
Ourmon and Network Monitoring Performance

James R. Binkley Bart Massey
Computer Science Dept.
Portland State University

Portland, OR, USA
{jrb,bart}@cs.pdx.edu

Abstract

Ourmon is an open-source network management and
anomaly detection system that has been developed over
a period of several years at Portland State University.
Ourmon monitors a target network both to highlight ab-
normal network traf�c and measure normal traf�c loads.
In this paper, we describe the features and performance
characteristics of Ourmon.

Ourmon features include a novel mechanism for run-
ning multiple concurrent Berkeley Packet Filter (BPF)
expressions bound to a single RRDTOOL-style graph,
as well as various types of �top talker� (top-N) �lters
aimed at conventional network �ow measurements and
anomaly detection. These features permit a variety of
useful and easily-understood measurements.

One problem that sniffer-based network monitor sys-
tems face is network-intensive attacks that can over-
whelm monitoring and analysis resources. Lab experi-
ments with an IXIA high-speed packet generator, as well
as experiences with Ourmon in a real network environ-
ment, demonstrate this problem. Some recent modi�ca-
tions to Ourmon have greatly improved its performance.
However, minimum-size packets in a high-speed net-
work can still easily make a host lose packets even at
relatively slow rates and low monitor workloads. We
contend that small packet performance is a general net-
work security problem faced by current monitoring sys-
tems including both open source systems such as Our-
mon and Snort, and commercial systems.

1 Introduction
The Ourmon [15] network monitoring system is an
open-source tool for real-time monitoring and measure-
ment of traf�c characteristics of a computer network. It
runs on FreeBSD, and Linux. (There is also code for So-
laris, although it is currently unmaintained.) Ourmon’s
feature set includes various top talker �lters and multi-
ple instances of the Berkeley Packet Filter (BPF) which
taken together allow us to capture interesting features
of the envelope of incoming IP packets. Network mon-
itoring and data visualization are typically performed

on separate hosts. The data visualization system uses
standard network graphical tools to display the resulting
measurements in a fashion that highlights anomalies.

The Internet has recently faced an increasing num-
ber of bandwidth-intensive Denial-Of-Service (DOS)
attacks. For example, in January 2003 the Slammer
worm [4, 12] caused serious disruption. Slammer not
only wasted bandwidth and affected reachability, but
also seriously impacted the core routing infrastructure.
At Portland State University (PSU), four lab servers with
100 Mb NIC cards were infected simultaneously. These
servers then sent approximately 360 Mb/s of small pack-
ets to random destinations outside of PSU. This attack
clogged PSU’s external connection to the Internet, in the
process also causing important network monitoring fail-
ures. Due to the semi-random nature of the IP destina-
tion addresses generated by the worm, the CPU utiliza-
tion of a router sitting between network engineers and
network instrumentation rose to 100%. Engineers were
thus cut off from central network instrumentation at the
start of the attack.

We recently acquired an IXIA 1600 high-speed packet
generator. The Slammer attack inspired us to test our
Ourmon network monitoring system against a set of Gi-
gabit Ethernet (GigE) �ows. Our test �ows included
maximum-sized (1518 byte) and minimum-sized (64
byte) UDP packets, with both �xed and rolling IP desti-
nation addresses.

The Ourmon network measurement system architec-
ture consists of two parts: a front-end probe and a back-
end graphics engine system. Optimally these two parts
should run on two separate computers in order to min-
imize the application compute load on the probe itself.
Our goal in these experiments has been to test the per-
formance of our probe and its BPF network tap rather
than the back-end system.

We constructed a test system consisting of: the IXIA
with two GigE ports; a line speed GigE switch capa-
ble of port-mirroring; and a FreeBSD workstation with
a GigE NIC card. The IXIA was set up to send packets
from one GigE port to the other. The switch was set up
to mirror packets from one IXIA port to the UNIX host
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running our front-end probe.
Like other tools including tcpdump [19], Snort[16],

or Ntop [5, 14], the Ourmon front-end uses the BPF as
a packet tap. The application takes a stream of unfil-
tered packets directly from a BPF kernel buffer fed by
an Ethernet device, bypassing the host TCP/IP stack.
The interface interrupts on packet input, and hands the
trimmed packet (containing all headers through layer 4)
to the kernel BPF filter buffer. The Ourmon probe ap-
plication reads packets, subjecting each packet in turn
to a set of configuration filters. It thus makes sense to
separately test the performance of the BPF and the per-
formance of the Ourmon probe filter system.

Our experimental questions include the following:

1. Using GigE with maximum or minimum-sized
packets, at what bit rate can the underlying packet
tap and buffer system successfully process all pack-
ets?

2. Using GigE with maximum or minimum-sized
packets, what is the smallest BPF kernel buffer size
(if any) for which all packets are successfully pro-
cessed?

3. Ourmon has three kinds of filters: hardwired C fil-
ters, BPF-based interpreted filters, and a “top-N”
flow analysis system (one of a set of top-N tuple
types). Can we determine anything about the rela-
tive performance of these filters? If we are receiv-
ing a high number of packets per second, which of
these filters can keep up?

4. With the Slammer worm, we know that semi-
random IP destinations led to inefficient route
caching in intermediary routers. What happens
when we subject our top-N flow filter to rolling or
semi-random IP destinations?

In section 2 we provide a short introduction to the
Ourmon system. In section 3 we discuss our test setup.
In section 4 we present test results. In section 5 we
discuss possible means for improving our performance,
including several small-scale application optimizations
that have shown reasonable performance improvements.
In section 6 we present related work. Section 7 contains
a discussion of problems and future work. Section 8
draws some brief conclusions.

