 show the AODV hello messages with a lifetime of
3 seconds. The next trace, acquired at UML03 is
shown in Fig. 6 with the Ethernet addresses where
one can see the same sequence of two ping requests
with one ping reply. However, the destination Eth-
ernet address of the ping reply now comes as a sur-
prise as it corresponds to the hardware address of
UML6 showing that UML3 tries to bypass UML5.
A look at Fig. 7 showing the AODV routing table of
UML6 and UML3 reveals that UML6 is present in
the routing table of UML3 while the reverse is not
true. Indeed, it can be seen on the last line of Fig.
6 that UML3 can receive the hello messages from
UML6.

A quick check revealed that the transmission
power of UML3 had been modified at the beginning
of the simulation and that its transmission range
was therefore smaller than the transmission range of
UML6. The first ping request was creating a reverse
route on its way toward UML3 and the first reply
was therefore reaching UML6. After the first hello
message from UML6, the routing table in UML3
was modified and the ping replies were sent directly
to UML6 which could not receive them because of
the limited transmission power of UML3.

This practical example that actually occurred in
the simulator is in fact widespread in practice and
had been reported many times (for instance in [8]).
It occurs notably when an AODV router is setup
with a high power transmission while people try-
ing to connect to it use a regular laptop card with
smaller power transmission. The realistic physical
transmission model used in the simulator allowed
for recovering a typical situation often encountered
in practice while the use of UML allowed for using
conventional tools such as tcpdump for the debug-
ging. This latter point might be of great practical
interest for evaluating wireless oriented distribution
before deploying them in the field.

4 A teaching tool

Although the results presented in the previous sec-
tion did require an ergonomic simulation environ-
ment and a realistic enough physical layer emulation,
the same results could have been obtained without
the hassle of emulating in software the behaviour of
a real hardware card. It would have been sufficient
to code a UML specific driver just like the already
existing tun/tap Ethernet driver. This would re-
quire, however, the complete rewriting of the user-
land interface, including the wireless extension. In
this section, we present some results that specifically
exploit the virtualisation of the wireless driver.

Indeed, with the help of the emulated hardware
card, it is very easy to obtain detailed informa-
tion about the internal mechanisms involved in
the operation of the card. For many program-
mers, the interactions between the driver and
the device remain a terra incognita that we may
easily explore with our emulator. Fig. 8 and
Fig. 9 show two different traces that can easily
be obtained from the emulator software log file.
The trace of the Fig. 8 can be read as follows :
1-3 The driver sets the parameter for a fu-

ture command to 0x93c and send the com-
mand CMDCODE ALLOC which interprets
the given parameter as the size of the segment
to allocate

4-5 Internally, the driver sets the event register bit
corresponding to the memory allocation event
and writes the ID of the allocated frame at the
expected memory location

7-9 The events are acknowledged by the driver
This initialisation phase allocates memory regions

referred to by their frame ID to be used later for
packet transmission and reception. This is shown
in Fig. 9 which display a trace corresponding to the
transmission of a data frame. The netbus send com-
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35 8.502093 192.168.0.6 192.168.0.3 ICMP Echo (ping) request

36 8.502277 192.168.0.6 192.168.0.3 ICMP Echo (ping) request

37 8.537036 192.168.0.3 192.168.0.6 ICMP Echo (ping) reply

38 8.537144 192.168.0.3 192.168.0.6 ICMP Echo (ping) reply

45 9.581531 192.168.0.3 255.255.255.255 AODV

RREP D: 192.168.0.3 O: 192.168.0.3 Hcnt=0 DSN=1 Lifetime=3000

46 9.999939 192.168.0.5 255.255.255.255 AODV

RREP D: 192.168.0.5 O: 192.168.0.5 Hcnt=0 DSN=1 Lifetime=3000

47 10.336736 192.168.0.6 255.255.255.255 AODV

RREP D: 192.168.0.6 O: 192.168.0.6 Hcnt=0 DSN=2 Lifetime=3000

60 12.386353 192.168.0.6 192.168.0.3 ICMP Echo (ping) request

61 12.386556 192.168.0.6 192.168.0.3 ICMP Echo (ping) request

62 12.418465 192.168.0.3 192.168.0.6 ICMP Echo (ping) reply

Figure 5: packet capture on UML5 (from ethereal)

