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Abstract

Ongadng adwanementsin techndogy lead to ever
increasingstora@ capacitiesin spiteof this, optimizing
storageusagecanstill provide rich dividends. Several
techniqiesbasedn delta-ecodirg andduplicateblodk
suppessionhave beenshown to redice storageover-
headswith varying requirenentsfor resourcesuchas
computationandmemay. We proposeanewn schemdor
storagereduction thatreduce datasizeswith an effec-
tivenesscompaable to the more expensve technigees,
but at a costcomprableto the fasterbut lesseffective
ones.TheschemegalledRedurancyElimination atthe
Block Level (REBL), leveragesthe berefits of compes-
sion,duplicateblock suppessionanddelta-ercodingto
eliminatea broadspectrunmof redurdantdatain a scal-
ableandefficientmanrer. REBL geneally enco@gsmore
compmctly thancompession(up to a factorof 14) and
a combingion of compessionand dudicate suppes-
sion (up to a factorof 6.7). REBL also encalessimi-
larly to a techniqe basedon delta-eroding redicing
overall spacesignificantly in one case. Furthernore,
REBL usessuperfingerprints, a technige thatreduces
the data neededto identify similar blocks while dra-
matically reducirg the computational requiementsof
matchirg the blocks: it turns O(n?) compaisonsinto
hashtablelookups. As aresult,usingsupesfingerprints
to avoid enuneratingmatchingdataobjeds decreases
computationin theresemtancedetectiorphasenf REBL
by upto a coyle ordersof magritude.

1 Intr oduction

Despite ever-increasingcapacities,significant bendits
can still be realizedby redudng the numter of bytes
neededo represenhan objectwhenit is storedor sent.
The benefitscanbe especiallygreatfor mohile devices
with limited storageor bandwidh; refelencedata(data
that are saved permaently andaccessedhfrequently);
e-mail,in which largebyte sequencgarecomnonly re-
peatedanddatatransferedover low-bandwidthor con-
gestedinks.

Reducingbytesgeneally equatedo eliminatingun-
neededdata,andtherearenumepustechniqesfor re-
ducirg redurdang whenobjeds arestoredor sent. The
most longstandingexanple is data compession[12],
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which eliminatesredurdang internalto an objectand
geneally redwcestextual databy factorsof two to six.

Duplicate suppessioreliminateseduindang causedy

identical objectswhich can be detectedefficiently by

comparing hashesof the objects’ cortent [3]. Delta-

encodhg eliminatesedunndang of oneobjectrelativeto

anotter, oftenanearlierversionof theobjectby thesame
name[15]. Delta-encding canin somecasesliminate
anobjed almostentirely but the availability of basever-

sionsagainstwhich to compue a deltacanbe problem-
atic.

Recentlymuchwork hasbeenperfamedonapplyirg
thesetechniquesto piecesof individual objects.Thisin-
cludessuppessingdugdicate piecesof files[7, 8, 17, 20|
andweb pages [22]. Delta-encding hasalsobeenex-
tendedto pairsof files thatdo not sharean explicit ver-
sioningrelatiorship[6, 9, 18]. Therearealsoappoaches
thatcombinemultipletechniqies;for instancethevcdiff
progam not only encocs differencesbetweena “ver
sion” file and a “reference” file, it compessesedun
dang within the versionfile [11]. Delta-encding that
simultaneasly compessess sometimescalled “delta
compession[1].

In fact, no singletechniqee canbe expectedto work
bestacress a wide variety of datasets. Ther are nu-
merots tradeoffs betweenthe effectivenss of datare-
ductionandthe resoucesrequiral to achiesefit, i.e. its
efficiercy. Therelative importtanceof thesemetrics,ef-
fectiveressversusefficiengy, depend on the environ-
mentin which techriquesare apgied. Executian time
for examge, whichis animportart aspecbf efficiengy,
tendsto be moreimportantin interactve contexts than
in asynchonausones.In this paperwe describea nen
dataredictiontechniqiethatachierescomparableeffec-
tivenessto current delta-elcoding techriques but with
greaterefficiengy. It simultaneasly offersbettereffec-
tivenesghancurentduplicatesuppessiorntechnigesat
modeatelyhighercost.

We argue that perfaming comparisonsat the gran
ularity of files can miss oppatunities for redindany
elimination ascantechnquesthatrely onlargecontigu
ouspiecesof filesto beidentical.(Hensons studyof is-
suegelatingto compaing blocks by hashe®f theircon-
tentmadeasimilarargument10].) Insteadwe consider



whathappesif someof theabovetechniaiesarefurther
comhned. Specifically we descrile a systemthat sup-
portsthe union of threetechniqes: compession.elim-
ination of identical content-definedchurks, and delta-
compessionof similar churks. We refer to this tech-
nigue as Redundaagy Elimination at the Block Level
(ReBL). The key insight of this work is the ability to
achieve moreeffective datareductio by exploiting rela-
tionshipsamongsimilar blocks,ratherthanonly amorg
identicalblocks, while keepingcomputationalandmem-
ory ovetheadsompaableto techriquesthatperformre-
dundangy detectionwith coarsegranduarity.

We compae ournew apgoachwith anumterof base-
line techniaies, which are summarizd here and de-
scribedin detailin the next section:

Whole-file compression. With whde-file compession
(wFc), eachfile is compessedndividually. This
apprachgainsno bendit from redurdang acres
files, but it scaleswell with large numtersof files
andis applicable to storageandtransferof individ-
ualfiles.

Compressedar. Joininga collectionof filesinto asin-
gle objectwhich is then compessedhas the po-
tentialto detectreduindany bothwithin andacrass
files. Thisapprachtendgofind redurdang acrass
files only whenthe files arerelatively closeto one
anothe in theobjed. We abbeviatethis technique
TGz, fort ar +gzi p, thecombnationwe used.

Block-level duplicate detection. There are a numker
of approachedo identifying identicalpiecesof data
acrossfiles more generly. Theseinclude us-
ing fixedsize blocks [20], fixedsize blocks with
rolling checlsums[8, 23, 29|, andcortent-define
(andtherefae variabe-sized)churks[7, 17].

Delta-encaling using resemblancaletectim.
Resemblancéetectim techniqies[4] canbe used
to find similar files, with deltacompessionusedto
encoa themeffectively [9, 18].

Therearealsocaseswhereeffectivenessis dramdically
improved by combining multiple technques, such as
addirg compessiorto block-level or chunklevel dugdi-
cationdetection

The remainekr of this pape is organizedasfollows:
Section2 describesurren techriqguesandtheir limita-
tions. Details of the REBL techniqee are presetedin
Section3. Sectiond descrilesthe datasetsandmethod
ology usedto evaluateREBL. Section5 presets anem-
pirical evaludion of REBL andseveralothertechniques.
Section6 conclules.

2 Background and Related Work

We discusscurrenttechnigiesin Section2.1andelabe
rateontheirlimitationsin Section2.2.

