
USENIX Association

Proceedings of the General Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

accept()able Strategies for Improving Web Server Performance

Tim Brecht∗, David Pariag, Louay Gammo
School of Computer Science

University of Waterloo
{brecht,db2pariag,lgammo}@cs.uwaterloo.ca

Abstract

This paper evaluates techniques for improving the perfor-
mance of three architecturally different web servers. We
study strategies for effectively accepting incoming connec-
tions under conditions of high load. Our experimental eval-
uation shows that the method used to accept new connec-
tion requests can significantly impact server performance. By
modifying each server’s accept strategy, we improve the per-
formance of the kernel-mode TUX server, the multi-threaded
Knot server and the event-driven µserver. Under two differ-
ent workloads, we improve the throughput of these servers
by as much as 19% – 36% for TUX, 0% – 32% for Knot, and
39% – 71% for the µserver. Interestingly, the performance
improvements realized by the user-mode µserver allow it to
obtain performance that rivals an unmodified TUX server.

1 Introduction

Internet-based applications have experienced incredible
growth in recent years and all indications are that such ap-
plications will continue to grow in number and importance.
Operating system support for such applications is the subject
of much activity in the research community, where it is com-
monly believed that existing implementations and interfaces
are ill-suited to network-centric applications [4] [30] [23].

In many systems, once client demand exceeds the server’s
capacity the throughput of the server degrades sharply, and
may even approach zero. This is reflected in long (and un-
predictable) client wait times, or even a complete lack of
response for some clients. Ironically, it is precisely during
these periods of high demand that quality of service matters
most. Breaking news, changes in the stock market, and even
the Christmas shopping season can generate flash crowds or
even prolonged periods of overload. Unfortunately, over-
provisioning of server capacity is neither cost effective nor

∗Some of the research for this paper was conducted while this author was
employed by Hewlett Packard Labs.

practical since peak demands can be several hundred times
higher than average demands [1].

Because modern Internet servers multiplex among large
numbers of simultaneous connections, much research has in-
vestigated modifying operating system mechanisms and in-
terfaces to efficiently obtain and process network I/O events
[3] [4] [22] [23] [7]. Other research [20], has analyzed the
strengths and weaknesses of different server architectures.
These include multi-threaded (MT), multi-process (MP), sin-
gle process event-driven (SPED) and even a hybrid design
called asymmetric multi-process event-driven (AMPED) ar-
chitecture. More recent work [31] [9] [29] [28] has re-ignited
the debate regarding whether to multiplex connections using
threads or events in high-performance Internet servers. In ad-
dition, an interesting debate has emerged concerning the rel-
ative merits of kernel-mode versus user-mode servers, with
some research [15] indicating that kernel-mode servers en-
joy significant performance advantages over their user-mode
counterparts.

In this paper, we examine different strategies for accepting
new connections under high load conditions. We consider
three architecturally different web servers: the kernel-mode
TUX server [24] [16], the event-driven, user-mode µserver
[6] [11], and the multi-threaded, user-mode Knot server [29]
[28].

We examine the connection-accepting strategy used by
each server, and propose modifications that permit us to tune
each server’s strategy. We implement our modifications and
evaluate them experimentally using workloads that generate
true overload conditions. Our experiments demonstrate that
accept strategies can significantly impact server throughput,
and must be considered when comparing different server ar-
chitectures.

Our experiments show that:

• Under high loads a server must ensure that it is able to
accept new connections at a sufficiently high rate.

• In addition to accepting new connections at a high rate,
the server must spend enough time servicing existing
connections. That is, a balance must be maintained be-

tween accepting new connections and working on exist-
ing connections.

• Each server that we examine can significantly improve
its throughput by improving the aforementioned bal-
ance.

• Contrary to previous findings, we demonstrate that a
user-level server is able to serve an in-memory, static,
SPECweb99-like workload at a rate that compares very
favourably with the kernel-mode TUX server.

2 Background and Related Work

Current approaches to implementing high-performance Inter-
net servers require special techniques for dealing with high
levels of concurrency. This point is illustrated by first con-
sidering the logical steps taken by a web server to handle a
single client request, as shown in Figure 1.

1. Wait for and accept an incoming network connection.
2. Read the incoming request from the network.
3. Parse the request.
4. For static requests, check the cache and possibly open

and read the file.
5. For dynamic requests, compute the result.
6. Send the reply to the requesting client.
7. Close the network connection.

Figure 1: Logical steps required to process a client request.

Note that almost all Internet servers and services follow
similar steps. For simplicity, the example in Figure 1 does
not handle persistent or pipelined connections (although all
servers used in our experiments handle persistent connec-
tions).

Many of these steps can block because of network or disk
I/O, or because the web server must interact with another pro-
cess. Consequently, a high performance server must be able
to concurrently process partially completed connections by
quickly identifying those connections that are ready to be ser-
viced (i.e., those for which the application would not have to
block). This means the server must be able to efficiently mul-
tiplex several thousand simultaneous connections [4] and to
dispatch network I/O events at high rates.

Research into improving web server performance tends to
focus on improving operating system support for web servers,
or on improving the server’s architecture and design. We now
briefly describe related work in these areas.

2.1 Operating System Improvements

Significant research [3] [2] [4] [19] [22] [23] [7] has been
conducted into improving web server performance by im-
proving both operating system mechanisms and interfaces for
obtaining information about the state of socket and file de-
scriptors. These studies have been motivated by the overhead

incurred by select, poll, and similar system calls under
high loads. As a result, much research has focused on devel-
oping improvements to select, poll and sigwaitinfo
by reducing the amount of data that needs to be copied be-
tween user space and kernel space or by reducing the amount
of work that must be done in the kernel (e.g., by only deliver-
ing one signal per descriptor in the case of sigwaitinfo).
Other work [21] has focused on reducing data copying costs
by providing a unified buffering and caching system.