2 Introduction to Ourmon

Our measurement work in subsequent sections focuses
on the Ourmon probe rather than the graphics engine.
However, in this section we give an overview of the com-
plete Ourmon system. This serves to introduce Ourmon
and to describe the basis of the measurement effort. To
further these goals, we discuss the system at a high-level,
introducing the basic feature sets which we call filters.

border router

Ethernet switch
campus

Internet

probe

DMZ monitors

snort

port 1

port 2 port 3

Figure 1: Ourmon network setup

We provide some probe configuration examples and a
few sample visualizations. All visualizations have been
taken from actual data produced from the Ourmon probe
stationed in PSU’s “network center” or DMZ. Ourmon
is a complex system. While detailed workings of every
feature of the Ourmon system are outside the scope of
this paper, we attempt to give an overall understanding
of system operation.

2.1 Architecture

Ourmon is a “near” real-time web-based network mon-
itor. Web-based data never lags reality by greater than
one minute. The system (and its name) are inspired by
SNMP RMON [22] monitors. The Ourmon probe as-
sumes the port-mirroring functionality of Ethernet-based
switches. A typical setup may be seen in Figure 1. Our-
mon can be configured in many ways. At PSU, the Our-
mon probe is placed in an internet gateway network so
that we can see all traffic going to and from the Inter-
net. In addition, within the PSU Maseeh College of
Engineering and Computer Science, we use an Ether-
net switch and set Ourmon up to watch important server
traffic. An Ethernet switch is configured to mirror (du-
plicate) packets sent to its Internet connection on port 1.
All packets received via the Internet port are copied to
port 3, which is running the front-end Ourmon probe on
a FreeBSD system using the BPF packet tap. Thus the
probe setup is similar to that of Snort, which we show
running on port 2 of the switch. The back-end graph-
ics engine is not performance critical. It may run on a
second computer, which need not be exposed to the In-
ternet.

The probe, written in C, has an input configuration file



FREENIX Track: 2005 USENIX Annual Technical ConferenceUSENIX Association 97

and a main output statistics file. (Depending on the fea-
tures used, other output files are possible.) The config-
uration file, ourmon.conf, specifies various named filters
for the probe to use. Typically probe output is written to
a small ASCII file, mon.lite, that summarizes the last 30
seconds of filter activity in terms of statistics recorded
by each configured filter. Ourmon takes copious packet
data and tries to summarize it in a statistical way, typ-
ically producing integers bound to BPF-based filters or
lists of tuples. Tuples may be top-N flows or other top-
N tuples typically keyed to an IP source “host”. The
goal is to produce small amounts of heavily summa-
rized output data. All probe inputs and outputs are in
simply-formatted ASCII, facilitating analysis and tool-
based processing. If the graphics-engine is on a separate
computer, the resulting output files may be copied over
the network to that box. The graphics engine, in turn,
produces various graphic outputs and ASCII reports for
web display. This file transfer is a simple task, accom-
plished using standard UNIX tools. One typically uses
a batch ssh script driven by crontab to accomplish the
transfer by pulling data from the probe. Other file trans-
fer programs including rsync, wget, or even NFS will
also work. The probe is protected from unauthorized ac-
cess via a host-based access control list.

The graphics engine, written in Perl, produces several
kinds of graphics and reports. RRDTOOL-based [17]
strip charts are used with BPF filter-sets and hardwired
filters. A filter-set is a set of BPF expressions bound
to a single RRDTOOL graph. RRDTOOL graphs are
wrapped in HTML web pages to ease access. Web pages
constituting a year of baselined data are available via
the RRD logging system. Histograms and reports are
used to display the top-N flow filter and other similar
”top talker” tuple lists. A variety of logging is per-
formed: raw logging of probe output; individual logs
per top-N tuple; and report summarizers for some of the
more interesting tuples. The resulting reports provide
both hourly summaries for the current day, and summary
data for the last week. Ourmon does not include a web
server (we typically use apache). Our basic install pro-
vides a default installation of BPF-based filter-sets and
top talker web pages, with individual web pages per fil-
ter, as well as a top-level web page for accessing the
data.

Figure 2 shows the overall Ourmon system architec-
ture. Upon installation, our configuration utility creates
probe and graphics engine shell scripts. In the back-end
graphic box, it also installs a set of static web pages
which encapsulate runtime generated graphics and re-
ports. The probe is started and stopped via its shell script
and runs as a background daemon. It typically runs at
boot. It takes the ourmon.conf input file, parses it, and
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probe raw

output
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data
images
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browsing

topn hgram
rrdtool img +

textual logs
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Figure 2: Ourmon software architecture

then reads packets from the command-line specified net-
work device. It outputs various files depending upon
configured filters including the primary mon.lite file and
other optional secondary tuple files. The graphics engine
script is responsible for transferring the raw probe data
files to the display machine (if necessary), and invokes
analysis tools to produce graphics for the web interface
and also produces log information. The graphics engine
script is invoked by cron once per minute and actually
runs to completion twice per minute – hence the sam-
ple period is thirty seconds. The graphics engine places
the graphics and some analyzed report data in the web
output directory thus refreshing the data encapsulated
by the web pages installed at configuration time. The
script here also produces logging information not avail-
able on the web, which may be looked at for layer anal-
ysis. The user interface for the resulting display of data
is the user’s web browser of choice.

The Ourmon web interface is quite simple. Our-
mon can be observed in operation in the PSU DMZ by
visiting http://ourmon.cat.pdx.edu/ourmon
with a graphical web browser. From there, a variety of
RRDTOOL and other filter outputs are available. More
reports can be accessed simply by clicking on the appro-
priate links. The top-level web page in general shows
current RRDTOOL pictures, current histogram pictures
for top-N data and also has links to some kinds of sam-
ple period or summarized daily reports. The top page
may be viewed as a directory for the various RRDTOOL
filters, and other kinds of filters. This is because it is in-
tended that there should be at least one current picture
for every filter type on the top level page. The top picture
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may in turn lead to a link that provides more filter details
on lower level pages. If we focus on RRDTOOL filters,
each filter has its current graph for today on the top-level
page with ”now” on the right-hand edge of the picture.
That graph in turn is a link that leads to a second-level
page that has graphs for the current day (roughly), the
current week, the current month, and the current year.
Thus each RRDTOOL filter provides a year’s worth of
baselined data (this is a typical RRDTOOL toolset fea-
ture and is not a noteworthy Ourmon feature). Top-N
data is similar. The current picture for the top 10 tuples
is shown on the top page, and that picture in turn is a link
to a second-level page that provides supplemental tuples.
Because the current Ourmon front page is quite large, it
is not practical to provide a screenshot. However, the
displays shown in this paper give a good indication of
the kinds of graphical display available.