2.1 Current Techniques

A comnonappioachto storingacollectian of filescom-
pactlyis to comhbine thefiles into a singleobject,which
is thencompessedn-thefly. In Windows ™, this func-
tion is senedby thefamily of zip programs thoudh they
do not necessarilyidentify interfile redurdang in ad-
dition to intra-file redurdang. In UNIX™ files canbe
combined usingtar with the output compressedusing
gzip or anotler compessionprogam. However, TGz
doesnot scalewell to extremelylargefile sets. Access
to asinglefile in thesetcanpoterially require theentire
collectionto beuncanpressedFurthemore,traditioral
compessionalgoithms maintaina limited amouwnt of
stateinformation. This cancausethemto missredun
dang betweersectionf anobjectthataredistantfrom
one anotter thusredudng their effeciveness. Histori-
cally thewindow usedto detectreduindang is small,for
instance32 KB, but at leastonenen compgessionpro-
gram usesmemoy-magped I/O and increasedstateto
find repeatedubstring acrosshurdredsof MB [24].

Therearetwo geneal method for compessinga col-
lection of files with greatereffectivenessandscalability
thanTGz. Oneinvolvesfinding identicalchunks of data
within andacrosdfiles. The otherinvolves effective en-
codirg of differencedbetweerfiles.

2.1.1 Duplicate Elimination

Finding identicalfiles in a self-contaired collectionis
straightfowardthrowghthe useof stronghashe®f their
contert. For example, Bolosky et al. have describe a
systemto save only oneinstanceof dudicatefilesin a
Windows file system[3]. Mogul etal. have describd
amethal for computing checlsumsover web resouces
(HTML pages, images,etc.) andeliminatingretrieval
of identicalresoures,evenwhenaccessedia different
URIs[16].

Suppessingredindang within a file is alsoimpor-
tant. Onesimpleapprachis to divide thefile into fixed
lengthblocksandcompue a checksm for each.lderti-
cal blocks aredetectedy searchig for repatedcheck
sums.Thechecksunalgorithmmustbe“strong” enaigh
to decreas¢he probability of a collisionto annegligible
value. SHA-1[26] (“SHA”") is commaly usedfor this
purpose.

Venti[20] is anetwork-basedstoragesystenmintendel
primaily for archval purppses.Eachstoredfile is bro-
ken into fixed-sizedblocks, which are represente by
their SHA hashesAs files areincrememally storeddu-
plicate blocks, indicatedby identical SHA values,are
storedonly once. Eachfile is representeds a list of
SHA hashesvhich index blocks in the storagesystem.

Anothe algorithm usedto minimize the bandwidh
requiredto propagateupdatego afile is rsync[23, 29.
With rsync the recever dividesits out-ofdatecopy of



afile into fixeddengthblocks,calculateswo checlsums
for eachblock (a weak 32-bit checksumand a strong
128bit MD4 checlsum), andtransmitsthe checlsums
to thesendeto inform it which blockstherecever pos-
sessesThesendercalculatesa 32-4t checksunmalonga
fixeddengthwindow thatit slidesthroughou thefile to

be sent. If the 32-bit checksm matchesa value sent
by the recever, the senderconfirns that the recever

alreadypossessethe correspading block by compu-

ing and compaing the 128bit checlsum. Use of a
rolling checksumover fixed-sizedblocks has recenly

beenextendedto large collectionsof files regadlessof

name[8]. We referto this asthe SLIDINGBLOCK ap-
proad, whichis oneof thetechnigesaganstwhichwe
compreREBL below.

Onecanmaintaina large replicatedcollectionof files
in adistributedenvironment usingatechnquesimilarto
SLIDINGBLOCK [27]. Sueletal. pointouttwo mainpa-
rametergor rsyncperformarce: block sizeandlocatian
of changs within thefile. To enhawe the perfomance
of rsyng they praposea multi-phasepratocol in which
the sener sendshashego the client and client returns
a bitmapindicatingtheblocks it alreadyhas(similar to
rsyng. In this apprach,the sener usesthe bitmap of
existing blocks to createa setof refererce blocksused
to encoe all blocksnot presentat the client. The delta
senttotheclientby theseneris usedn conjurctionwith
blocks in the bitmapto recreatethe original file. This
techniqie hassomesimilarity to SpringandWetheralls
apprachto finding reduindantdataon a network link by
caching'‘interesting”fingeiprints of sliding windows of
dataandthenfinding the fingergints in a cacheof past
transmission§25].

TheLow-Bandwidth File System(LBFS) [17] isanet-
work file systemdesigred to minimize bandvidth con-
sumption LBFs dividesfilesinto content-defiredchunks
usingRabinfingelprints[21]. Fingergintsarecomputed
over a sliding window; a subsetof possiblefingerpint
valuesdendeschunkbouwundarieswith the subsetdeter
miningaprobailistic average churk size.LBFS alsoim-
posesaminimum andmaximumchurk size,irrespectve
of fingergint values.

LBFS comptes and storesan SHA hashfor each
conten-definedchurk storedin a givenfile system.Be-
fore afile is transmittedthe SHA valuesof eachchurk
in the file are sentfirst. The recever looks up each
hashvaluein a databaeof valuesfor all chunksit pos-
sesses. Only churks not already available at the re-

ceiver are sent; chunis that are sentare compessed.

Content-@finedchurks have alsobeenusedusedin the
web[22] andbackyp systemq7]. We referto the over-
all techniqe of eliminating duplicae cortent-define
churks andcompeessingremairng churks ascbc, and
we compare REBL with this comhined techniqe in the

evaluatian sectionbelow.

2.1.2 Delta-encoding and File Resem-
blance

A secondgeneal appoachto compessing multiple
dataobjectsis delta-ewoding This appr@achhasbeen
usedn mary applicatiors includng sourcecortrol [28],
backuw [1], andwebretrieval [14, 15. Delta-encding
hasalsobeenusedon web pagesdentifiedby the simi-
larity of their URIs [6].

Effective delta-erodingrelieson the ability to detect
similarfiles. Name-tasedile pairingworksonly in very
limited casesWith largefile setsthebestway to detect
similarfilesis to examine thefile conterns. Manber[13]
discusses basicapprachto finding similar files in a
large collectian of files. His techniqe summarizegach
file by compuing asetof polynomialbasedingerpints;
the similarity betweentwo files is proportiond to the
fraction of fingergints comnon betweenthem. Rabin
fingerpints have beenusedfor this purpsein nume-
ous studies. Broder developed a similar appoach([4],
whichheexterdedwith anheuistic to coalescenultiple
fingergints into superfingerprints A single matchirg
supetfingerprint implies high similarity, allowing sim-
ilarity detectionto scaleto vely large file setssuchas
websearchengires[5].

While theseechniqiesallow similarfilesto beidenti-
fied, only recentlyhave they beencombired with delta-
encodng to sare space. Doudis and lyengar describe
“Delta-Enmding via Resemblanc®etection” (DERD),
asystenthatusesRabinfingeprintsanddelta-erodirg
to compesssimilar files [9]. The similarity of files is
basedon a subsetof all fingeprints geneatedfor each
file. Ouyang etal. alsostudythe useof deltacompes-
sionto storea collectionof files [18]; their apprachto
scalabilityis discussedh the next subsection.