In contrast to previous research on improving the operat-
ing system, this paper presents strategies for accepting new
connections which improve server performance under exist-
ing operating systems, and which are relevant to both user-
mode and kernel-mode servers.

2.2 Server Application Architecture

One approach to multiplexing a large number of connections
is to use a SPED architecture, which uses a single process in
conjunction with non-blocking socket I/O and an event noti-
fication mechanism such as select to deliver high through-
put, especially on in-memory workloads [20]. The event no-
tification mechanism is used to determine when a network-
related system call can be made without blocking. This al-
lows the server to focus on those connections that can be ser-
viced without blocking its single process.

Of course, a single process cannot leverage the processing
power of multiple processors. However, in multiprocessor
environments multiple copies of a SPED server can be used
to obtain excellent performance [32].

The multi-process (MP) and multi-threaded (MT) models
[20] offer an alternative approach to multiplexing simultane-
ous connections by utilizing a thread (or process) per TCP
connection. In this approach, connections are multiplexed
by context-switching from a thread that can no longer pro-
cess its connection because it will block, to another thread
that can process its connection without blocking. Unfortu-
nately threads and processes can consume large amounts of
resources and architects of early systems found it necessary
to restrict the number of executing threads [13] [4].

The Flash server implements a hybrid of the SPED and
MP models called AMPED (asymmetric multi-process event-
driven) architecture [20]. This architecture builds on the
SPED model by using several helper processes to perform
disk accesses on behalf of the main event-driven process.
This approach performed very well on a variety of workloads
and outperformed the MP and MT models.

More recent work has revived the debate concerning event-
driven versus multi-threaded architectures. Some papers
[31] [9] [32] conclude that event-driven architectures afford
higher-performance. Others [28] [29] argue that highly effi-
cient implementations of threading libraries allow high per-
formance while providing a simpler programming model.

Our work in this paper uses servers that are implemented

using both event-driven and multi-threaded architectures. We
demonstrate that improved accept strategies can increase
throughput in either type of server.

2.3 Kernel-mode Servers

In light of the considerable demands placed on the operat-
ing system by web servers, some people [24] [12] have ar-
gued that the web server should be implemented in the kernel
as an operating system service. Recent work [15] has found
that there is a significant gap in performance between kernel-
mode and user-mode servers when serving memory-based
workloads. Our findings in this paper challenge these results.
In fact, on a static, in-memory, SPECweb99-like workload
the µserver’s performance compares very favourably with
that of the kernel-mode TUX server.

2.4 Accept Strategies

In early web server implementations, the strategy for ac-
cepting new connections was to accept one connection each
time the server obtained notification of pending connection
requests. Recent work by Chandra and Mosberger [7] dis-
covered that a simple modification to a select-based web-
server (with a stock operating system) outperformed oper-
ating system modifications they and other researchers [22]
had performed in order to improve event dispatch scalability.
They referred to this server as a multi-accept server. Upon
learning of a pending connection, this server attempts to ac-
cept as many incoming connections as possible by repeat-
edly calling accept until the call fails (and the errno is
set to EWOULDBLOCK) or the limit on the maximum number
of open connections is reached. This multi-accept behaviour
means that the server periodically attempts to drain the en-
tire accept queue. Their experiments demonstrate that this
aggressive strategy towards accepting new connections im-
proved event dispatch scalability for workloads that request a
single one byte file or a single 6 KB file.

In this paper, we explore more representative workloads
and demonstrate that their multi-accept approach can overem-
phasize the accepting of new connections while neglecting
the processing of existing connections. The resulting imbal-
ance leads to poor performance.

We devise a simple mechanism to permit us to implement
and tune a variety of accept strategies, and to experimen-
tally evaluate the impact of different accept strategies on three
server architectures. We demonstrate that a carefully tuned
accept policy can significantly improve performance across
all three server architectures.

More recent work [28] [29] has also noted that the strategy
used to accept new connections can significantly impact per-
formance. Our work specifically examines different strategies
applied to a variety of servers in order to understand how to
choose a good accept strategy.

3 Improving Accept Strategies

In order for a client to send a request to the server it must
first establish a TCP connection to the server. This is done by
using the TCP three-way handshake [26]. Once the three-way
handshake succeeds the kernel adds a socket to the accept
queue (sometimes referred to as the listen queue) [5]. Each
time the server invokes the accept system call a socket is
removed from the front of the accept queue, and an associated
file descriptor is returned to the server.

In Linux, the length of the accept queue is theoretically de-
termined by the application when it specifies a value for the
backlog parameter to the listen system call. In practice
however, the Linux kernel silently limits the backlog pa-
rameter to a maximum of 128 connections. This behaviour
has been verified by examining several Linux kernel versions
(including 2.4.20-8 and 2.6.0-test7). In our work, we have in-
tentionally left this behaviour unchanged because of the large
number of installations that currently operate with this limit.

If the server accepts new connections too slowly, then ei-
ther the accept queue or the SYN queue will quickly fill
up. If either queue fills, all new connection requests will be
dropped. Such queue drops are problematic for both client
and server. The client is unable to send requests to the server,
and is forced to re-attempt the connection. Meanwhile, the
server-side kernel has invested resources to process pack-
ets and complete the TCP three-way handshake, only to dis-
cover that the connection must be dropped. For these reasons,
queue drops should be avoided whenever possible.

Our work in this paper concentrates on improving accept
strategies to enable servers to accept and process more con-
nections. Note that this is quite different from simply re-
ducing the number of queue drops (i.e., failed connection
attempts) because queue drops could be minimized by only
ever accepting connections and never actually processing any
requests. Naturally this alone would not lead to good per-
formance. Instead our strategies focus on finding a balance
between accepting new connections and processing existing
connections.