2.2 Configuration and Use

The Ourmon probe process uses the BPF in two ways.
The BPF library is used to extract packets from the ker-
nel BPF buffer system. Ourmon also allows the admin-
istrator to evaluate multiple concurrent BPF expressions
in user mode. In the probe configuration file, a user can
group logically related BPF expressions in a BPF filter-
set. Each expression in the set can be graphed as a sepa-
rate line in a shared RRDTOOL strip chart graph in the
back-end. Such filter-sets have a name, provided by the
user in the front-end config. The back-end uses the fil-
ter name to synthesize an RRDTOOL database expres-
sion, and to create runtime graphics for any new filter-
set. We provide a collection of BPF filter-sets with our
default install, many of which perform useful network
anomaly detection tasks. It is also easy to configure new
graphical outputs for Ourmon data. Graphical outputs
are described using the ”tcpdump” expression language
as found in libpcap [19]. Tcpdump and other common
network tools also use these filters. After creating a new
probe configuration filter, the user must give it a unique
name. A small amount of HTML, copied from our tem-
plate files, is usually sufficient to glue the new filter to
the supplied main page. We hope to further automate
this process in a future release. Thus Ourmon may be
easily extended by a user with a new BPF-based set of
expressions.

As one example, Figure 3 shows a simplified probe
configuration for one BPF filter-set. This filter-set
groups the performance of five application services to-
gether and uses one BPF expression each for ssh, com-
bined P2P protocols, web, FTP, and email. Probe output
is not intended for human consumption, but is useful for
debugging. The probe output for the filter above over a
snapshot period might look like this:

bpf "ports" "ssh" "tcp port 22"
bpf-next "p2p" "tcp port 1241 or

tcp port 6881"
bpf-next "web" "tcp port 80 or

tcp port 443"
bpf-next "ftp" "tcp port 20 or

tcp port 21"
bpf-next "email" "tcp port 25"

Figure 3: Ourmon probe configuration

bpf:ports:5:ssh:254153:p2p:19371519:
web:41028782:ftp:32941:email:1157835

Thus ssh/p2p/web/ftp/email byte counts will all appear
in the same RRDTOOL graph as in Figure 4.

The filter configuration allows the user to name the
composite filter-set graph “ports”. This is accomplished
using the “bpf” configuration tag. This tag provides a
line label and initial expression for the graph. The con-
figuration tag “bpf-next” adds another BPF expression
to the graph. The graph may be terminated one of sev-
eral ways, including a new “bpf” tag, which starts a new
graph. Overall, five separate user-mode BPF configu-
ration expressions like “tcp port 22” are mapped to ap-
propriate line labels (“ssh”) in the same graph. (This
graph is taken from the PSU DMZ and shows web traf-
fic and P2P traffic as the biggest bandwidth consumers.)
The probe executes the user-mode BPF runtime expres-
sions on the incoming packet stream from the packet tap,
counting matching bytes or packets. At the sample pe-
riod timeout, it outputs the mon.lite file. In this case,
the file includes the name of the filter-set and line label
/ byte count tuples for each BPF expression. Note that
multiple BPF filter-sets are possible. Thus many sepa-
rate BPF expressions can be executed in the probe ap-
plication. At the time of writing, the current PSU DMZ
probe software is running around 80 BPF expressions in
twenty filter-sets.

Ourmon also supports a small set of “hardwired” fil-
ters programmed in C and turned on via special filter
names in the configuration file. For example, a hard-
wired filter counts packets according to layer 2 unicast,
multicast, or broadcast destination address types. One
very important filter called the packet capture filter in-
cludes statistics on dropped and counted packets pro-
vided directly from the BPF kernel code. The packet
capture filter is fundamental. It is used to determine
when the kernel BPF mechanism plus application mix
is overloaded in our testing. Typical front-end output in
the mon.lite file for that filter and the layer 2 packet ad-
dress type filter might look like this:

pkts: caught 53420 drops: 0
fixed_cast: mcast: 2337215:
unicast: 15691896: bcast: 0:
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Figure 4: A BPF filter-set graph showing application byte counts

The packet capture filter (“pkts”) output shows that the
packet tap during the last sample period caught 53240
packets and dropped none. In Figure 5 we show an ex-
ample back-end graph for this filter. The upper line in
the figure indicates captured packets: the lower line in-
dicates drops. This graph is from our DMZ during the
day of a Slammer re-infection. It can be seen that the
Ourmon probe, at the time running on a Pentium-3, has
caught the attack even though many packets have been
dropped. This is a real-world example of small pack-
ets causing a monitor system to underperform. We have
also seen distributed TCP SYN attacks cause the same
phenomenon.

The third and last filter class in Ourmon are top-N
based filters. Top-N filters produce a sublist of limited
set size: the top-N elements of the entire sorted list. The
list is characterized by a tuple that includes a key and
a set of integer counters. In some cases a nested list of
tuples might include sampled destination ports or other
data. Tuple keys may be as simple as an IP source ad-
dress. This has proven to be a very profitable focus for
network summarization and anomaly detection. An IP
flow from the top-N flow filter can also be a tuple key.
Tuple-based filters currently include:

1. The traditional top-N talker flow filter that tells us
the top IP, TCP, UDP, and ICMP flows. We view
this filter as typical of its class: in this paper we
focus only on measurements related to this filter.