2.2 Limitations of Current Technques

Duplicate elimination exploits only files, blodks or
churks that are exactly the same. Thus, a versionof a
file that hasmary minor changs scattered¢hroughaut
seesno benefitfrom the cDC or SLIDINGBLOCK tech-
nigues. Section5.1 includes graphs of the ovedap of
fingergints in cbc chunis thatindicatehow comman
thisissuecanbe.

DERD usesdelta-eroding which eliminatesredun
dang at fine grarularity whensimilar files canbeiden-
tified. Resemblancdetectionusing Rabinfingergints
is moreefficient thanthe bruteforce approachof delta-
encodhng evely possiblepair of files. A straightfaward
apprachto identifying similarfilesis to count thenum
ber of files that shareeven a single fingerpint with a
givenfile. However, repetingthis for evely fingerpint
of evely file resultsin analgorittm with O(n2) comgex-



ity in the worst case,wheren is the numier of files.!
For large file sets,runtimeis domimatedby the numter
of pairwisecomparisonsandcangrow quite large even
if the time for eachcompaison is small. DERD’s per
formancetherefae doesnot scalewell with large data
sets.

The compuationalcomgexity of delta-enodingfile
sets motivates clusterbaseddelta compession [18].
With this appioach,large file setsarefirst divided into
clusters. The intent is to growp files expected to bear
someresemblace. This canbe achieved by groying
files according to a variety of criteriaincludng names,
sizes,or fingeprints. (Doudis andlyengarusednarne-
basedclustersto make the processingof a large file set
tractablein termsof memoy consunption [9]; similar
benefitsapply to proessingtime.) Oncefiles areclus-
tered, the techniqes describedabove can be usedto
identify goad canddate pairsfor delta-erodingwithin
eachcluster Clusteringredu@sthesizeof ary file setto
which the O(n?) algoiithm descriled above is applied
Whenappliedover all clustersthe technigie resultsin
an apprximation to the optimal delta-eroding How
closethis apprximation is depends on the amount of
overlap acrossclustersandis therefae extremelydata-
depewlent.

Anothe importantissueis that DERD doesnot detect
matchedetweenan encoaed objectand piecesof mul-
tiple otherobjeds. Considerfor exanple, an objectA
that corsistsof the concateation of objectsB-Z. Each
objectB-Z could be encaledasa byte rangewithin A,
but DERD would likely notdetectary of theobjectsB-Z
asbeingsimilarto A. Thisis due,in part,to thedecision
to representeachfile by a fixed numbe of fingergints
regadlessof file size. Becausdrabinfingergint values
areuniformly distributed the probability of asmallfile’'s
fingerpints intersectinga large containng file’'s finger
printsis proportioral to the ratio of their sizes. In the
caseof 25files contairedwithin a single26thfile, if the
25files areof equalsizebut containdifferentdata,each
will contibute abaut % of the fingeprints in the con-
tainer This makesdetectionof overlap unlikely.

Theproblemarisesbecausef thedistinctionbetween
resemblaoe and containnent. Broders definition of
contdnmentof B in A is the ratio of the intersectiol
of the fingeiprints of the two files to the fingeiprintsin
B, i.e. % [4]. Whenthe numbe of fingergints
for afile is fixedregardlessof size,the estimatorof this
intersectiomo longerappoximatesthe full set. Onthe
otherhand decidirg thereis a strongresemblace be-
tweenthe two is reasonaly accuate, becausdor two
documentsto resembleeachother they needto be of
similar size.

Finally, it is possiblethat extremely large datasets
would not lend themseles to “compare-byhash” be-

causeof the prosgect of an undetectedcollision [10]:
hashescan be collisionresistantbut therewill be col-
lisions given enowgh inputs. In a systemthatis decid
ing whethertwo local objeds areidentical,a hashcan
be usedto find the two objectsbefore expending the
additioral effort to compare the two objectsexplicitly.
Our datasetsarenot of suficient scalefor thatto pose
a likely probdem, so we did not include this extra step.
While we choseto follow the protocds of pastsystems,
explicit comparisonscouldeasilybeadded

3 REBL Overview

We have designd and implemerted a new techniqe
that appliesaspectsof several othersin a novel way
to attain benefitsin both effectivenessand efficiency.
This techniqie, called Redurang Elimination at the
Block Leve (REBL), includesfeaturesof compression,
cDC, andDERD. It dividesobjectsinto cortent-define
churks, which areidentified using SHA hashes. First
duplicae chunks areremoved,andthenresemblacede-
tectionis perfamedon eachremairing chunkto iden-
tify chunls with sufficient redurdangy to bendit from
delta-ercoding Chunksnot handed by eitherdudicate
elimination or resemblancaletectionare simply com-
pressedA moredetaileddescripion of REBL appearsn
Sectiord.1.

Key to REBL’s ability to achieve efficiency conpara-
bleto cbc, insteadof suffering the scalabilityprodems
of DERD, areoptimizatiors thatallow resemblaoe de-
tectionto beusedmoreeffectively onchurksratherthan
wholefiles. Resemblace detectionhasbeenoptimized
for usein Interret searchengiresto detectnearlyidenti-
calfiles. Theoptimizatian consistof summaizing aset
of fingerpints into a smallerset of superfingerprints,
possiblya single supeffingerprint. Objectsthat share
evenasinglesuperfingerprintareextrenely likely to be
nearlyidentical[5].

Optimizedresemiancedetectiamn works well for In-
ternetsearchengine wherethe goal is to detectdoc-
umerts that are nearly identicd. Detecting objects
that are merely similar enowgh to bendit from delta-
encodng is harcer  We hypahesizedthat applyirg
supeftfingerprints to full files in DERD would signifi-
cantly improve the time neead to identify similar files
but would alsodramadically redu@ the nunmber of files
deemedsimilar, resultingin lower savingsthanthebrute
force technigie that courts individual matching fin-
gerpints [9]. In practice,we found using the super
fingergint techniaie with wholefiles works betterthan
we anticipated but it is still not the mosteffective ap-
proad (seeSection5.14 for details).

In contrast,REBL canbendit from the optimized re-
semblanceletectiorbecausét dividesfilesinto churks
andlooks for nearduplicatesof eachchunkseparately



Dataset Size #files # chunks

(MB) 1KB 4KB
Slashdot 38.37 885 21,991 11,629
Yahoo 27.77 3,850 28,542 8,632
Emacs 106.60 5,490 70,640 24,960
MH 602.10| 93,867| 421,54 203,518
Users 662543 | 185,722 3,949,7® | 1,367,619

Table 1: Detailsof datasetsusedin our experiments.1 KB
and4 KB arethetargetedaveragechunksizes. For 1-KB av-
eragesthe minimum chunksizeis setto 512 bytes;for 4-KB
averagesit is setto 1 KB. Themaximumis 64 KB.