4 The Web Servers

This section describes the architecture of each of the servers
investigated as well as the procedure each uses for accept-
ing new connections. We also describe any modifications we
have made to the base server behaviour.

4.1 The µserver

The micro-server (µserver) [6] is a single process event-
driven web server. Its behaviour can be carefully controlled
through the use of a large number of command-line parame-
ters, which allow us to investigate the effects of several dif-
ferent server configurations using a single web-server. The

µserver uses either the select, poll, or epoll system
call (chosen through command line options) in concert with
non-blocking socket I/O to process multiple connections con-
currently.

The µserver operates by tracking the state of each active
connection (states roughly correspond to the steps in Figure
1). It repeatedly loops over three phases. The first phase
(which we call the getevents-phase) determines which of the
connections have accrued events of interest. In our experi-
ments this is done using select. The second phase (called
the accept-phase) is entered if select reports that connec-
tions are pending on the listening socket. The third phase
(called the work-phase) iterates over each of the non-listening
connections that have events of interest that can be processed
without blocking. Based on the event-type and the state of
the connection, the server calls the appropriate function to
perform the required work. A key point is that for the µserver
options used in our experiments the work-phase does not con-
sider any of the new connections accumulated in the immedi-
ately preceding accept-phase. That is, it only works on con-
nections when select informs it that work can proceed on
that connection without blocking.

The µserver is based on the multi-accept server written by
Chandra and Mosberger [7]. That server implements an ac-
cept policy that drains its accept queue when it is notified
of a pending connection request. In contrast, the µserver
uses a parameter that permits us to accept up to a pre-defined
number of the currently pending connections. This defines
an upper limit on the number of connections accepted con-
secutively. For ease of reference, we call this parameter the
accept-limit parameter, and refer to it throughout the rest of
this paper. The same name is also used to refer to similar
modifications to Knot and TUX. Parameter values range from
one to infinity (Inf). An accept-limit of one forces the server
to accept a single connection in each accept-phase, while Inf
causes the server to accept all currently pending connections.

Our early investigations [6] revealed that the accept-limit
parameter could significantly impact the µserver’s perfor-
mance. This motivated us to explore the possibility of im-
proving the performance of other servers, as well as quanti-
fying the performance gains under more representative work-
loads. As a result, we have implemented accept-limit mecha-
nisms in two other well-known web servers. We now describe
these servers and their accept mechanisms.

4.2 Knot

Knot [28] is a multi-threaded web server which makes use of
the Capriccio [29] threading package. Knot is a simple web
server. It derives many benefits from the Capriccio threading
package, which provides lightweight, cooperatively sched-
uled, user-level threads. Capriccio features a number of dif-
ferent thread schedulers, including a resource-aware sched-
uler which adapts its scheduling policies according to the ap-

plication’s resource usage. Knot operates in one of two modes
[28] which are referred to as Knot-C and Knot-A.

Knot-C uses a thread-per-connection model, in which the
number of threads is fixed at runtime (via a command-line pa-
rameter). Threads are pre-forked during initialization. There-
after, each thread executes a loop in which it accepts a single
connection and processes it to completion. Knot-A creates a
single acceptor thread which loops attempting to accept new
connections. For each connection that is accepted, a new
worker thread is created to completely process that connec-
tion.

Knot-C is meant to favour the processing of existing con-
nections over the accepting of new connections, while Knot-
A is designed to favour the accepting of new connections. By
having a fixed number of threads and using one thread per
connection, Knot-C contains a built-in mechanism for limit-
ing the number of concurrent connections in the server. In
contrast, Knot-A allows increased concurrency by placing no
limit on the number of concurrent threads or connections.

Our preliminary experiments revealed that Knot-C per-
forms significantly better than Knot-A, especially under over-
load where the number of threads (and open connections) in
Knot-A becomes very large. These results agree with find-
ings reported by the authors of Knot [28], and as a result we
focus our tuning efforts on Knot-C.

We modified Knot-C to allow each of its threads to accept
multiple connections before processing any of the new con-
nections. This was done by implementing a new function that
is a modified version of the accept call in the Capriccio li-
brary. This call loops to accept up to accept-limit new con-
nections provided that they can be accepted without block-
ing. If the call to accept would block and at least one con-
nection has been accepted the call returns and the processing
of the accepted connections proceeds. Otherwise the thread
is put to sleep until a new connection request arrives. After
accepting new connections, each thread fully processes the
accepted connections before admitting any new connections.
Therefore, in our modified version of Knot each thread os-
cillates between an accept-phase and a work-phase. As in
the µserver, the accept-limit parameter ranges from 1 to in-
finity. The rest of this paper uses the accept-limit parameter
to explore the performance of our modified version of Knot-
C. Note that when the accept-limit is set to 1 our modified
version of Knot operates in the same fashion as the original.

4.3 TUX

TUX [24] [16] is an event-driven kernel-mode web server for
Linux developed by Red Hat. It is compiled as a kernel-
loadable module (similar to many Linux device drivers),
which can be loaded and unloaded on demand. TUX’s kernel-
mode status affords it many I/O advantages including true
zero-copy disk reads, zero-copy network writes, and zero
copy request parsing. In addition, TUX accesses kernel data

structures (e.g., the listening socket’s accept queue) directly,
which allows it to obtain events of interest with relatively
low overhead when compared to user-level mechanisms like
select. Lastly, TUX avoids the overhead of kernel cross-
ings that user-mode servers must incur when making system
calls. This is important in light of the large number of system
calls needed to process a single HTTP request.

A look at the TUX source code provides detailed insight
into TUX’s structure. TUX’s processing revolves around two
queues. The first queue is the listening socket’s accept
queue. The second is the work pending queue which con-
tains items of work (e.g., reads and writes) that are ready
to be processed without blocking. TUX oscillates between
an accept-phase and a work-phase. It does not require a
getevents-phase because it has access to the kernel data struc-
tures where event information is available. In the accept-
phase TUX enters a loop in which it accepts all pending
connections (thus draining its accept queue). In the work-
phase TUX processes all items in the work pending queue
before starting the next accept-phase. Note that new events
can be added to each queue while TUX removes and pro-
cesses them.