11:44:01.294387 0:c0:9f:16:27:4 0:c0:9f:16:10:3 0800

98: 192.168.0.6 > 192.168.0.3: icmp: echo request (DF)

11:44:01.314788 0:c0:9f:16:10:3 0:c0:9f:16:6d:2 0800

98: 192.168.0.6 > 192.168.0.3: icmp: echo request (DF)

11:44:01.314936 0:c0:9f:16:6d:2 0:c0:9f:16:27:4 0800

98: 192.168.0.3 > 192.168.0.6: icmp: echo reply

11:44:01.326203 0:c0:9f:16:6d:2 0:c0:9f:16:27:4 0806 42:

arp who-has 192.168.0.6 tell 192.168.0.3

11:44:01.676545 0:c0:9f:16:27:4 ff:ff:ff:ff:ff:ff 0800

62: 192.168.0.6.654 > 255.255.255.255.654: udp 20 (DF) [ttl 1]

Figure 6: packet capture on UML3 with the Ethernet addresses (from tcpdump)

Route Table at uml6

--------------------------------------------------------------------------------

IP | Seq | Hop Count | Next Hop

--------------------------------------------------------------------------------

192.168.0.2 1 1 192.168.0.2 Valid s

ec/msec: 2/827 0

192.168.0.5 1 1 192.168.0.5 Valid s

ec/msec: 2/591 0

192.168.0.6 1 0 192.168.0.6 Valid s

ec/msec: 172874790/837 1

--------------------------------------------------------------------------------

Route Table at uml3

--------------------------------------------------------------------------------

IP | Seq | Hop Count | Next Hop

--------------------------------------------------------------------------------

192.168.0.7 1 1 192.168.0.7 Valid E

xpired!

192.168.0.6 1 1 192.168.0.6 Valid s

ec/msec: 2/227 0

192.168.0.5 1 1 192.168.0.5 Valid s

ec/msec: 2/904 0

192.168.0.3 1 0 192.168.0.3 Valid s

ec/msec: 172874821/157 1

--------------------------------------------------------------------------------

Figure 7: AODV routing table at UML6 and UML3
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(1) writew(0x93c,HFA384X_PARAM0_OFF)

(2) writew(0xa,HFA384X_CMD_OFF)

(3) HFA384X_CMDCODE_ALLOC(0x93c,0x0)

(4) writew(HFA384X_EV_ALLOC,HFA384X_EV_STAT_OFF)

(5) writew(0x10,ALLOCFID_OFF)

(6) evStat=0x18

(7) writew(0x10,HFA384X_EVACK_OFF)

(8) writew(0x8,HFA384X_EV_STAT_OFF)

(9) writew(0x8,HFA384X_EVACK_OFF)

Figure 8: Exchange between the hostap driver and
the card during the card initialisation phase

(1) writew(0x50,HFA384X_SELECT0_OFF)

(2) writew(0x0,HFA384X_OFFSET0_OFF)

(3) netbus_send a=HFA384X_DATA0_OFF len=60

(4) writew(0x3c,HFA384X_OFFSET0_OFF)

(5) netbus_send a=HFA384X_DATA0_OFF len=6

(6) netbus_send a=HFA384X_DATA0_OFF len=1054

(7) readw(0x30)

(8) readw(0x38)

(9) writew(0x460,HFA384X_OFFSET0_OFF)

(10) writew(0x50,HFA384X_PARAM0_OFF)

(11) writew(0x0,HFA384X_PARAM1_OFF)

(12) writew(0x10b,HFA384X_CMD_OFF)

(13) HFA384X_CMDCODE_TRANSMIT(0x50,0x0)

