
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



A new Distributed Security Model for Linux Clusters

Makan Pourzandi
Open Systems Lab, Ericsson Research, Town of Mount-Royal (QC) Canada.

Makan.Pourzandi@Ericsson.Com

Abstract

With the increasing use of clusters in different domains,
efficient and flexible security has now become an es-
sential requirement for clusters, though many security
mechanisms exist, there is a need to develop more flex-
ible and coherent security mechanisms for large dis-
tributed applications.

In this paper, we present the need for a unified clus-
ter wide security space for large distributed applica-
tions. Based on these needs, we propose a new security
model that implements security zones inside the cluster.
The model is an extension to Mandatory Access Con-
trol (MAC) mechanisms used at node level to the whole
cluster with processes as basic security entities.

We designed this model with clustered Linux servers
running carrier-grade applications in mind but this
model can be used in any domain that needs Linux clus-
ters running large distributed applications continuously
with no interruptions. We prove the feasibility of this
approach through an open source implementation of the
concept [1].

1 Introduction

Distributed applications become more and more com-
plex. Often, they are made of different software com-
ponents of different functionality. The current security
mechanisms are based on user permissions, that pro-
vides solid security environment in many cases but they
are not flexible enough for large distributed applications.

In many of these applications, only few users exist on
dedicated clusters for running a pre-defined set of soft-
ware for a long period of time without interruption.
However, the user based security system does not sup-
port authentication and authorization checks for interac-
tions between two processes belonging to the same user.
This situation leads to an all-or-nothing approach, as all

users within a group or all processes of the same user
have the same rights. This is most inconvenient when
one wishes to compartmentalize these rather large dis-
tributed applications by restricting the access to some
resources to some processes or users of the same group.

This lack of compartmentalization between different
software components, results in that a vulnerable small
component may compromise the whole system. This sit-
uation gets even worse with systems running untrusted
software (unfortunately, in practice, it is impossible for
time and economic reasons to security audit all software
running for these rather large applications).

This situation is due to the use of user-level granular-
ity as the basic entity for the security control in these
distributed applications, for which this granularity is not
sufficient. Therefore, there is a need for finer granularity
security mechanisms which use the individual process as
the basic entity.

Furthermore, the security must be pervasive and make
a coherent system across the cluster. Therefore, dis-
tributed security functions must be put in place through-
out the cluster. However, the current situation is based
on assembling heterogeneous security solutions for dif-
ferent nodes. This leads to security management night-
mares and stiff integration problems, and too often
leaves gaps between different security mechanisms al-
lowing security breaches.

The paper is organized as follows: Section 2 discusses
the main concepts behind our approach. In Section 3,
we detail the implementation of our security model. We
conclude by presenting the future work.

2 Cluster-wide security space

We detail hereafter different elements of our security
model.



2.1 Process level granularity

In order to implement process-level security mecha-
nisms, we need to identify the different security contexts
for individual processes inside the cluster.

A security node identifier(SnID) is assigned to each
node. All processes and resources also receive asecu-
rity context identifier(ScID). We define ScIDs for pro-
cesses, binary files and resources on the cluster. These
secure IDs are coherent and meaningful within the entire
cluster. Also, ScIDs are persistent (they do not change
after rebooting the system). Actually, one should think
of ScIDs more like security GIDs than PIDs: ScIDs are
meant to group together processes and resources that
have the same security context.

Any newly created process is assigned a ScID which is
based on the ScID of the parent process, the ScID stored
in the loaded binary, and the general security context of
the system.

In our security model, all different security mechanisms
(access control, authentication, confidentiality, integrity
and logging) are based on the pair (ScID, SnID). We
show in§3.2, an implementation of the above model for
process-level, cluster wide access control mechanisms.
A more detailed article on the implementation can be
found in [2].

2.2 Mandatory Access Control at cluster level

In Discretionary Access Control(DAC), the objects’ per-
missions are set by their owners. So, as soon as gets hold
of a (buggy) process, he gains access toall resources
available to the owner. This is used in several buffer
overflow exploits to allow attacker to gain root privilege.