We modified TUX to include an accept-limit parameter,
which governs the number of connections that TUX will ac-
cept consecutively before leaving the accept-phase. Since
TUX is a kernel-loadable module, it does not accept tra-
ditional command line parameters. Instead, the new pa-
rameter was added to the Linux /proc file system, in the
/proc/sys/net/tux subdirectory. The /proc mech-
anism is convenient in that it allows the new parameter to
be read and written without restarting TUX. This parameter
gives us a measure of control over TUX’s accept policy, and
allows us to compare different accept-limit values with the
default policy of accepting all pending connections.

Note that there is an important difference between how the
µserver and TUX operate. In the µserver the work-phase pro-
cesses a fixed number of connections (determined by select).
In contrast TUX’s work pending queue can grow during
processing, which prolongs its work phase. As a result we
find that the accept-limit parameter impacts these two servers
in dramatically different ways. This will be seen and dis-
cussed in more detail in Section 6.

It is also important to understand that the accept-limit pa-
rameter does not control the accept rate, but merely influences
it. The accept rate is determined by a combination of the
frequency with which the server enters the accept-phase and
the number connections accepted while in that phase. The
amount of time spent in the work and getevent phases deter-
mines the frequency with which the accept-phase is entered.

5 Experimental Methodology

In our graphs, each data point is the result of a two minute ex-
periment. Trial and error revealed that two minutes provided

sufficient time for each server to achieve steady state execu-
tion. Longer durations did not alter the measured results, and
only served to prolong experimental runs. A two minute de-
lay was used between consecutive experiments. This allowed
all TCP sockets to clear the TIME WAIT state before com-
mencing the next experiment. Prior to running experiments,
all non-essential Linux services (e.g., sendmail, dhcpd, cron
etc.) were shutdown. This eliminated interference from dae-
mons and periodic processes (e.g., cron jobs) which might
confound results.

Prior to determining which accept-limit values to include
in each graph a number of alternatives were run and exam-
ined. The final values presented in each graph were chosen
in order to highlight the interesting accept policies and differ-
ences. The following sections describe our experimental en-
vironment and the parameters used to configure each server.

5.1 Environment

Our experimental environment is made up of two separate
client-server clusters. The first cluster (Cluster 1) contains a
single server and eight clients. The server contains two Xeon
processors running at 2.4 GHz, 1 GB of RAM, a 10,000 RPM
SCSI disk, and two Intel e1000 Gbps Ethernet cards. The
clients are identical to the server with the exception of their
disks which are EIDE. The server and clients are connected
with a 24-port Gbps switch. Since the server has two cards,
we avoid network bottlenecks by partitioning the clients into
different subnets. In particular, the first four clients communi-
cate with the server’s first ethernet card, while the remaining
four use a different IP address linked to the second ethernet
card.

Each client runs Red Hat 9.0 which uses the 2.4.20-8 Linux
kernel. The server also uses the 2.4.20-8 kernel, but not the
binary that is distributed by Red Hat. Instead, the Red Hat
sources were re-compiled after we incorporated our changes
to TUX. The resulting kernel was used for all experiments on
this machine. The aforementioned kernel is a uni-processor
kernel that does not provide SMP support. The reasons for
this are twofold. Firstly, the Capriccio threading package
does not currently include SMP support. Secondly, we find
it instructive to study the simpler single-processor problem,
before considering complex SMP interactions.

The second machine cluster (Cluster 2) also consists of a
single server and eight clients. The server contains two Xeon
processors running at 2.4 GHz, 4 GB of RAM, several high-
speed SCSI drives and two Intel e1000 Gbps Ethernet cards.
The clients are dual-processor Pentium III machines running
at 550 MHz. Each client has 256 MB of RAM, an EIDE disk,
and one Intel e1000 Gbps Ethernet card. The server runs a
Linux 2.4.19 uni-processor kernel, while the clients use the
2.4.7-10 kernel that ships with Red Hat 7.1.

This cluster of machines is networked using a separate 24-
port Gbps switch. Like the first cluster, the clients are di-

vided into two groups of four with each group communicating
with a different server NIC. In addition to the Gbps network,
all machines are connected by a separate 100 Mbps network
which is used for co-ordinating experiments. Each cluster is
completely isolated from other network traffic.

Cluster 1 is used to run all µserver and TUX experiments
while Cluster 2 is used to run all Knot experiments. Be-
cause our clusters are slightly different, we do not directly
compare results taken from different clusters. Instead, each
graph presents data gathered from a single cluster. Ideally, we
would use one cluster for all our experiments, but the number
of experiments required necessitated the use of two clusters.

5.2 Web Server Configuration

In the interest of making fair and scientific comparisons, we
carefully configured TUX and the µserver to use the same
resource limits. TUX was configured to use a single ker-
nel thread. This enables comparisons with the single process
µserver, and was also recommended in the TUX user manual
[24]. The TUX accept queue backlog was set to 128 (via the
/proc/sys/net/tux/max backlog parameter) which
matches the value imposed on the user-mode servers. By de-
fault, TUX bypasses the kernel-imposed limit on the length of
the accept queue, in favour of a much larger backlog (2,048
pending connections). This adjustment also eases compari-
son and understanding of accept-limit-Inf strategies.

Additionally, both TUX and the µserver use lim-
its of 15,000 simultaneous connections. In the
µserver case this is done by using an appropriately
large FD SETSIZE. For TUX this was done through
/proc/sys/net/tux/max connections. All
µserver and TUX experiments were conducted using the
same kernel.