2. A top-N port monitor that tells us which TCP and
UDP ports are the most used.

3. A top-N TCP SYN monitor that is quite useful in

anomaly detection. It includes a basic top talker
graph to tell us which IP hosts are sending the most
SYNS. It also includes several important anomaly
detection functions including a port signature re-
port that reveals ”noisy” hosts with a set of sampled
destination ports. These hosts are typically P2P
systems or scanners or hosts infested with worms.
An RRDTOOL-based worm graph gives us a count
of such noisy hosts at any one time. This SYN tuple
filter is the focus of much ongoing research.

4. A top-N scanning monitor that tells us which hosts
are doing IP destination scanning, and which hosts
are doing L4 (TCP and UDP) destination port scan-
ning.

5. A top-N ICMP error monitor that tells us which
hosts are generating the most ICMP errors and as
a side effect, which systems have created the most
ICMP errors with UDP packets.

When configured to use the top-N flow filter, the
probe builds up a hash-sorted list of IP flows over the
sample period and writes the top-N, say 10 to 100, IP
flows to the main output file. It also writes subsets
of the IP flow including TCP, UDP, and ICMP flows.
The graphics-engine takes this information and produces
graphical histograms and text report summaries hourly.
The key for this tuple type is a flow. A flow is a five-tuple
consisting of IP source, IP destination, IP next protocol,
L4 source port, and L4 destination port. See Figure 6
for an example of back-end graphics for the top-N re-
port: we show a DOS attack on a local IT administra-
tor’s host machine. The top six flows in the graph con-
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Figure 5: The packet capture filter graph showing counts and drops during a slammer attack

stitute the attack. The attack packets were launched over
Internet2 using a spoofed IP source address and unfor-
tunately clogged our Internet1 connection (a DS-3 at the
time). Multiple UDP flows, each around 1.5 Mb/s, are
shown. This picture is of historic significance to us as
it was discovered during a “demo” on the first day that
Ourmon was ever deployed in PSU’s network. This re-
sult emphasized to us the fact that Ourmon is not just a
networking monitoring system, but also an anomaly de-
tection system.

In summary, the front-end has three kinds of filters:
hardwired C filters, user configurable BPF filter-sets,
and top-N tuples including a flow filter. We are inter-
ested in the execution cost of each of these three kinds
of filters. Of our tuple types, we have chosen the top-
N flow filter as representative of its class. It is also the
first filter type developed in its class so we thus have the
most experience with it. A user may program any num-
ber of BPF filter-sets and this complicated the analysis
somewhat.

The packet capture filter is especially important, as it
serves to tell us when we are losing packets. We can
view this as an important indicator that the combined
kernel and probe application system is in failure mode.
An important cause of failure is too much work done at
the application layer, causing the application to fail to
read buffered kernel packets in a timely manner.

3 Experimental Setup

The hardware used in our testing consists of three pieces
of equipment:

1. An IXIA 1600 chassis-based packet generator with
a two port GigE line card. One port sends packets

and the other port receives packets.
2. A Packet Engines line speed GigE switch. Three

ports on the switch are used: one for the IXIA send
port, one for the IXIA receive port, and a third port
connected to the UNIX host for mirroring the IXIA
flow.

3. A 1.7 GHz AMD 2000 computer system. The
AMD processor is roughly comparable to a 2GHz
Intel Pentium 4 processor. The system motherboard
is a Tyan Tiger MPX S2466N-4M. The mother-
board has two 64-bit PCI slots. We use a SysKon-
nect SK-9843 SX GigE card in one of the slots.

Software used includes Ourmon 2.0 and 2.4, (2.4 at
the time of writing), along with the 0.7.2 libpcap [19]
library. The host operating system is FreeBSD 4.9, run-
ning only the Ourmon front-end probe.

We set up the IXIA to send either minimum-sized
packets or maximum-sized Ethernet packets. One port
on the IXIA sent packets through the switch to the other
IXIA port. All packets were UDP packets.

The IXIA allows the user to select an arbitrary packet
sending rate up to the maximum possible rate. It can
also auto-increment IP destination addresses. We used
this feature as an additional test against the top-N filter.

According to Peterson [7] the maximum and mini-
mum theoretical packet rates for GigE are as shown in
Table 1. We used these values as a measurement base-
line. We observed that the IXIA 1600 can indeed gener-
ate packets at nearly 100% of this rate for both maximum
and minimum-sized packets. We used these numbers to
make sure that our Ethernet switch did not drop pack-
ets. We hooked both IXIA GigE ports up directly to the
switch and sent packets from one IXIA port to another.
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Figure 6: Top-N UDP flow histogram showing a DOS attack

Table 1: GigE rates
B/pkt pkt/s

min 64 1488000
max 1518 81300

The IXIA’s built-in counters at the receive port reported
the same packet counts as at the send port.

The test methodology involves setting up a UNIX host
with a driver script and some set of Ourmon filters. The
front-end probe is started, and the IXIA is configured to
send min or max packets at some fraction of the maxi-
mal rate. Ourmon is configured with some combination
of hardwired, user-mode BPF, and the top-N filter as de-
sired. The test flows are then started on the IXIA, and
the results observed using the mon.lite output file.

The test script is the Bash Shell script shown in Fig-
ure 7. The FreeBSD sysctl(8) command is used to set
the kernel BPF buffer size. This is because recent ver-
sions of the pcap(3) library on FreeBSD will automati-
cally size the buffer to be used by the client application
to match the kernel buffer size. It should be noted that
the traditional size of the kernel BPF buffer is typically
small (a few KB/s), as it was originally intended for the
tcpdump sniffer. The parameters to the Ourmon probe
program tell it to take input from a local configuration

#!/bin/sh
BSIZE=1048576
sysctl -w debug.bpf_bufsize=$BSIZE
sysctl -w debug.bpf_maxbufsize=$BSIZE
./ourmon -a 5 -I sk0 -m /dev/tty \
-f ./ourmon.conf

Figure 7: Test script

file, to dump the output information to the screen every
five seconds, and to use the SysKonnect card as the input
interface.