Adding theMandatory Access Controlto Linux reme-
dies this problem. In MAC, access control no longer
solely depends on the user’s decision but also on a
variety of security-relevant information. For exam-
ple, executing a given process requires the correct
Unix permissions, but also that the current security
context permits the creation of a new process. This
is particularly useful when the administrator needs to
execute two types of program:secure-prog that
s/he trusts andhandle-with-care-prog that s/he
does not entirely trust. Therefore, s/he considers that
secure-prog should be allowed to spawn new pro-
cesses, buthandle-with-care should not. This is

what MAC provides: it clearly assigns different security
contexts to these two programs. With the DAC mech-
anisms only implemented, the administrator needed to
create separate groups/users for both programs and avoid
shared resources between two groups/users, and set the
strict permissions for each groups/users. This is clear
that this is not sustainable effort for an important num-
ber of binaries.

Even though the Linux community has not yet come up
with a standard way of implementing MAC mechanisms
inside Kernel Linux, several projects exist (c.f. SE Linux
[5]. . . ) implementing MAC approach at Linux kernel
level. However, those solutions are still dedicated to sin-
gle nodes; The DSI project allowed us to prove the fea-
sibility of extending the MAC mechanisms to the dis-
tributed systems.

With persistent ScIDs for processes across the cluster,
we extend the access control checks at kernel level from
local nodes into the entire cluster. The ScID and SnID
of the process initiating a connection are carried with the
IP packet to the other end of the connection. This way,
the permissions of the processes to access resources are
verified in the entire cluster independently from their lo-
cation. Note that these verifications are at kernel level,
and are independent from the mechanisms to be imple-
mented at application layer by the developers (this is
particularly important when running untrusted code, or
software that can not be modified with security consid-
erations for technical or historical issues). We detail the
above model in§3.2.

With MAC at the cluster level supporting process-level
granularity, we have the necessary means to implement
security zones inside the cluster.

2.3 Security zones

In order to compartmentalize the system, we define dif-
ferent security zones within the cluster and enforce the
security policy for different security zones (see Figure
1).

The security zones are created by defining the security
rules for interactions between different processes and re-
sources through the cluster. For example, it is possible
to define an access control rule stating that processes on
node 1, with ScID of 2 may create sockets and connect
to the processes of node 2, with ScID 2.

That is by assigning the same ScIDs to the processes and



Node 1 Node 2 Node N

Cluster-wide Security Space
Process

Resource Access

Security Zones

Figure 1: Security zones are defined in the logical
cluster-wide security space.

resources of the same security zone, and defining rules
to restrict any connection or access to resources for the
zone defined by the ScID, the administrator can define
a security zone throughout the cluster independently to
where the processes are running or where the resources
are located in the cluster. Note that the administrator
can create a zone with privileges to access all zones for
administrative purposes, or define the shared resources
among different zones.

All security rules are collected in thedistributed security
policy (DSP) in order to define a unique, homogeneous
and cluster-wide security policy to be enforced all over
the nodes of the cluster.

Hence, the DSP simply consists of a list of rules to be ap-
plied to pairs of (SnID, ScID). Through the DSP, security
rules can be set for each (SnID,ScID) pair, thus enabling
a fine-grained process-level security policy, valid across
the entire cluster.

The DSP is automatically propagated to all nodes of the
cluster at initialization time, and after each change up-
dates are sent to all nodes of the cluster. The new rules
are then locally compiled and cached in the kernel mem-
ory for the fast access (this is done by the security man-
agers in each node within the cluster, see§3).

Note that defining security zones is then simplified to
editing DSP to set the same ScID for all processes and
resources belonging to the same security zone (see de-
tails in §3.2).

3 An implementation of the model: DSI

To validate our approach and show its feasibility, an
open source project, namedDistributed Security Infras-
tructure (DSI), was initiated in 2002, so as to propose
an adequate security solution for carrier-grade clusters.
DSI implements the above mentioned security model
[1].