Thistechniqe canpotertially sacrificesome‘marginal”
deltasthatwould save somespace We quantify this sac-
rifice by comparing the supeffingerpint apgoachwith
the DERD techniaie that enuneratesthe bestmatches
from exactfingerpints.

3.1 Parameterizing REBL

REBL’s perfamancedeperls on several important pa-
rameters.We describethe paranetersandtheir default
valueshere and provide a sensitvity analysis in Sec-
tion 5.

Average chunk size. Smaller chunlks detectmore du-
plicatesbut compesslesseffectively; they requre
additioral overheadto trackonehashvalueandnu-
merots fingerpints per churk; andthey increase
the numbe of compmrisonsand delta-encdings
perfamed. We found 1 KB to beareasonale de-
fault, though 4 KB improves efficiengy for large
datasetswith large files. Throwghou this paper
referercesto REBL with a specificchunksizerefer
to a probabilistic average churk size.

Number of fingerprints per chunk. The more finger
prints associatedvith a churk, the more accurate
the resembancedetectionbut the higher the stor
ageandcomputationalcosts. Doudis andlyengar
used30 fingerpints, finding no substantiadiffer-
encefrom increasinghatto 100[9].

Number of fingerprints per superfingerprint. With
supetfingerprirts, a given numter of base fin-
gerpints are distilled into a smaller nunber of
supeffingerprirts. We use84 fingergints, which
aregrowedinto 3-42supetfingerprirts.

Similarity threshold. How mary fingergints (or
supetfingerprirts) must match to declae two
churks similar? If the threshdd is fixed how
important is it to find the “best” match rather
than ary adequatematch? Ouyanget al. ad-
dressedthis by finding adeque matchesrather
than best matches[18]; Doudis and lyengar
did a more computationally expersive but more

precise detemination [9]. We take a middle
ground by appoximating the “best” match more
efficiently via supesfingerprints. A key result of
our work is thatusinga suficiertly large numker
of fingerpints per supetfingerpint allows ary
matchingchurk to be usedratherthan having to
searchfor agoad match. This resultsin nearlythe
same effectivenessbut with substantially better
efficiency (seeSection5.1.9.

Baseminimization. Usingthe bestbaseagairst which
to delta-erwode a churk can result in half the
churks servingasreferenceblocks.? Allowing ap-
proximate matchescan substantiallyincreasethe
numter of versionblocks encoed agairst a single
refererce block, therdy improving overall effec-
tivenesgseeSections.3.2.

Shinglesize. Rabin fingerpints are compued over a
sliding window called a shingleand usedfor two
purposes.First, cbc usesspecificvaluesof Rabin
fingerpints to denotea chunk bourdary. Second
DERD usesthem to associatefeatures with each
churk. A shingleshouldbe large enoudp to gen-
eratemary possiblesubstrings,which minimizes
spuriots matches,but it shouldbe small enaigh
to keepsmall changs from affecting mary shin-
gles. Commonvaluesin paststudieslike DERD
have rangel from four to twenty bytes[9, 18]. We
useda defadt of twelve bytesbut found no con-
sistenttrendotherthana negative effect from sizes
of four or eight bytesin one of the datasets(see
Section5.33).

4 Data Setsand Methodology

We usedseveral datasetsto test REBL’S effectiveness
andefficiengy. Tablel lists the differentdatasets,giv-
ing their size, the nunber of files, and the numter of
content-definedchunis with thetargetedaveragechunk
sizesetto 1 KB and4 KB.

The Sl ashdot andYahoo datasetsarewebpages
thatweredownloadedandsared,asasystemsuchasthe
Interret Archive [2] mightarchive webpages. Sl ash-
dot representsnultiple pages downloadedover a pe-
riod of abouta day, wherein different pagestend to
have numerais small changs correspndingmostly to
updded countsof usercommets. (While the Interret
Archive would not currenly save pageswith suchgran
ularity, an archival systemmight if it could do so effi-
ciently) As the smallestdataset, S| ashdot is used
belov in severalcasesvheretherearelarge numbersof
expeaimentswith varying paraméersto keepthe total
execuion time within reason Yahoo repesentsanum
berof differentpagesdownloadedrecusively atasingle
pointin time. Emacs contansthesourcetreesfor GNU
Emacs20.6and20.7. The MH datasetrefers to individ-



ual files consistingof entire e-mail messagesFinally,
User s is the conterts of onepartition of a sharedstor
agesystemwithin IBM, containing datafrom 33 users
totalingnearly7 GB.

REBL is intendedfor muchlarger datasetsthanthe
onespresentd here However, the analysis was im-
plemened using in-menory data structues basedon
the GNU C++ StandardTemplateLibrary, andasa re-
sult the applicatian’s virtual addressspaceplaceslim-
its on the metadatgpaticularly matchingpairs of fin-
gerpints) keptin memay. Theresultspreseted belov
demastratethe scalabilityissuesnentiored previously,
andleadusto believe thatone canextrapolateto larger
datasetsonceout-ofmemay datastructuresare used.
Furthemore, one can vary paraneterssuch as block
size and the number of supeffingerprirts per block to
keepthe meta-dataequirenentslow. In particdar, the
User s datasetis anorderof magnituek largerthanthe
next-largestdataset,contairing mary large files, sothe
REBL analysisof it is dore with an averaye churk size
of 4 KB ratherthanl1 KB.

4.1 REeBL Evaluation

To evaluaterREBL, we first readeachfile in the dataset
sequentially breakit into contert-definedchunks and
geneatetheRabinfingeiprintsandSHA hashvaluesfor

eachchurk. The hashesandfingeiprints are storedin

Berkeley DB format;eachchurk hasafile name)ength

offset, andfingerpints associatedvith it. In this stage,
churks with the sameSHA hashvalue asearlierchurks

require no additicnal processing,becausehey are sup-
pressedy thecbc duplicatedetectionmectanism.

A separateapplication reads the fingergints and
churk information to perform REBL or DERD analy
sis. First, it computessupetfingerprintsfrom the fin-
gerpints, given a specificratio of fingerpints persuper
fingerpgint (with a ratio of one, this step would be
skipped. At this point, we have the option of FirstFt
or Bestht.

» To doFirstHt, we pick acandidae referancechurk
and encodeall other chunks that sharea super
fingergint with it; anassociatie arraymakespair-
wise matching efficient. We theniterateover the
remainirg canddate refeencechunks, perfoming
the sameopeation, ignaring ary churks thathave
alreadybeenencodedr usedasa referace. The
churks are analyedin orderof insertioninto the
system;i.e., the first file readby the systemwill
be brokeninto oneor morechurks, eachof which
is likely to sene as a refererce versin for other
churks with mary fingergints in comma, and
churks from later files will beincreasingikely to
have alrea¢y beenencoad.