Tests were run using either maximum-sized or
minimum-sized packets. If we dropped packets, we at-
tempted in every case to eliminate packet drops by in-
creasing the kernel BPF buffer size (BSIZE above). If
that failed, we then reduced the IXIA’s send rate until all
packets were transmitted.

For testing, we identified five interesting categories of
Ourmon filters and constructed filter tests for these cate-
gories.

null: The packet capture filter is on by default and is
the only filter used.

hard: The hardwired C filters as a group.
bpf: BPF filters as one or more filter-sets.
top-n: The top-N flow filter mechanism.



FREENIX Track: 2005 USENIX Annual Technical Conference USENIX Association102

Table 2: Maximum Packet Tests
test BPF top-n BPF drop

sets flows min (KB/s) rate
null filter 128 0%
hardwired 128 0%
top-n 1000 128 0%
top-n 10000 XXX 80%
BPF 1 128 0%
BPF 4 128 0%
BPF 8 128 20%
BPF 8 7168 0%
test config 1 1000 7168 0%

combo: A simple combination of all filters.

The null filter tells us whether or not the BPF in the
kernel was losing packets, as its count/drop information
is taken from the operating system. The hard, bpf, and
top-N filter categories were tested individually in order
to determine if the filter type itself had an impact on the
overall performance. The six hardwired C filters avail-
able at the time of testing were used in the tests. The bpf
tests were based on a filter-set that had 4 simple expres-
sions in it. The individual BPF expressions were con-
figured to capture TCP ports that could not match the
output of the IXIA (UDP packets). It seemed reasonable
for BPF expressions to always fail to match.

Repeatedly testing the top-N filter with the same IP
flow would yield no new information. Therefore, for the
top-N test we used a rolling IP destination setup where
each subsequent UDP packet within a set of 1000 or
10000 had a different IP destination. This could be said
to be a rough simulation of the Slammer worm, with its
variation in IP destinations.

4 Test Results
Test results fall into two basic categories, which are re-
ported separately: tests with maximum-sized packets,
and tests with minimum-sized packets.

4.1 Maximum Packets
In this set of tests, packets were always 1518 bytes,
the normal maximum MTU for Ethernet packets. (This
works out to a 986 Mb/s flow of UDP packets). Tests
included the null, hardwired, top-N (with different des-
tination flow counts), bpf, and combo tests.

The test results are summarized in Table 2.
The flow rate was set to maximum. The drop rate

therefore shows packets lost at GigE speeds. In the null
case, the configuration almost worked with the typical
BSD default BPF buffer size of 4 KB/s. However, some
packets were lost at a 30 second interval. This may have
had something to do with an operating system timer. In-

Table 3: Minimum Packets and Null Filter
BPF buff (KB/s) drop thresh (Mb/s)
32 53.33
128 68.52
256 76.19
512 76.19

creasing the kernel BPF buffer size to 128 KB/s resulted
in perfect transmission, even after adding in the hard-
wired filters.

The top-N flow filter worked with no loss at 1000
flows and completely failed at 10000 flows. Larger BPF
buffers did not help (shown as XXX in the table). This
is the most significant failure case with maximum-sized
packets. Decreasing the IXIA flow rate to 45 Mb/s re-
sulted in perfect transmission. For the bpf tests, we in-
creased the number of filters to 8 sets (32 BPF expres-
sions) before running into some loss. At that point, we
increased the kernel BPF buffer size. We found that a
very large buffer of 7 MB/s could indeed get us back
to lossless transmission. With the combo configuration
(hard + top-n + 1 bpf set) we did not experience any
loss. Note however that we used only 1000 flows with
the top-N filter.

4.2 Minimum Packets

Attempts to capture maximum-rate flows of minimum-
sized packets (64 bytes) uncovered serious problems.
We therefore report our results as a series of small ex-
periments. Each experiment focuses on a different test
domain.

4.2.1 Null Filter Only

With the null filter, we are not doing any significant
application work. Consequently, this test determines
whether the kernel driver and buffer subsystem plus the
application read can actually capture packets. It was not
always possible to capture all packets even in the null
filter case. Instead we attempted to determine the effect
of the kernel BPF buffer size on drop rates as shown in
table 3.

A buffer size of 256 KB/s appears optimal. At this
size the system begins to drop packets at 76 Mb/s.
Larger kernel buffers do not improve the result. Of
course the most important aspect of this test is that
we cannot capture more than around 10% of the GigE
stream without loss. (Note that packet overhead for min-
imum packets results in a maximum data flow of around
760 Mb/s.)
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Table 4: Hardwired and BPF Tests
test BPF sets flow (Mb/s) drops
hardwired 76 0%
BPF 1 68 0%
BPF 2 53 0%

Table 5: Minimum Packets—top-N Tests
flows drops buffer (KB/s) flow (Mb/s)
1 0% 256 76
100 1% 256 76
1000 25% 256 76
1000 0% 256 45
10000 50% * *

4.2.2 Individual Filter Types

Having determined baseline drop rates using the null fil-
ter, we could now proceed to measure the impact of other
filter types. In the bpf filter-set tests, we tried both one
and two filter-set configurations. In the top-N filter test,
we varied the number of simultaneous flows. Table 4
shows the results for the hard and bpf tests. Table 5
shows the results for the top-N tests.

Hardwired filters appear to have no impact on perfor-
mance. The bpf filters have some performance impact,
visible even at a modest 76 Mb/s transfer rate. At this
transfer rate, 1000 unique flows is stressful for the top-N
filter. However reducing the flow rate to 45 Mb/s al-
lows the filter to keep up with the data. 10,000 unique
flows cannot be handled with any kernel buffer size at
any measured transfer rate.