DSI is composed of one security server (SS) and multi-
ple security managers (SMs) - one per node. The SS is
the central point of management of the cluster: it gathers
all alarms and warnings sent by the SMs and propagates
the security policy over the cluster. Each SM is respon-
sible to enforce security on its own node.

DSI is based on open and standard software such as
Linux Security Modules (LSM) for kernel level secu-
rity mechanisms, OmniORB, an open-source implemen-
tation of Corba [3] and SSL/TLS for communication se-
curity.

Administrative messages between SMs and SS are sent
on secure encrypted and authenticated channels, using
SSL/TLS (i.e.; Secure Communication Channel in Fig-
ure 2).

Primary 
Security 
Server Node

Node 1 Node 2 Node 3

DSM

SS

DSM DSM

Proc123 Proc978 Proc222

K
er

ne
l

Secure Communication Channel

Secondary

Data TrafficIn
si

de
 th

e 
C

lu
st

er


Security 
and
O&M/IDS

O
ut

si
de

 th
e 

C
lu

st
er



SS Security Server

SM Security Manager

Authenticated
Encrypted 
Communications

SMSMSM

DSM Distributed 
Security Module

 

Figure 2:Distributed Architecture of DSI

3.1 The Distributed Security Policy (DSP)

In DSI, all security rules are defined through the Dis-
tributed Security Policy (DSP). The goal of the DSP is
to define a unique, homogeneous and cluster-wide secu-
rity policy to be enforced over all nodes of the cluster. It



<SOCKET_class_rule>
<sSnID> 1 </sSnID>
<sScID> 2 </sScID>
<tSnID> 2 </tSnID>
<tScID> 2 </tScID>
<allow> CREATE </allow>

</SOCKET_class_rule>

Figure 3:Access control rule example for a socket.

contains customization for all security services running
on DSI.

Basically, an access control rule consists in various per-
missions to be applied to entities (i.e.; processes, sock-
ets,. . . ) sharing the same security context and security
node identifier (i.e.; a ScID/SnID pair). Permissions are
organized in differentclasses. For example, there are
permissions relative to sockets (create, bind, send, re-
ceive), others relative to process creation. All kinds of
permissions have not been implemented yet. Actually,
we have mainly focused on network communication and
process creation so far.

Currently, the DSP supports the following rule types:

• Process class allowing or denying a given pair
(ScID, SnID) permission to spawn new pro-
cesses. The DSP enables control overfork() or
execve() system calls (c.f.§3.2.2).

• Socket class controlling specifically permissions of
sockets on the cluster. ScIDs may be assigned
to sockets of a given node, for a given protocol
and port (currently only TCP and UDP are sup-
ported.). Then, it is possible to set permissions be-
tween source and target sockets/processes.

• Networking class controlling network permissions
on the cluster, such as allowing or denying a given
pair (ScID, SnID) to receive network information
from a given pair (ScID, SnID).

• Transition class defining how ScIDs are assigned
to processes according to the ScID stored in their
binary file and their parent process.

For instance, Figure 3.1 illustrates an access control rule.
It states that resources on node 1, with ScID of 2 may
create a sockets to the processes in node 2, with ScID
2. All other connections from a process with ScID 2 in
node 1 to any process in node 2 will be denied.

In order to be flexible and to ease human readability
of configuration file, the DSP was implemented using
XML language. On top of those extensibility features,

XML comes with a variety of open source tools and with
its own security mechanisms [4].

In the following, we do not explain DSI in details but
rather concentrate on a practical example to illustrate our
approach: the distributed access control mechanisms.
Further details on DSI and DSP can be found in [1].

3.2 A practical case: the DIstributed Security
Access Control service (DisAC)

DisAC implements the MAC paradigm over theentire
cluster with process-level granularity as this was dis-
cussed in§2.2.