The Knot server was configured to use the Knot-C be-
haviour. That is, it pre-forks and uses a pre-specified number
of threads. In our case we used 1,000 threads. Although we
have not extensively tuned Knot we have noticed that as long
as the number of threads was not excessively small or large,
the performance of Knot-C was not greatly impacted by the
number of threads. Note that in this architecture the number
of threads used also limits the maximum number of simul-
taneous connections. When the accept-limit modification is
added to Knot it permits several connections per thread to be
open, thus increasing this limit.

Finally, logging is disabled on all servers and we ensure
that all servers can cache the entire file set. This ensures
that differences in server performance are not due to caching
strategies.

6 Workloads and Experimental Results

This section describes the two workloads used in our exper-
iments, and discusses the results obtained with each of the

three servers. Our results show that the accept strategy sig-
nificantly impacts server performance for each server.

6.1 SPECweb99-like Workload

The SPECweb99 benchmarking suite [25] is a widely ac-
cepted tool for evaluating web server performance. However,
the suite is not without its flaws. The SPECweb99 load gen-
erators are unable to generate loads that exceed the capacity
of the server. The problem is that the SPECweb99 load gen-
erator will only send a new request once the server has replied
to its previous request. Banga et al. [5] show that under this
approach the clients’ request rates are throttled by the server.
As such, the clients are unable to overload the server.

We address this problem by using httperf, an http load gen-
erator that is capable of generating overload [17]. httperf
avoids the naive load generation scheme by implementing
connection timeouts. Every time a connection to the server
is initiated, a timer is started. If the connection timer expires
before the connection is established and the HTTP transac-
tion completes, the connection is aborted and retried. This
allows the clients to generate loads that exceed the server’s
capacity. We use httperf in conjunction with a SPECweb99
file set and a session log file that we have constructed to
mimic the SPECweb99 workload. Although our traces are
synthetic, they are carefully generated to accurately recreate
the file classes, access patterns, and the number of requests
issued per persistent HTTP 1.1 connection used in the static
portion of SPECweb99 [25].

In all experiments, the SPECweb99 file set and server
caches are sized so that the entire file set fits in main mem-
ory. This is done to eliminate differences between servers
due to differences in caching implementations. While an in-
memory workload is not entirely representative, it does per-
mit us to compare our results with those of Joubert et al. [15],
who used an in-memory SPECweb96 workload to compare
the performance of kernel-mode and user-mode servers.

Figure 2 examines the performance of the µserver as the
accept-limit parameter is varied. Recall that the accept-limit
parameter controls the number of connections that are ac-
cepted consecutively. This graph shows that a larger accept-
limit can significantly improve performance in the µserver,
especially under overload. In fact, at the extreme target load
of 30,000 requests/sec, the accept-limit-Inf policy outper-
forms the accept-limit-1 policy by 39%.

Statistics collected by the µserver provide insights that
confirm the benefits of the high accept-limit value. At
a target load of 30,000 requests/sec, the accept-limit-Inf
server accepts an average of 1,571 new connections per sec-
ond. In comparison, the accept-limit-1 server averages only
1,127 new connections per second (28% fewer). This dif-
ference is especially significant when we consider that each
SPECweb99 connection is used to send an average of 7.2 re-
quests. Figure 3 shows that in all cases the higher accept-rates

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

accept-limit-Inf
accept-limit-10

accept-limit-1

Figure 2: µserver performance under SPECweb99-like work-
load

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

accept-limit-Inf
accept-limit-10
accept-limit-1

Figure 3: µserver queue drops/sec under SPECweb99-like
workload

result in lower queue drop rates (QDrops/s). The lower drop
rates mean that less time is wasted in the processing of pack-
ets that will be discarded, and more time can be devoted to
processing client requests. As seen in Figure 2, this translates
into a healthy improvement in throughput.

The queue drop rates are obtained by running netstat on
the server before and after each experiment. The number of
failed TCP connection attempts and listen queue overflows
is summed and recorded before and after each experiment.
Subtracting these values and dividing by the experiment’s du-
ration provides a rate, which we report in our queue drop
graphs.

For the Knot server, we experimented with a variety of dif-
ferent accept strategies. The results are summarized in Fig-
ures 4 and 5. Figure 4 illustrates the throughput obtained us-
ing different accept policies. With the accept-limit param-
eter set to 1, our modified version of Knot behaves identi-
cally to an unmodified copy of Knot. As a sanity check, we
confirmed that the original version and the modified server
using the accept-limit-1 policy produce indistinguishable re-
sults. To reduce clutter, we omit results for the original ver-
sion of Knot.

Higher accept-limits (10, 50 and 100) represent our at-
tempts to increase Knot’s throughput by increasing its ac-
cept rate. Our server-side measurements confirm that we are
able increase Knot’s accept rate. For example, statistics col-

lected in Knot reported that at a load of 20,000 requests/sec,
the accept-limit-100 policy accepts new connections 240%
faster (on average) than the accept-limit-1 (default) server.
Further evidence is provided in Figure 5 which shows that
the accept-limit-50 and accept-limit-100 servers enjoy signif-
icantly lower queue drop rates than their less aggressive coun-
terparts.

 0

 2000

 4000

 6000

 8000

 10000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

accept-limit-100
accept-limit-50
accept-limit-10

accept-limit-1

Figure 4: Knot performance under SPECweb99-like work-
load

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

accept-limit-100
accept-limit-50
accept-limit-10

accept-limit-1

Figure 5: Knot queue drops/sec under SPECweb99-like work-
load

Unfortunately, the higher accept rates (and lowered queue
drop rates) do not improve performance. On the contrary,
performance suffers. Statistics reported by Knot show that
with an accept-limit of 50 or higher, the number of concur-
rent connections in the server grows quite sharply. We believe
that performance degrades with a large number of connec-
tions because of overheads in the Capriccio threading library.
As a result, we find that under this workload, more aggres-
sively accepting new connections does not improve Knot’s
performance. These findings agree with previously published
results [28] in which overly aggressive accepting also hurt
Knot’s performance.