4.2.3 Combination filtering

In this experiment we measure the combo filtering previ-
ously discussed. Here we vary only the flow rate, hold-
ing the buffer size constant at 256 KB/s and the number
of flows constant at 1000. Table 6 shows the results.

We see that we must reduce the flow rate to roughly
one-half maximum in order to prevent drops. This is
probably because of the impact of 1000 flows on the
top-N filter. The filters here are in truth fairly mini-
mal, as there is only one BPF filter-set. In reality one
would want more filter-sets to get better traffic informa-
tion. The bottom line is that we must reduce the flow rate
to 38 Mb/s for even a modest amount of work to be per-
formed without packet loss. Not only are small packets
hard to deal with even for bare-bones applications that
do no real work in processing them, but real levels of
work will likely reduce the amount of processing power
to very small throughput rates.

Table 6: Minimum Packets—All Filter Types
flow (Mb/s) drops
76 44%
68 37%
53 18%
45 03%
38 0%

5 Mitigation

The poor performance of the Ourmon probe on even
modest flows of small packets was of obvious concern.
In the real world in PSU’s DMZ we feel that Ourmon
is useful as an anomaly detector even under conditions
of severe packet loss. Indeed, such a loss constitutes an
anomaly indicator in its own right. Nonetheless, the ex-
hibited performance of Ourmon in the lab on minimum-
sized packets was unexpectedly poor. This poor perfor-
mance was a threat to some of the conclusions reached
in real-world use. Several strategies were thus pursued
in improving probe efficiency.

The top-N flow filter has been both one of Ourmon’s
most useful tools and one of its least performant. It was
observed that the hashing/caching strategies and data
structures used in the initial implementation of this fea-
ture could be vastly improved. In optimizing the flow fil-
ter code, our main strategy was aimed at improving the
runtime hashing mechanism. A simple but key improve-
ment was in choosing an appropriate size for the hash
buffer. The hash function and hashing strategy were also
changed to directly address the problem of hashing a tra-
ditional flow tuple. Other efficiency improvements in-
cluded inlining the basic search and insert functions and
the hash function itself.

The user-level interpreted BPF filter performance was
also a cause for some concern. Our real-world PSU
DMZ probe has recently been seeing peaks around
40000 pkt/s, and has had 80 BPF expressions in its con-
figuration. The top-N flow filter used to be the main
bottleneck. Over a number of years we have increased
the number of BPF expressions used in our DMZ and
have made the BPF sub-system the new contender for
that honor. Our idea for improving packet filtering per-
formance was not a particularly clever one, but was quite
effective.

We have created a simple runtime facility, CBPF, for
hand-coding commonly used BPF expressions as C sub-
routines. The probe configuration file may refer both to
BPF expressions and to CBPF functions. One may thus
optionally replace a commonly-used interpreted BPF ex-
pression with a call to a C function via a function jump
table. For example, roughly half of the BPF expres-
sions we are using in our DMZ simply watch subnets.
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Consider this sample BPF subnet-recognizing expres-
sion from a configuration file:

bpf "subnets" "subnet 1"
"net 192.168.1.0/24"

The CBPF replacement for this is simple:

cbpf "net" "subnets" "subnet 1"
"192.168.1.0/24"

This is not terribly sophisticated engineering, but it gets
the job done. The BPF interpreter remains useful, as its
expression language is versatile. In general, however,
long or commonly-used BPF expressions can be opti-
mized; most of the filtering in the PSU Ourmon config-
uration is now being performed by CBPF.

Ourmon has been modified in order to analyze the ef-
fect of our optimizations. Instead of taking data from the
network, we can capture real packets in the PSU DMZ
with tcpdump. We can then take the dump data and feed
it to the Ourmon probe. This allows us to use gprof pro-
filing to determine relative speed improvements for code
changes.

We recently conducted an experiment using 10 mil-
lion packets— roughly 1 GB of data—from our DMZ.
We compared the difference between a not-yet-released
version of Ourmon and the older Ourmon version 2.2.
Ourmon 2.2 lacked top-N optimizations and CBPF sup-
port. (The currently released version 2.4 of Ourmon has
the top-N optimizations in it. However, while CBPF will
be available in the next release, it is not in 2.4.) We com-
pared the performance of CBPF expressions versus BPF
for filtering; we also analyzed the performance of old
versus new top-N code. The performance improvements
were gratifying. CBPF expressions proved to be roughly
10 times faster, with the performance improvement de-
pending on the complexity of the expression. The im-
proved top-N facility was roughly 30 times faster.

As expected, these mitigations resulted in greatly im-
proved performance when fielded in the PSU DMZ. As
with most large intranets, the traffic volume in the PSU
DMZ is quite cyclic. When Ourmon used interpreted
BPF expressions for all filtering, it routinely dropped
many packets during peak usage times. Installing Our-
mon with CBPF essentially eliminated this problem.
Figure 8 illustrates this phenomenon. The upper line in
the figure indicates weekly traffic volume. The lower
line indicates the number of dropped packets during the
time period when Ourmon CBPF was introduced. The
date the optimization is installed (week 5) is quite ap-
parent from the graph.

Other mitigations are highly desirable, but require
much more effort. Such schemes might include: plac-
ing the probe in the kernel; various forms of small-scale

threaded parallelism done either at the application or
kernel level on a SMP platform; and putting the probe
into a network card, possibly using something like the
Intel IXP [2] network processor which uses embedded
parallel processors. We have experimented to some ex-
tent with all three of these options. In the near term we
intend to pursue the more portable application-level par-
allelism option, although we do not rule out an IXP port.

6 Related Work
Ourmon touches on a number of areas of computing re-
search and practice. Minimally, any discussion of re-
lated work must include comparison with existing tools,
background related to the BPF, and work on the problem
of processing small packets.