DSP allows to maintain a homogeneous, central point of
security management for the cluster. The security ad-
ministrator sets up the security policy on the security
server, and then, the DSP gets propagated across the
cluster.

DisAC also allows administrators to simplify access
control rules by setting different categories of security
contexts.

In the following we detail main functionality of the sys-
tem. A detailed explanation of DisAC can be found in
[2].

3.2.1 Cluster-wide access control for
DisAC

DisAC extends the local access control to a dis-
tributed access control for the whole cluster, using both
source/target security node and security context iden-
tifiers as security information:AccessDecision =
Func(Source < SnID, ScID >, Target <
SnID, ScID >).

The access decisions are enforced locally by DSM based
on DSP rules for local and remote processes accessing
local resources. For example in Figure 4, we illustrates
the case where a process accesses a remote resource.
First, a local check is performed to verify the access per-
missions of the local entity (here, process 12, ScID=10)
to use network resources (DisAC by default assigns the
ScID of the process creating the socket to the socket,
therefore the local TCP socket ScID is 10). If permission
is granted, ScID and SnID of the source entity (here pro-
cess 12, ScID=10) are added to all IP packets sent from
this socket. ScID and SnID are added in the IP Options



based on FIPS definition of standard security labels for
information transfer [7]. When the IP packet is received
on the remote node, the DSM module extracts the ScID
and SnID from IP Packet and checks the access permis-
sion to the defined resource (here port 8000, ScID=10,
DisAC allows to set ScIDs explicitly for each TCP or
UDP port). Furthermore, a check is performed to verify
that source entity has the permission to send informa-
tion to the parent process which created the socket (here
this comes to check permissions between process 12 and
process 14). Finally, of course, DSM verifies that the
process 14 has permission to receive information from
TCP socket port 8000.

Therefore, access privileges may be defined at process-
level for both local and remote nodes. For example, it is
possible to define that a process of type A is only able to
access resources of type B on nodesM andN of a given
cluster.

Source Node

Proc12

ScID=10
Main(){
...
send(sock1,..);
...
}

DSM

DSP

Target Node

CH E CK CH E CK

Proc14

ScID=10
Main(){
...
receive(sock1,.);
...
}

DSP

DSM

SScID, SsnID

IP Packet
T CP  P ort 8000

ScID=10

T CP  P ort x

ScID=10

Kernel

Level

User 

Level

Figure 4:Secure remote access control.

3.2.2 Storing security context information
(ScID) into binaries

A newly created process is automatically assigned a
ScID by the DSM (see§3.2.3) based on the loaded bi-
nary file , the parent process and the security context of
the system.

In DSI, we store a ScID in each binary (stored in its
Elf header). This allows dividing binaries into differ-
ent types based on the information for the provider of
the software, or the level of trust for the binary. DSI also
has mechanisms to support digital signatures for binaries
in order to avoid these ScIDs to be tampered with by the

intruders.

DisAC is particularly useful for large clusters, where
there is a need for compartmentalization into distinct
sub-clusters with restricted/controlled connections be-
tween sub-clusters. For instance, this scenario is quite
useful for telecommunication clusters that are shared
among different operators: operators share the global
infrastructure of the cluster providing different services,
but they certainly do not wish to share their binaries or
data with other operators.

Therefore, the operator assigns the same ScID for the bi-
naries provided by each operator and the resources to be
accessed on different nodes by that application. Further-
more, the operator defines the access rules among the
ScIDs, setting up possible interactions between different
security zones.

3.2.3 Access control at kernel level

For security not to be bypassed, the DisAC service has
been implemented at kernel level, in theDistributed Se-
curity Module (DSM). DSM is a set of kernel func-
tions enforcing distributed security policy, and is imple-
mented using Linux Security Module hooks as a Linux
kernel module [6].

3.3 DSI Benchmark results

Tests have been performed using LMBench 3.0 [8], on
two different configurations: a 2.4.17 kernel with the
LSM [6] patch, without any security check performed
and the same patched kernel, with the DSM module
loaded, implementing different security mechanisms de-
fined in DisAC (see Table 1).