» To do Bestht, we sortthe chunks accoding to the

greateshumber of matchingfingerpints with ary

other chunk Each candidite refelencechurk is

thenprocessedo determinewhich otherpotential
versionchurks have at leasta threshdd nunber of

supetfingerprirts in comman with it. The thresh-
old is a specifiedfraction of the bestmatchfound

for that churk (seeSection5.3.9. Again, each
churk is usedas either a refererce agairst which
one or more versiam churks are encaled, or asa
version Bestht suffers from quadratic compexity

in processingtime, asa function of the nunber of

churks, aswell assubstantiallygreateremay us-
age? thanFir stFit.

Next we comgessary remainng chunks that have
not alreadybeendelta-eicoded,including therefererce
churks.

Finally, eachof the files in the data setis com-
pressedo deternine if compessingthe entire file is
more effective than eliminatirg duplicate blocks and
delta-erodingsimilarblocks.If so,thewFc sizeis used
instead.We found thatcpc in the absencef wrc was
muchlesseffective thanthe combiration of thetwo, but
addirg wrc to REBL usuallymadeonly a small differ-
encebecausenostchunlks alreadybenefittedrom delta-
encodhng (seeSection5.2).

Onetechnige we did not explicitly evaluateis du-
plicationdetectiorusingfixed-sizeblocks, like thatper
formedby Venti[20]: we workedunde theassumptia
thatcbc wouldbeprefeableto fixedsizeblocks. Other
studiesthat compre the two techniqes headto-heal
have found thatcpc frequently compessebetter atthe
costof increasecdomputation[8, 19].

5 Empirical Results

This sectionprovidesanempiricalevaluatian of several
dataredtction technigies with an emptlasison REBL.
For REBL, we studythe effect of paraneterssuchasthe
average churk size thenumterof supetfingerprirts, the
similarity thresholdabove which delta-encding is ap-
plied,andtheshinglesize. Thetechnigiesarecompared
along primarily two-dimersions: effectivenas (space
savings)andefficiency(runtime).

The techniquesevaluatedin at leastonescenarian-
clude:

* TGZ
» whole-filecompresion(wFrc)
* perblock compession(PBC)
e cDC (includesPBC)

* CDC with wrcC

* SLIDINGBLOCK

* REBL with wFC

e DERD with WFC

In casesvherewFc is usedin conjunctionwith anotler



techniqie, this meansthat wrc is usedinsteadof the
othertechniqueif it is found to be moreeffective on a
particula file.

Our expaimentswere perfamed on an unnodified
RedHat Linux 2.4.18-10 kerrel runring on an IBM
eSenrer xSeries360with dual1.60GHz PentiumXeon
processors,6 GB RAM (2 x 2 GB plus2 x 1 GB),
andthree36 GB 10k-RPM SCSldisksconrectedto an
IBM Netfinity SeneRAID™ 5 contoller. All datasets
residedin an untured ext3 file systemon local disks.
Although an SMP kerné was used,our testswere not
optimizedto utilize bothprocessorsAll timesreportal
are the sumsof userand systemtime as repoted by
getrusae.

5.1 REBL Hypotheses

This sectionpresentsempirical resultsto suppot the
rationalebetind the combnation of chunklevel delta-
encodng andsuperfingerpints.

5.1.1 Chunk Similarity

As discussedin Section 2.1, cbc systemssuch as
LBFS [17] compue SHA hashesof cortent-defind
churks andusethe hashvalueto detectduplicates. A
potertial limitation of this appoachis thatchunls with
slight differenceget no benefitfrom the overlap. For
REBL to bemoreeffectivethancpc, theremustbeasub-
stantialnurmberof churks thataresimilar but notidenti-
cal.

Figurel plotsa cumuative distribution of thefraction
of churks that matchanotherchunkin a given numker
of fingerpints. Thegraphshavsresultsfor the Sl ash-
dot andYahoo datasetswith 84fingemprintsperchurk
andshaws curves correspadingto average churk sizes
of 1 KB, 4 KB, and whole files. Whole files corre-
spondto an infinitely large averagechurk size, which
is similar to DERD. All chunks matchanotter chunkin
at leastO fingerpints, so eachcurve meetsthe 0 value
on the z-axisaty = 1. The rightmostpoints on the
graph(depictedas 2=85) shav the fraction of churks
thatareduplicaed;smallerchurks leadto greatereffec-
tivenessfor cbc becawse they allow dudicate cortent
to be detectedwith finer granudarity. Betweentheseex-
tremesmoreof thesmallestchurks matchotherchurks
in thegreateshunberof featues. However, ary churks
thatarenotexactdugdicatesbut matchmary fingerpints
are“missed”by cDc, but they arepotentially usableby
REBL for delta-encding andresultin improved space
sarings. A good heuistic for expecting improvement
from delta-erodingis to matchat leasthalf the finger
prints[9].

5.1.2 Benefis of Supe-fingerprints

Next we look at the useof a smallernumker of super
fingerpints to apprximate a larger numker of finger
prints. As discussedn Section3, supeffingerpints are
geneatedby combning fingerpints. For instance 84
fingerpints canbe clusteredinto groupsof six to form
14 supeffingerprirts. To generatesupesfingerpints,
REBL concateatesfingerpints and calculatesthe cor
respomling MD5 valueof theresultingstring *

Note that the clusteringof fingeprints into super
fingerpints is necessaryo make the Firstht variant vi-
able. One could delta-encde ary pair of churks that
matcheda singlefingerpint, but unlessthe shinglesize
is quite high, thereis little assurancef comnonality
betweenthe churks. Onthe otherhand if two churks
sharea specificsetof fingeiprints, thelarger the set,the
greatetthelik elihoodof a significant ovedap [5].

Figure2 plotsthe cumdative distribution of thenum
ber of churks that matchanotherin at leasta thresh-
old fraction of fingelprints or supeffingerpints. The
datasetsusedare S| ashdot andMH, with 84 finger
prints,1-KB averag churks,and21, 14,6 and4 super
fingergints perchurk. (Thecurve for 84 fingemprintson
the Sl ashdot datasetcorrespondsgto the 1-KB cure
for Sl ashdot in the preceding figure.) Theresultsin-
dicatethatloweringthethresholdfor similarity between
churks resultsin more chunks being consideed “sim-
ilar” The resultsfor superfingerprirts follow a simi-
lar trendasfor regular fingergints. A usefulobsena
tion from bothdatasetsis thatwe canselecta threshdd
valuefor supeffingerpints thatcorresponddo a higher
numter of matching fingerpints. For examge, in Fig-
ure 2(a), a threshdd of one out of four (25%) super
fingerpintsis appoximatelyequvalentto athrestold of
73outof 84 (87%) fingerpints. Usingsupesfingerprints
therefae decrease®EBL’s exeaution time by redicing
the nunber of compaisons,asthe next subsectiorde-
scribes.