In a broad sense Ourmon could be compared to sim-
ple sniffers like tcpdump. Ourmon’s goal is somewhat
different, however. Sniffers focus on displaying a serial
list of individual packet contents based on one expres-
sion. Ourmon, on the other hand, tries to summarize
many packets and give a parallel view of network traffic
via many concurrent BPF expressions.

The measurement system closest to Ourmon is prob-
ably Ntop [5]. Ntop and Ourmon are both open source.
Ntop is a program that can be said to be vertically in-
tegrated. It combines the probe and graphics engine
functionality of Ourmon plus a web server into one pro-
gram. Ntop could be said to have a desktop orienta-
tion. It derived its name from its origins as a network
version of the UNIX top program. Ourmon was de-
signed more along the lines of the traditional distributed
SNMP RMON probe from which it derives its name.
Ourmon easily decomposes into a two-CPU system de-
sign separating capture and display. Ourmon also has a
network-statistical feature set more in keeping with re-
cent cultural trends in network engineering. For exam-
ple, Ourmon relies heavily on RRDTOOL-based graph-
ics. RRDTOOL is also used by other popular net-
work management tools like Cricket [21, 20]. Ntop has
a much better graphical user interface than Ourmon—
perhaps there may be room there for future joint effort.
Close examination of the feature sets of Ourmon and
Ntop shows significant differences.

Ourmon might also be compared to closed-source
commercial tools like SNMP RMON II. One of the orig-
inal design goals of Ourmon was to provide a rough
open source equivalent of SNMP RMON. This notion
includes the fundamental probe versus graphics engine
two-CPU design. On the other hand, Ourmon deliber-
ately used a human-debuggable TCP-based ASCII tuple
format in an effort to avoid the complexity inherent in
the implementation and use of the ASN.1 remote proce-
dure call notation. Ourmon makes no attempt to use a
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Figure 8: Packet losses without/with CBPF

standardized network protocol to join the probe and the
graphics engine. On one hand, this inhibits interoper-
ability of these components. On the other hand, it allows
easy and unconstrained changes in component commu-
nication with each new version.

In a similar vein, Ourmon could also be compared to
Cisco’s NetFlow[1]. We should point out that there exist
some open source NetFlow probes. However typically
one encounters a NetFlow probe in a more expensive
commercial router or switch. At least one open source
NetFlow collector, NEye [13], is available; the reporting
functionality of NEye does not yet appear to be com-
parable with that of the closed-source Cisco collector.
NetFlow aggregates IP flows along the traditional lines
of an IP flow tuple: IP src, IP dst, protocol, L4 src, L4 dst
ports. Ourmon’s new tuples, such as its TCP SYN tuple,
tend to be targeted toward specific features interesting
for anomaly detection. Commonly, these are statistics
about a single IP source. Our not-yet-released experi-
mental version of Ourmon includes statistical analysis
based on Layer 7 payloads. This sort of analysis is cur-
rently impossible to perform using NetFlow, and it is dif-
ficult to see how small changes to the NetFlow architec-
ture could accomodate it.

From the intrusion detection point of view, Ourmon
and Ntop are somewhat similar. They are lightweight
tools that show anomalous behavior via graphs. In con-
trast, an Intrusion Detection System (IDS) tool like Snort
does signature-based analysis on every packet. One
could argue that Ourmon is lightweight compared to
Snort. Ourmon looks principally at the layer 1–4 net-
work headers and almost entirely ignores the data pay-
load. It is thus reasonable to expect that Snort’s pro-

cessing will be impacted even more than Ourmon’s by
flows consisting of high volumes of small packets. As
Ourmon’s analysis of data payloads increases, this dif-
ference may decrease. On the other hand, future ver-
sions of Snort might also be expected to increase their
level of analysis. The bottom-line difference is simply
that Ourmon is an anomaly detector and analysis tool,
while Snort is primarily a signature-based IDS.

Other researchers have studied the problem of cap-
turing high-volume flows of small packets. For exam-
ple, Mogul and Ramakrishnan [11] describe the phe-
nomenon of receive livelock, in which the network de-
vice driver bottom-half runs to the exclusion of higher-
level code that processes received packets. They present
improved operating system scheduling algorithms that
can lead to fair event scheduling, with the result that
receive interrupts cannot freeze out all other operating
system events.

One must consider that there is not a lot of time to
process packets. A maximal packet flow of about 1.5
million small packets per second works out to approx-
imately 700 nanoseconds per packet! Some sophisti-
cated approach, such as improving the individual com-
pute performance of various filter mechanisms or ap-
plying parallelism, is needed to attain adequate perfor-
mance. A recent IDS [8] contains an interesting paral-
lel hardware engine based on a flow slicing technique.
This hardware reportedly improves Snort’s performance
under high packet loads. However constructing such a
system in such a way that it effectively uses parallelism
and yet remains cost-effective is a challenge.

Recently, researchers have been working on enhance-
ments to the BPF with the goal of improving BPF per-
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formance. For example, the xPF system [6] expands the
BPF to a general purpose computing machine by allow-
ing backward branches. This provides the opportunity
to enhance BPF performance by running filters entirely
in-kernel. The BPF+ system [3] optimizes BPF perfor-
mance using both machine-code compilation and vari-
ous optimization techniques. Our CBPF, while much
less sophisticated, echoes the goals and general method
of this latter work.

7 Analysis

Our experimental work leads to some interesting recom-
mendations and observations:

1. The default FreeBSD BPF buffer size of a few KB/s
was chosen for tcpdump on older, slower networks:
this size is inadequate for more thoroughly moni-
toring a modern network. We suggest that modern
UNIX/Linux kernels adopt a larger default buffer of
at least 256 KB/s. This size should not unduly bur-
den modern systems, and should improve the per-
formance of most network monitoring tools. Net-
work administrators should understand that a multi-
megabyte buffer on the order of 8 MB/s may be
needed for a full network monitoring system such
as Ourmon. Larger buffers should improve the per-
formance of the Linux packet socket, should min-
imize the loss of large packets by network sniffing
applications such as Snort.