In Figure 6 we show that the accept-limit parameter can
be used to improve TUX’s performance. The accept-limit-Inf
policy corresponds to TUX’s default accept behaviour (drain-
ing the accept queue). The accept-limit-50 policy allows
TUX to consecutively accept up to 50 connections, while the
accept-limit-1 policy limits TUX to accepting a single con-

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

accept-limit-Inf
accept-limit-50

accept-limit-1

Figure 6: TUX performance under SPECweb99-like work-
load

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

accept-limit-Inf
accept-limit-50
accept-limit-1

Figure 7: TUX queue drops/sec under SPECweb99-like work-
load

nection in each accept-phase. Figure 6 shows that the accept-
limit-1 policy results in a 12% increase in peak throughput,
and a 19% increase in throughput at 14,500 reqs/sec. Surpris-
ingly, our server-side instrumentation shows that an accept-
limit-1 policy causes TUX to accept connections faster than
the higher accept-limit values. While this behaviour may
seem unintuitive, it is important to remember that TUX’s ac-
cept rate is not directly governed by the accept-limit parame-
ter. Rather, the accept-limit controls the maximum number of
connections that are accepted consecutively. The server’s ac-
cept rate is determined by the number of consecutive accepts
as well as the number of times that TUX enters its accept-
phase.

Equation 1 formalizes this simple mathematical relation-
ship. In this equation, telapsed denotes the elapsed time for a
given experiment, Nphases represents the number of accept-
phases the server completes during the experiment, and Cavg

denotes the average number of new connections accepted per
accept-phase. In our experiments, telapsed is essentially a
constant.

AcceptRate =

NphasesCavg

telapsed

(1)

In TUX, lowering the accept-limit has two effects. Firstly,
Cavg decreases since each accept-phase is shortened. Sec-
ondly, Nphases increases dramatically. In our experiments,

the increase in Nphases outweighs the decrease in Cavg and
leads to a net increase in the observed accept rate. We found
that for low accept-limits, TUX accepted fewer connections
in each accept-phase, but entered its accept-phase more fre-
quently (because the low accept-limit shortened its work-
phase). On balance, lower accept-limits lead to a higher ac-
cept rate.

Interestingly, the accept-limit parameter has a very differ-
ent effect on TUX and the µserver in spite of the fact that both
are event-driven servers with accept-phases and work-phases.
Because of this similarity, Equation (1) applies equally to
both servers. In the µserver, lowering the accept-limit pa-
rameter also lowers Cavg , and increases Nphases. However,
in this case the increase in Nphases is unable to compensate
for the decrease in Cavg . As a result, the µserver’s accept-rate
falls when its accept-limit is lowered.

This analysis shows that in spite of the same relative
change in Nphases and Cavg , the magnitude of each change
is quite different in the µserver and TUX. The difference in
magnitude arises because of the get-events phase that exists
in the µserver but not in TUX. In the µserver each accept-
phase is preceded by a get-events phase (essentially a call
to select). Increasing the number of accept-phases also
increases the number of select calls. This adds an over-
head to each accept-phase, and limits the µserver’s ability to
perform more accept-phases. In comparison, TUX incurs no
extraneous overhead for extra accept-phases.

Figure 7 shows TUX’s queue drop rates for each accept
policy. In this case the largest differences in drop rates are
seen in the 12,000 to 15,000 requests per second range where
there are also the largest differences in reply rates.

6.2 One-packet Workload

In the aftermath of the September 11th 2001 terrorist at-
tacks, many on-line news services were flooded with requests.
Many services were rendered unavailable, and even large por-
tals were unable to deal with the deluge for several hours. The
staff at CNN.com resorted to replacing their main page with
a small, text-only page containing the latest headlines [8]. In
fact, CNN sized the replacement page so that it fit entirely in
a single TCP/IP packet. This clever strategy was one of the
many measures employed by CNN.com to deal with record-
breaking levels of traffic.

These events reinforce the need for web servers to effi-
ciently handle requests for small files, especially under ex-
treme loads. With this in mind, we have designed a static
workload that tests a web server’s ability to handle a barrage
of short-lived connections. The workload is simple; all re-
quests are for the same file, issuing one HTTP 1.1 request per
connection. The file is carefully sized so that the HTTP head-
ers and the file contents fill a single packet. This resembles
the type of requests that would have been seen by CNN.com
on September 11.

Obviously, this workload differs from the SPECweb99-like
workload in several key respects. For instance, it places much
less emphasis on network I/O. Also, because a small file is be-
ing requested with each new connection it stresses a server’s
ability to handle much higher demand for new connection re-
quests. We believe that when studying servers under high
loads that this is now an interesting workload in its own right.
We also believe that it can provide valuable insights that may
not be possible using the SPECweb99-like workload. For
more discussion related to the workloads used in this paper
see Section 7.

Figure 8 shows the reply rate observed by the clients as
the load (target requests per second) on the server increases.
This graph shows that the accept-limit-Inf and accept-limit-
10 options significantly increase throughput when compared
with the naive accept-limit-1 strategy. This is because these
servers are significantly more aggressive about accepting new
connections than the accept-limit-1 approach. Interestingly,
the accept-limit-10 strategy achieves a slightly higher peak
than the accept-limit-Inf strategy, although it experiences
larger decreases in throughput than accept-limit-Inf as the
load increases past saturation. This indicates that better per-
formance might be obtained by dynamically adjusting the ac-
cept strategy (this is something we plan to investigate in fu-
ture research).