UDP and TCP latency tests are performed by having
client and server loop on exchanging a message of 4
bytes. The RPC tests are similar, but using Sun’s RPC
layer over TCP or UDP (see [8]).

DSI involves minimal overhead for local operations. For
TCP and UDP tests, DSM’s overhead ranges from 4% to
15% as security checks have to be done before processes
are allowed to communicate and at the reception of each
IP packet. The TCP Connect result is particularly heavy
for DSM because TCP is a “three-way handshake” and
security checks are done at each stage of the handshake.
For RPC tests, as the overhead due to RPC connections
increases in the total time of communication, the over-



Test type Without DSM With DSM Overhead
Stat 1.92 1.94 1.0%
Open / Close 2.68 2.68 0%
Fork 92.81 93.58 0.82%
Exec 322.56 328.33 1.78%
Sh proc 2140.75 2150 0.43%
UDP 9.68 10.61 9.6%
RPC/UDP 17.66 18.7 5.9%
TCP 11.08 12.68 14.4%
RPC/TCP 23.42 24.3 3.75%

Table 1: Comparison of performances between a LSM
patched kernel without any security mechanisms imple-
mented and a kernel supporting DSI distributed security
services. Tests have been done on an Intel Pentium IV
2.4 GHz. Time units are microseconds.

head due to security checks decreases in percentage.

4 Future work

During the work with DSI, we realized that having im-
plemented many of necessary mechanisms, one of the
major challenges is creating the “right” distributed se-
curity policy (DSP). For time being, all interactions be-
tween different pairs (ScID, SnID) must be explicitly de-
fined in the DSP. This task when many applications are
involved becomes quite complex. We plan to simplify
the DSP creation and sub-sequent modifications by gen-
erating the rules to allow interactions between all entities
(processes and resources) of the same security zone. We
avoid implementing this as a default rule inside DSP as
we believe this could be too restricting in some cases.
Still, one major issue would be how to handle interac-
tions between different security zones in a user friendly
way.

The security for communications between nodes is guar-
anteed using IPSec. We plan to implement a more fine
grained security mechanism based on security policy set
for each ScID. This comes to define security mecha-
nisms for communications between processes inside a
security zone independently from the location of pro-
cesses within the cluster.

5 Conclusion

In this paper, we proposed a new security model for
Linux clusters based on security zones allowing a flexi-
ble compartmentalization of software components com-
prising large distributed applications. This security
model is based on defining process-level security rules
and expanding MAC mechanisms to the whole cluster
to enforce those rules.

References

[1] The Distributed Security Infrastructure
Open Source Project, http://disec.
sourceforge.net .

[2] M. Pouzandi, A. Apvrille, E. Gingras, A. Mede-
nou, D. Gordon,Distributed Access Control for
Carrier Class Clusters, in the Proceedings of the
Parallel and Distributed Processing Techniques and
Applications (PDPTA’03), Las Vegas, June 2003.

[3] omniORB, http://omniORB.
sourceforge.net/

[4] Eastlake D., Reagle J., Solo D.,XML-Signature
Syntax & Processing, Network Working Group,
RFC 3275, March 2002.

[5] P. Loscocco, S. Smalley,Integrating Flexible Sup-
port for Security Policies in the Linux Operat-
ing System, in the Proceedings of the FREENIX
track of the 2001 USENIX Annual Technical
Conference, 2001,http://www.nsa.gov/
selinux .

[6] C. Wright, C. Cowan, S. Smalley, J. Morris, G.
Kroah-Hartmann,Linux Security Modules: Gen-
eral Security Support for the Linux Kernel, in the
Proceedings of the 2002 USENIX Security Sym-
posium,http://lsm.immunix.org .

[7] J. Morris, SelOpt: Labeled IPv4 networking for
SE Linux, http://www.intercode.com.
au/jmorris/selopt .

[8] LmBench: http://www.bitmover.com/
lmbench .