2. Our BPF filters seem to have a kernel buffer cost as-
sociated with them. Our results suggest that there is
a relationship between the amount of kernel buffer
space needed to mask filter latency and the number
of BPFs used in our application. Our tests seem to
imply that the BPF mechanism is less costly than
the top-N filter. However the BPF mechanism can
have any number of expressions, and the expres-
sions themselves can vary in complexity. It is thus
hard to compare the BPF filter mechanism to the
top-N filter mechanism in terms of compute power.

3. The real computation problem for the top-N system
is that it is driven to extremis under attack attempt-
ing to cope with random IP source and/or destina-
tion IP addresses. The hash-based top-N algorithm
will first search for the given flow ID, and then per-
form an insert if it fails to find the flow. Conse-
quently random flows always cause an insert. This
leads to an interesting research question: How can
we deal with boundary conditions caused by ran-
dom IP addresses without unduly impacting effi-
ciency mechanisms meant for normal bursty flows?

4. Our 2 GHz Pentium-4 class computer cannot cap-
ture more than 10% of the minimum-sized packet

flow. Worse, if the computer is expected to per-
form actual application-level work using the data,
the fraction of packets we capture without loss falls
below 5%. Small packets mean big trouble.

This last item deserves extended discussion. Con-
sider an IDS system such as Snort. A signature-based
IDS system wants to run an arbitrary number of signa-
tures over both the packet headers and the packet data,
and may choose to store its measurement results in a
database. Clearly per-packet processing times become
quite large in this scenario.

Now consider the security principle known as weakest
link. For example, Bruce Schneier writes [18]: “Security
is a chain. It’s only as secure as the weakest link.” An
IDS system incurs a significant risk when it drops a sin-
gle packet. The dropped packet may be the one with the
Slammer worm that will infect an internal host. Worse,
a set of coordinated systems might launch a distributed
DOS attack against an IDS monitor, first blinding it with
small packets and then sneaking a one-packet worm pay-
load past it. Packet capture for small packets at high
rates is an important open security problem.

It should also be pointed out that the natural evolution
of any network monitoring tool is toward more function-
ality at the expense of more work. For example, we have
recently added many new kinds of list tuples to Ourmon
in addition to our original top-N flow tuple. Many of
these new tuples are useful for both network manage-
ment and anomaly detection, We are also starting to ex-
pand our packet analysis work to Layer 7. In the extreme
case, Snort and Ourmon could be combined.

In addition use of the Internet is always growing.
When Ourmon was originally placed a few years ago in
the PSU DMZ, we saw 20 K pkt/s at peak times. Now
we see peaks of 40 K pkt/s. When both new tool features
and packet counts grow, and these factors are combined
with the possibility of large distributed attacks, it is fair
to say that the computation overhead problem is non-
trivial.

A related open research question: other than by trial
and error, how does one determine if a measuring system
is powerful enough to fit the needs of a certain network
configuration? From real-world experience in our DMZ,
we know that a 3 GHz P4 is challenged by 40 K pkt/s
flowing from a moderately-loaded 100 Mb/s network
connection. Such a system, however, may work well
with a 10 Mb/s Internet connection. An administrator
faced with 500 Mb/s peaks, or even an OC-3 (155 Mb/s)
faces a difficult problem in specifying a hardware en-
vironment adequate for use with a signature-based IDS
such as Snort, a network monitor and anomaly detector
such as Ourmon, or even a firewall.
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Our future work will be aimed in several directions.
We think that the small packet problem must be ad-
dressed. We plan to further investigate various parallel
architecture notions. In particular, we are hoping that a
threaded SMP solution will prove sufficient. This could
lead to an open source multi-platform (BSD/Linux)
probe.

Although we have not provided many details of our
recent anomaly detection work in this paper, we believe
that our recent work in the last year in that area has been
promising. (See section 8 below for more technical in-
formation.) We intend to steer Ourmon further in this
direction. For example, we are beginning to investigate
lightweight Layer 7 payload scanning statistics that may
help us find peer-to-peer applications as well as logical
networks composed of IRC bots (“botnets”). We are
also studying the effects of various statistical schemes
for cheap classification of attackers and peer-to-peer ap-
plications.

We are in the process of bringing up an automated
trigger-based packet capture facility. This facility allows
us to specify a threshold for any BPF expression and for
some of the top-N style graphs. Packets are captured
during peak times in which a threshold is exceeded, and
stored in tcpdump capture files for later analysis. This
facility should prove useful in characterizing and ana-
lyzing anomalies reported by Ourmon.

8 Conclusion
Ourmon is a novel tool for network monitoring aimed
principally at anomaly detection and analysis. Exper-
iments measuring the performance of both the under-
lying kernel BPF filter system and the Ourmon front-
end filter systems have led to dramatic improvements in
Ourmon’s performance. Ourmon’s probe uses the BPF
and its CBPF in a flexible fashion, allowing the user to
group a small set of related filter expressions into a sin-
gle RRDTOOL graph. Ourmon also provides various
graphs and reports about tuple lists keyed by flow IDs,
IP source addresses, and L4 ports, which are intended to
summarize statistically significant network events.

Ourmon fills an important niche in the open source
network monitoring toolset. It also points up some
fundamental performance issues in network monitoring.
Addressing these issues in Ourmon has led, and should
continue to lead, to improvements in general network-
ing monitoring performance and a better understanding
of these performance issues.

Availability
Ourmon is freely available at http://ourmon.cat.
pdx.edu/ourmon under the BSD License. More
technical information may be found for the cur-

rent release at http://ourmon.cat.pdx.edu/
ourmon/info.html.
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