The differences in performance between the accept-limit-
10 and accept-limit-Inf policies can be seen by examining
their ability to accept new connections. Figure 9 shows the
queue drop rates for the different accept strategies. Here we
see that the µserver operating with an accept-limit of 10 is
better able to accept new connections. In fact it is able avoid
significant numbers of queue drops until 23,000 requests per
second. On the other hand the accept-limit-Inf option experi-
ences significant numbers of queue drops at 21,500 requests
per second. Both of these points correspond to their respec-
tive peak rates.

 0

 5000

 10000

 15000

 20000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

accept-limit-Inf
accept-limit-10

accept-limit-1

Figure 8: µserver performance under one-packet workload

Figure 9 also shows that the accept-limit-1 option does a
good job of accepting new connections until a target request
rate of 20,000 requests per second. At that point it is unable
to keep up with the demand for new connections. The result

is that the queue drop rate is 17,832 drops per second, and the
reply rate is 14,058 replies per second. Significant expense is
incurred in handling failed connection requests. If the server
can accept those connections, it can improve performance as
long as existing connections are not neglected.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

accept-limit-Inf
accept-limit-10
accept-limit-1

Figure 9: µserver queue drops/sec under one-packet work-
load

Interestingly, the total of these two rates (17,832 + 14,058
= 31,890) exceeds the target request rate of 20,000 requests
per second. This is because when a client is attempting to
establish a TCP connection using the three-way handshake,
if the client does not receive a SYN-ACK packet in response
to the SYN packet it sends to the server, it will eventually
time-out and retry, which leads to several queue drops per
connection.

Using this one-packet workload we are able to increase the
µserver’s peak throughput from 19,500 replies per second us-
ing the naive accept strategy (accept-limit-1) to 22,000 replies
per second using the accept-limit-10 strategy. This is an im-
provement of 13%. More importantly, the accept-limit-Inf
strategy improves performance versus the naive strategy by
as much as 65% at 21,000 requests per second and 71% at
30,000 requests per second.

Figure 10 shows the reply rate versus the target request rate
for the TUX server. As with the SPECweb99-like workload,
limiting the number of consecutive accepts increases TUX’s
accept rate. This can be seen by comparing the queue drop
rates (QDrops/sec) in Figure 11 for the different TUX con-
figurations examined. In TUX, the accept-limit-1 strategy
does the best job of accepting new connections resulting in
the lowest queue drop rates of the configurations examined.
This translates directly into the highest throughput.

Recall that the accept-limit-Inf strategy corresponds to the
original TUX accept strategy. In this case the improved
accept-limit-1 strategy results in a peak reply rate of 22,998
replies per second compared with the original, whose peak
is at 20,194 replies per second. This is an improvement of
14%. Additionally there is an improvement of 36% at 23,000
requests per second.

We believe further improvements are possible. However,
the simple method we used to modify TUX does not permit

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

accept-limit-Inf
accept-limit-50

accept-limit-1

Figure 10: TUX performance under one-packet workload

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

accept-limit-Inf
accept-limit-50
accept-limit-1

Figure 11: TUX queue drops/sec under one-packet workload

us to accept fewer than one connection per accept phase. Ul-
timately we believe that the best way to control the accept
strategy used in TUX, and to control the scheduling of work
in general, is to track the number of entries contained in the
accept queue and in the number of entries in work pending
queue. With this information, a more informed decision can
be made about whether to enter an accept-phase or a work-
phase. We also believe that limits should be placed on the
amount of time spent in each phase, possibly by limiting the
number of events processed from each queue. We believe
that this approach might be used to further increase the rate at
which the server accepts new connections. The difficulty lies
in ensuring that the server strikes a balance between accepting
new connections and processing existing connections.

For this one packet workload, Knot also benefits from tun-
ing its accept policy. Figure 12 shows an interesting spectrum
of accept policies. We observe that the accept-limit-50 strat-
egy noticeably improves throughput when compared with the
original accept strategy. Firstly, peak throughput is increased
by 17% from 12,000 to 14,000 replies per second. Secondly,
the throughput is increased by 32% at 14,000 requests per
second and 24% at 30,000 requests per second.

Interestingly, increasing the accept-limit value too much
(for example to 100) can result in poor performance. In com-
paring the accept-limit-100 strategy with the accept-limit-
1 (default) strategy, we observe that the former obtains a
slightly higher peak. However, throughput degrades signifi-

cantly once the saturation point is exceeded. Figure 13 shows
how the connection failure rates are impacted by the changes
in the accept strategy. Here we see that the accept-limit-100
version is able to tolerate slightly higher loads than the origi-
nal before suffering from significant connection failures. The
accept-limit-50 version is slightly better, and in both cases
peak throughput improves. At request rates of 15,000 and
higher the accept-limit-50 and accept-limit-100 strategies do
a slightly better job of preventing queue drops than the server
using an accept-limit of 1. Interestingly, queue drop rates
for the accept-limit 50 and 100 options are quite comparable
over this range, yet, there is a large difference in performance.
The statistics printed by the Knot server show that at 15,000
requests/sec the accept-limit-50 policy operates with approxi-
mately 25,000 active connections, while the accept-limit-100
policy is operating with between 44,000 to 48,000 active con-
nections. One possible explanation for the difference in per-
formance is that the overhead incurred by poll becomes
prohibitive as the number of active connections climbs. These
experiments also highlight that a balanced accept policy pro-
vides the best performance.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

accept-limit-100
accept-limit-50

accept-limit-1

Figure 12: Knot performance under one-packet workload

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

accept-limit-100
accept-limit-50
accept-limit-1

Figure 13: Knot queue drops/sec under one-packet workload

6.3 Comparing the µserver and TUX

Figures 14 and 15 compare the performance of the TUX
server with the performance of the µserver under the
SPECweb99 and one packet workloads respectively. These

graphs show that the original version of TUX (accept-limit-
Inf) outperforms a poorly tuned (accept-limit-1) version
of the user-mode µserver by as much as 28% under the
SPECweb99-like workload and 84% under the one-packet
workload (both at 30,000 requests/sec). However, the per-
formance gap is greatly reduced by adjusting the µserver’s
accept policy. As a result we are able to obtain performance
that compares quite favourably with the performance of the
unmodified TUX server under both workloads.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