5.1.3 FirstFit and BestFit Variants

As discussedn Section4.1, REBL hastwo variants,
Bestht andFirstHt. In this section,we comparethem
by contiastingrelative effectivenessandefficiency.
Figure 3(a) plotsthe sizesof the MH andS| ashdot
datasets,encodd using the FirstAt and Bestht vari-
ants,andrepatedrelative to the original datasetsizes.
The experimentuses84 fingerpints per chunkandtwo
churking methals, whole files (DERD) andan averag
churk sizeof 1 KB. In this subsectiorwe corsideronly
the 1-KB churks, discussindaterhow this comparesto
othersizes. The figure demorstratesthe effect of vary-
ing the numter of supeffingerprintsfrom threeto 84
(with 84 meaningthereis no clustering) Both First-
Fit and Bestht have comparableencodimy sizesfor up
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Figure 2: Cumulatie distribution of matchingfingerprintsor superfingerprints,using 1-KB chunks. The relative shapeof the
curvesdemonstratéghe muchgreatersimilarity in the Sl ashdot datasetthanthe MHdataset.

to anumbe of supeffingerprints(21 for thesetwo data
sets). After this point, Bestht encodeghe mosteffec-
tively becaus¢akingthefirstfit with toofew fingergints
perclusteris apoa predctor of amatch

Figure 3(b) plots the correspondig exeaution times.
As we increasethe numker of supesfingerprints, the
numter of comprisonsfor Bestht to detectsimilar
churks increases)eadingto dramaically greder exe-
cution times. The execuion times using Firstht are
moreor lessstableanddo not shav the samesharpin-

creaseln short,usingFirstFt allows alittle spaceo be
sacrificedin excharge for dramaticdly lower execution
times. For examge, with Sl ashdot usingFirstht, 1-
KB chunks, andsix supeffingerprirts, REBL prodicesa
relative sizeof 1.52%; thebestBestht numteris 1.18%
with 42 supeffingerprirts. However, the correspnding
absoluteexecutiontimesare 8.1 and1735 secondge-
spectvely.

As mentiored in Section 3.1, one interesting pa-
rameterthat can be modfied when using Bestht is
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its eagernss to use the most similar refeencechurk
agairst which to delta-erode a version chunk For
instance,one might natually assumethat encodng a
churk agairst onethat matchs it in 80/84fingergints
would be prefaableto encaling it agairst andher that
matchesonly 70/84. However, considera casewhere
churk A matches churk B in 82 fingerpints, chunkC
in 75,andchwunk D in 70; C andD resemblesachother
in 80/84. Encodng A againstB andC agairst D gen-
eratestwo small deltasandtwo referencechunls, but
encodng B, C, andD aganst A resultsin slightly larger
deltasbut only one unencaed chunk As a result of
thiseagenessFirstht oftensurprisinglyencaledbetter
thanBestHht until we addedan appoximationmetricto
BestHht, which lets a given chunk be encode againsta
specificrefererce chunkif the latter chunkis within a
factorof the bestmatchingchurk. Empirically, allow-
ing matcheswithin 80-0% of the bestmatchimproved
overall effectivenessasshowvn in thesensitvity analysis
in Section5.3.2

5.1.4 Benefts of Chunking

While REBL applies supeffingerpints to conten-
definedchurks, supeffingerprirts couldalsobe apgied
to entirefiles, similar to detectig comnonality in web
pageg5]. This would amoun to a modificatian of the
DERD apprach, optimizing the resemblace detectim
step,but applyirg themto entirefiles canpotenially re-
ducethenunberof filesidentifiedasbeingsimilar.
Referringagainto Figure 3(a), but this time corsid-
eringthe curvesfor bERD aswell as1-KB churks, we
seethatREBL is alwaysat leastaseffective asDeRD for

both FirstAt andBestht. The curves for 4-KB churks
areomittedin orderto keepthegraphsreadake, but gen-
erally follow the 1-KB churk cureswith slightly more
spaceconsuned.

The correspading execution times for bERD and
REBL areplottedin Figure 3(b). As expectedthegreat-
estexecuion time is for REBL with Bestht; breing
eachfile into churks resultsin morecomgarisons. Ex-
ecutiontimesfor Bestht increasesharplywith increas-
ing numters of supetfingerprirts. The bestoverall re-
sults corsidering both effectivenessand efficiency are
with the FirstHt variart of REBL usinga smallnumker
of supeffingerprirts. Using 4-KB churks (not shown)
provesto bemodeatelyfasterthan1-KB chunks.

Onemight askwhetherit is sufficient to simply use
somenunber (N) of fingeprints ratherthancombning
a larger nunmber of fingerpints into the samenumter
(N) of supeffingerpints. In fact, with Bestht, using
as few as 14 fingergints is nearly as effective as us-
ing 84 fingeprints. However, even with only 14 fin-
gerpints, the execution costof Bestht is substantially
greaterthanFirstHt. Figure4 repats relative sizesand
execuiontimesfor theSl ashdot datasetasafunction
of thenumber of fingemprintsor supesfingerprints,using
anaverag@ churk sizeof 4 KB. With supeffingerprints
and FirstHFt, relative size increaseswith more super
fingerpints, while with fingerpints andBestht relative
sizedecreasewith morefingerpints. Ontheotherhand
execution time with Bestht increasesharplywith more
fingerpgints. The effectivenesswith supeffingerprints
using FirstFt is similar to that using a larger numkber
of fingergints andBestht.
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To quariify thesediffererceswith theexanplein Fig-
ure 4, FirstAt with seven supeffingerpints hasa rel-
ative sizeof 1.6%%; the besteffectivenessusingfinger
printsis 1.5P%6 with 84fingerpints perchurk. However,
theformerrunsin just 1.4%of thetime takenby thelat-
ter. Therelative execution time with 14 fingeprintsand
BestHht, which givescomparableresultsto using84 fin-
gerpints, is 26.0%. Thus,lowering the numter of fin-
gerpints perchunk to reducecompaisons(andincrease
efficiency) maynotyield the bestencodimg sizeandex-
ecutiontimes. In contrastthe useof superfingerprints
andtheFir stht variart of REBL is botheffective andef-
ficient.

5.2 Comparison of Techniques

In this section,we compae a variety of technques,fo-
cusingon effedivenessandbriefly discussingefficiency
asindicatedby execution times. Table 2 repats sizes
compredto theoriginal dataset. Therelative sizeswith
cDc arereporta for average churk sizesof 1 KB (with
andwithout wrc) and4 KB (with wFC). REBL num
bersuseaveragechunksizesof 1 KB (exceptthe 7-GB
User s set)and4 KB, andthey include both pBC and
WFC.

For the experimentsusingthesedatasets,we strove
for consisteng whenerer possible. However, thereare
some caseswherevarying a paraméer or application
madeahugedifferenceln particular gzipproducesout-
put somavhat smallerthanvcdiff for all our datasets
excep Sl ashdot , for which it is nearly an order of
magritude larger. We repat the vediff numter in that
caseonly.