(14) readw(0x38)

(15) Tx packet at 0x5000, len=1120

(16) readw(0x60)

(17) writew(0x8,0x60)

(18) writew(0x50,0x44)

(19) Interrupt evStat=0x8,inten=0xe09f

(20) writew(0x50,0x14)

(21) evStat=0x18

(22) writew(0x10,HFA384X_EVACK_OFF)

(23) writew(0x8,0x60)

Figure 9: Exchange between the hostap driver and
the card during the transmission of a data frame

mand corresponds to the extra feature mentioned
previously that is used to transmit an entire buffer
in one operation. Line (3) corresponds to the trans-
mission of a frame descriptor and line (6) to the
packet in itself. Once all the data have been trans-
mitted, the transmit command itself is finally issued
by the driver (line (10) to (13)) with the frame ID
as parameter. Then, the card actually transmit the
packet in the air (15) and the event status register
bits are cleared. To our point of view, this kind of
traces might be interesting to understand not only
the static behaviour of a chipset as described in the
datasheet but also the dynamics of the interactions
between the driver and the card.

5 Related work

Several types of emulators have been proposed in the
literature. In [10], Keshav et al. virtualised the net-
working stack of a FreeBSD kernel and allowed to
run routing protocols and other networking applica-
tions in an emulated environment. Another similar
approach is IMUNES proposed in [11]. IMUNES al-
lows a FreeBSD kernel to maintain several network-
ing stacks that are used to support different applica-
tions. However, those two solutions do not support
wireless interfaces. As mentioned in the introduc-
tion, VNUML can be used to simulate wireless ad-
hoc networks. However, this approach is less flexible
as it requires an explicit description of the topology.
Furthermore, communication links are bidirectional
and symmetrical. In contrast, our physical model
allows for a more realistic description of the trans-
mission medium and the topology can be modified
in real time by a simple “click-and-drag” operation.

Some debugging techniques related to Section 4
are described in [9], chap. 4 and include the use of a
kernel debugger or of the Linux Trace Toolkit. Their
also exists some I/O analysers that could be used to
obtain some traces similar to those shown in Section
4. All these techniques could off course be used in
conjunction with the tool presented in this paper.
In particular, GDB can be used directly with UML
and with the inserted modules. As the software card
is “virtually plugged” into the kernel by inserting a
module, the UML side of the card may easily be
debugged and its interactions with the kernel may
be studied with conventional tools.

Other emulation based solutions exist such as for
instance vmware, qemu or bochs. While vmware does
not allow for the addition of new emulated hard-
ware components, qemu and bochs, which are free
software could be used to accomplish the tasks de-
scribed in this paper. For instance bochs supports
an NE2000 compatible network card and a wireless
interface could be added just as well. However, as
stated in the bochs FAQ, bochs emulates every x86
instructions and all the devices in a PC system, it
does not reach high emulation speeds.

6 Conclusion and future work

A virtual bus was proposed for User Mode Linux and
used to insert the Linux hostap driver with nearly
no modifications. By connecting multiple UML ma-
chines through a physical layer emulator and by pro-
viding a GUI for network visualisation, it was shown
that this system could represent an interesting ap-
proach for wireless network emulation. The utility
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of such a method has been illustrated with two prac-
tical examples : the testing of an implementation of
the AODV routing protocol in a highly realistic en-
vironment and the study of the interactions between
the driver and the card it drives. Future work will
now be focused on

• a complete implementation of the UML PCI in-
terface to allow native drivers to run completely
unmodified in UML.

• an implementation of the software card as a
Linux kernel thread instead of a separate pro-
cess. This would greatly improve the perfor-
mance as it would no longer require any block-
ing operations for the synchronisation of the
card and the kernel.

• improving the readability of the debugging facil-
ities of the emulator. In particular, the writew
operations initiated by the driver and the sub-
sequent writew commands executed by the em-
ulator itself should be reported separately. A
GUI could be used to monitor the different sta-
tus registers in real time.
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