For both REBL and DERD, the table gives numkers
for 14 supetfingerprirts using FirstAt. Full compa-
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Figure 5: Effectivenessof different encaling techniqies
basedntherelative sizesof theencodedlatasets.Thereis no
barfor 1-KB chunks for REBL onthe User s dataset,asthis
wasnot compued. SB refersto SLIDINGBLOCK.

isonsof regularfingerpints generallygave asmalleren-
codirg, but at a disprgortionatelyhigh processingost
asthe expetimentsabose demorstrated. REBL hadthe
smallestencodimy sizein threeout of the five datasets
abore. REBL encoedmore effectively thancbc, SLID-

INGBLOCK, andwFc with all datasets;t wasbetterthan
TGz excep with the Yahoo dataset; andit wasbetter
thanDERD exceptwith theYahoo andEmacs datasets.

Figure5 graphically depictsthe datain Table2, and
Figure6 showvs a scatterplobf how theothertechniqies
compre to REBL. For consisteng, we compae the
encodng sizesof cbc (1-KB churks) with REBL (1-
KB churks) and cbc (4-KB chunls) with REBL (4-
KB chunks). User s is compredto REBL with 4-KB
churksthroughou. Otherwise REBL with 1-KB churks
is usedasthebaseline.

As with REBL using 1-KB chunks, REBL using 4-
KB churks is betterthan TGz (exceg with the Ya-
hoo dataset), WFC, SLIDINGBLOCK, CcDC with either
1-KB and 4-KB churks and DERD excef the Yahoo
andEnmacs datasets. The effectivenessof REBL com-
paredto TGZ varied by factorsof 0.592.46, wrC by
1.2814.25, SLIDINGBLOCK by 1.182.56 cDc by 1.03
6.67andDERD by 0.882.91.

Additionally, we compae the effectivenessof REBL
with andwithout usingwrc. Therelative sizesof the
Sl ashdot, Yahoo, Enmacs, and MH datasetsusing
REBL with 1-KB churks and without wrc are 1.9%,
14.8%%, 17.8%and 36.0% respectiely. REBL without



Sliding CcDC REBL

Dataset | TGz | WFC PBC Block (1KB (1KB (4KB (1KB | (4KB DERD

(1KB) | (1KB) | wiowrc) | w/wrc) | w/ wrC) | 14FF) | 14FF) | (14FF)
Slashdot| 4.68 | 27.08| 44.46 4.86 12.74 12.68 16.56 1.89 2.52 5.54
Yahoo 8.03 | 26.02| 40.67| 28.16 29.18 23.38 23.93 | 13.72 | 1242 12.03
Emacs | 27.02| 29.27| 42.25| 26.89 24.95 17.99 18.29 | 1531 | 1494 | 14.64
MH 35.11| 41.30| 48.23| 39.57 38.10 33.36 33.73 | 32.28 | 32.38 | 32.87
Users 41.67 | 42.19| 49.93| 34.94 34.49 31.48 32.47 N/A | 29.69 33.01

Table 2: Datasetsandtheir relative encodng sizes(in percent)ascompaed to the original size usingdifferentencodng tech-
niques.Thebestencodingfor adatasetis in boldface TGz standdor t ar plusgzi p, wrc is whole—filecompressionandpPsc
is content-definedblock-level compressionrREBL usesl4 superfingerprintsandFir stHt.
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Figure 6: Effectivenessof different encodng techniques,
groupedby technique, relative to REBL. REBL usesa 1-KB

chunk size, exceptfor User s (4-KB chunks in all compar

isons) and cbc with 4-KB chunks (comparedhead-to-hed
with 4-KB REBL). Thehorizontalline indicateshebreak-&en

point; all pointsabove this line reflectcasesn which REBL is

moreeffective. SB refersto SLIDINGBLOCK.

wFcC with 4-KB churks usingthe User s datasethasa
relative sizeof 306%. Thecorrespndingrelative sizes
of REBL with wFcC arerepotedin Table2. WithoutwFc,
the relative sizesfor two of the datasets(SI ashdot
andUser s) arewithin 3% of thesizesthatincludewFc,
but REBL without wFC encodesvorsethanREBL with
wrc for theYahoo, Enacs, MHanddatasetsby 7.5%,
16.26, and115%  respectiely.

An olvious question is how the execution time of
REBL compmresto the other appoacheswe have dis-
cussed.We have alreadycomparedrREBL andDERD in
somedepth. SinceReBL relieson cDC, it is inhererly
more costly thancpc, which in turn requires substan-
tially morecomputationthana simpletechnique suchas
TGZ. How muchmore costly REBL is depend on how
mary deltasare compued andhow muchcomputation
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Figure 7: Effect of averageblock-sizeon relative sizeusing
REBL onthe S| ashdot dataset.

is performedto selectchurksto delta. TheFir strt vari-
ant requres processingthat scaleslinearly, ratherthan
guadatically, with the input size, just asthe cbc pro-
cessingdoes. Hencethe additicnal costis comparable
to cDc proaessing.The additioral spacesasings varies
acrosdatasets;for S| ashdot the additicnal savzings
seemseasilywarraried, while for MH it seemsunlikely
to beworthwhile.

5.3 Additional Considerations

This subsectiorescritesthe sensitvity of REBL to var
iousexecutionparameteythattry to optimizeits beha-
ior.

5.3.1 Effect of AverageChunk Size

Onepotentiallyimportart parametefor REBL is the av-
eragechunk size. As discussedn Section5.11, smaller
churk sizesprovide more oppatunity to find similar
churks for delta-encding. Figure7 repots resultsof
expeaiments with the Sl ashdot dataset, 84 finger
prints per churk, andvarying the averag churk sizes
from 512to 81 bytes. In the caseof SI ashdot , for
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both FirstHt andBestht, increasinghe averag churk
sizeresultsin larger encodng sizes. The smallestrela-
tive sizeis obtairedwith the512-bytechurk sizein both
variarts of REBL.

Thesamesxperimentwasperfamedwith theH data
setusingthe FirstFt variart of REBL. In this casetoo,
the smallestrelative size (323%) was obtaired usinga
churk size of 512 bytesandotherchunksizesreportel
slightly large sizes.However, therewasminimal degra-
dationin effectivenessnoving to largersizes(the maxi-
mumrelative sizewas32 4% with achurk sizeof 8 KB).

Choosinga smallerchurk size providesmoreoppa-
tunitiesfor delta-ewodingandbetterspacesavings but
at a highe run-time cost. For exanple, for the VH data
set,8-KB chunls save abou 20%o0f the REBL postcDC
processingtime, compaed to 4-KB chunls, for almost
identicalencaling effectiveness.

5.3.2 Approximate Matching for BestFit

Anothe paraméer we evaluatel is thethreshdd for ap-
proximate matchingof Bestht churks. Without this
threshdd, usingBestHht, a chunkis encaledagairst an-
otherwith which it hasthe mostmatchirg fingergints
or supetfingerprints. For a given refeencechunk the
“Bestht threshd¢d” deternineshow loosethis matchcan
be, permitting the encaling of ary churks within the
specifiedfraction of the bestmatch. Note thatin all
cases the systemis countirg matchesand paying the
O(n?) compexity. A very small fraction (low thresh-
old) apprximatesthe Firstrt appoachin termsof ef-
fectiveress,but not efficiency, asit courts the matches
but thenlargdy disregardsthem.

Figure 8 shavs the effect of varying the Bestht
threshdd on the Sl ashdot datasetusing 84 finger
printsperchurk andanaveragechurk sizeof 1 KB. The

graphindicateshatasthethreshdd increaseseffective-
nessincreasesup to about90%. A threshdd of one
correspndsto the most precisematch, but it actually
missesoppatunitiesfor delta-eroding resultingin in-
creasedncodng size. A threshdd betweer0.7and0.9
yields the smallestencaling sizeswith reguar finger
printsfor the S| ashdot dataset;otherdatasetsshav
similar trends. As expectel, the figure also shavs in-
creasingelative timesasthethreslold increases.

5.3.3 Effect of Shingle Size

A shingle specifiesthe size of a window that slides
over the entirefile adwvarcing onebyte a time, produc-
ing a Rabinfingemprint valuefor eachfixedsize set of
bytes. The Rabinfingeiprints are usedto flag conten-
definedchunk bourdariesandto generatefeatues for
eachchunkthatcanbeusedto idertify similarones.We
perfamedexperimentsvarying the shinde size,andus-
ingtheSl ashdot andVHdatasetswith 84fingergints
perchunk 14 supetfingerpints, anaverage churk size
of 4 KB, andtheFirstFt variant.

With theS| ashdot dataset,shinglesof four or eight
bytesgetmuchlessbenefitfrom REBL thanlargersizes,
but otherwise the analysisis noisy and several disjoint
valuesgive similar results. Shinde sizesof 20 and44
bytesyield similar relative encoding sizesof 2.2%% and
2.19% respectiely andshinde sizesof 12 and24 bytes
yield relative sizesof 2.52% and 2.53% respectiely,
whereasa shinglesize of 16 bytes resultsin a relative
sizeof 5.126. The maximum relative sizeof 6.84%is
obtaina with ashinde sizeof 8 bytesandthe minimum
of 2.1%% with ashinglesizeof 44 bytes.

In the caseof the MH dataset, we found that vary-
ing the size of a shingledid not vary the relative sizes
by asmuchasin the Sl ashdot dataset,thoudh they
did impactprocessingime. The minimum relative size
was 312% with a shingle size of 8 bytes and maxi-
mum relative sizewas 32.%%6 with a shinglesize of 44
bytes. However, the 8-byte shindes took 156 CPU-
secondswhile 12-byte shinglestook 114 CPU-seconds
(27%less)to encoe thedatasetto 31.5%0f theoriginal
(0.6 more).

We concluak that pastwork that usedfour-byte shin-
gles[18] may have found their resemblane detectim
systemto be noisierthannecessarybut sizesof twelve
bytesor moreareprobaly equallyarguable.

6 Conclusionsand Future Work

In this paper we introduceda nev encodng scheme
for large datasets: thosethat are too large to encoa
mondithically. REBL usestechniqees from compes-
sion, duplicateblock suppession,delta-eroding and
supetfingerprins for resemblaoe detection We have
implemened REBL andtestedit on a numker of data



sets.Theeffectivenesof REBL compaedto TGz varied
by factorsof 0.99-2.46, wrC by 1.2814.25, SLIDING-
BLOCK by 1.18-2.%, cDc by 1.08-6.67 and DERD by
0.882.91

We have compaed two variantsfor similarity detec-
tion amorg blocks, Firstht and Bestht, and demon
stratedthat FirstHt with supesfingerpints producesa
good combiration of spacerediction and execution
overhead. Supeffingerpints are good apprximations
of reguar fingergints in all the data setswe expea-
imentedwith. A low threstold of matching super
fingerpints usually resultsin similar effedtivenessto
that obtaired using a higher thresholdfor regular fin-
gerpints, but with a dramaticallylower exeaution cost
(ordersof magntudein somecases).

The effectivenessof REBL in our expelimentsis al-
ways betterthan wrc and cbc. However, this is be-
causeit incomporatesthe techrology of compessionat
the file and block level, and the suppessionof dugi-
cateblocks, before addingdelta-encding. In fact,com-
pressingndividual churks (or blocks)in ary sortof cbc
or SLIDINGBLOCK systemseemsanessentiabptimiza-
tion unlesstherateof duplicatian is substantiallyhigher
thanwe have seenin thesedatasets. This is consistent
with the earliersLIDINGBLOCK work [8], which found
that SLIDINGBLOCK neededo incorporateblock-level
compessionto be competitive with gzip. Compessing
entirefiles whennore of its piecesaresuppessedasa
duplicae similarly offers benefits.

In somecasesREBL encalesnoticeally betterthan
DERD; in the othercasesREBL is verysimilartoit. The
key differencebetweenreBL and DERD comesfrom
dramaic redwctions in exeation times. The averag
block size usedto mark cortent-definedblocks affects
theencodng sizesof REBL to alimited extent;themore
similarity thereis in adataset,suchasS| ashdot , the
moreeffective smallerblocksare.

We are currerlly working on exterding and expeii-
mentingwith the REBL andLBFs technigiesto redwce
network usagein comnunicationervironments. This
will be helpiul to deternine the applicability of REBL
in redwing reduindantnetwork traffic, andit canalsobe
compmredwith othernetwork-orientedmechamsmslike
rsync[23, 29] andlink-leve fingerpint-baseddugicate
detection25]. We would alsolik e to evaluatethe effec-
tivenesf thesetechniquesin new environmeris, such
asthe GoogleGMail™ systemwhich may offer addi-
tional oppatunitiesfor large amouwnts of datawith sub-
tle variatins. Finally, additioral detailedcompaisons
of the wide variety of encaling techriques may offer
the oppatunity to corsidernen metrics,suchas“bytes
saredpercycle; in selectingamongthealternatves.
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Notes

In practicewe do notexpectthe compleity to bethisbad,
and someheuristicscould be usedto reduceit [30], but they
arebeyond the scopeof this paper Evenwith suchoptimiza-
tions,thetechniquesiescribedn this paperimprove efficiency
substantially

2Encodirg chainsarepossible—4 againstB, B againsiC,
andsoon—hut decodirg suchachainrequiresfirst compuing
B from C to obtain A. We discountthis possibility dueto its
compleity andperformarceimplications.

3Qurinitial implementatiorstoredtherelationshipof every
pair of blockswith atleastonematchingfingerprint. With this
approachwe ranout of addresspaceoperatingon our larger
datasets.We reducednemoryusageby storinga information
only for blocks matchingmary fingerprints(a default of i),
but eventhatapproah sufferson extremelylarge datasets.

40ther sophisticatedechnigques may be usedto generate
superfingerprints,but in our case we neededa hashingfunc-
tion with alow proballity of collisionsandMD5 satisfiedthe
criteria.