TUX accept-limit-Inf
TUX accept-limit-1

userver accept-limit-Inf
userver accept-limit-1

Figure 14: µserver versus TUX performance under
SPECweb-like workload

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

TUX accept-limit-Inf
TUX accept-limit-1

userver accept-limit-Inf
userver accept-limit-1

Figure 15: µserver versus TUX performance under one-
packet workload

Figure 16 contrasts a superior accept policy with an infe-
rior one for each server. The observed performance differ-
ences can be partly explained by examining the queue drop
counts for each policy. Under Linux (kernel version 2.4.20-
8) a client’s connection request may be denied by the server
for a variety reasons (in the order listed), including:

• SynQFull : The SYN queue is full when the SYN packet
arrives

• AcceptQFull : The accept queue is full when the SYN
packet arrives

• DropRequest : The SYN queue is 3/4 full when the
SYN packet arrives

• ListenOverflow : The accept queue is full when the
SYN-ACK packet arrives

To provide a more complete view of how queue drops im-
pact performance, we added several counters to the Linux
kernel. These allow us to categorize queue drops according
to the cases outlined above. Queue drop data was obtained
by re-running selected experiments under our modified ker-
nel. The throughputs obtained under the modified kernel are
comparable to those obtained under the standard kernel. Fig-
ure 16 shows detailed queue drop counts for TUX and the
µserver under the one packet workload at request rates of
24,000, 27,000 and 30,000 requests/sec. In this figure, the
SynQFull count is always zero, and has been omitted.

0

1000000

2000000

3000000

4000000

5000000

6000000

TU
X

-Inf
TU

X
-1

userver-Inf
userver-1

TU
X

-Inf
TU

X
-1

userver-Inf
userver-1

TU
X

-Inf
TU

X
-1

userver-Inf
userver-1

ListenOverFlow
DropRequest
AcceptQFull

24,000 27,000 30,000

D
r
o
p
s

Figure 16: Different types of queue drops for TUX and the
µserver under one packet workload for selected request rates

The results for the µserver at 24,000 requests per sec-
ond show that the high-performance accept-limit-Inf policy
(userver-Inf) significantly reduces the number of DropRe-
quests and the overall number of queue drops when compared
with the accept-limit-1 policy. The decrease in the number
of dropped SYN packets demonstrates that the accept-limit-
Inf policy successfully reduces the size of the SYN backlog.
However, this reduction is partially offset by a higher Accep-
tQFull count. The latter can be attributed to the bursty nature
of the accept-limit-Inf policy.

By totally draining the accept queue, the accept-limit-Inf
policy produces large accept-phases where several hundred
connections may be accepted consecutively. These long ac-
cept phases are followed by long work-phases which are
needed to process connections. For example, at 24,000 re-
quests/sec the average work-phase under the accept-limit-Inf
policy processes 184.9 connections. In comparison, the aver-
age work-phase under the accept-limit-1 policy processes just
3.6 connections. During these long work-phases, no new con-
nections are accepted and both the SYN queue and the accept
queue accumulate entries. However, it is the much shorter ac-
cept queue (128 entries versus 1024 for the SYN queue) that
fills first, leading to higher AcceptQFull counts.

The relatively short work-phases of the accept-limit-1 pol-
icy also mean that the server does relatively little work per
select call. As a result, the server must make many more
select calls to process the same number of connections.
The µserver statistics at the request rate of 24,000 indicate

that the accept-limit-1 policy makes 12,507select calls per
second, compared to only 267 calls per second for the accept-
limit-Inf policy. Clearly, the accept-limit-1 policy provides
a poor amortization of select overhead, which hurts per-
formance. The results at 27,000 and 30,000 requests/sec are
qualitatively similar.

The results for TUX reveal that at 24,000 requests per sec-
ond, the accept-limit-1 policy reduces TUX’s queue drops
dramatically. This more aggressive accept strategy is suc-
cessful in keeping both the SYN queue, and the accept queue
relatively empty, and the resulting performance is quite good.
For TUX, the more aggressive accept-limit-1 policy mostly
reduces AcceptQFull counts. TUX with accept-limit-1 ob-
tains higher accept rates not by accepting more connections
in bigger batches (as is done in the µserver) but by more fre-
quently accepting one connection. The result is a less bursty
accept policy.

We note that previous research [27] [10] has investigated
techniques for reducing the overheads associated with queue
drops. We believe such techniques can complement a well-
chosen accept strategy. Together, they should provide higher
throughputs and more stable overload behaviour.

Figure 17 shows the mean response time for the µserver
and TUX using the accept-limit-1 and accept-limit-Inf poli-
cies as the load increases. These graphs are obtained by mea-
suring the latency of each completed HTTP 1.1 request at the
client under the SPECweb99-like workload.

Although it may be difficult to discern, the graph shows
that mean response times are essentially zero at low loads.
However, once the servers becomes saturated the mean re-
sponse times increase significantly. The µserver with accept-
limit-1 has the lowest mean response times under overload
conditions. This is because it does not spend very much time
accepting new connections and is able to process the requests
that it does accept relatively quickly. In contrast the mean re-
sponse times for the µserver with accept-limit-Inf are higher
because the server is quite bursty, and alternates between long
accept-phases and long work-phases.

Under overload conditions TUX with accept-limit-1 ob-
tains both high throughput and relatively low mean response
times (in contrast to TUX with accept-limit-Inf). With accept-
limit-1, the accept phases are shorter, permitting work phases
to be processed sooner. This translates into a high accept-rate
and little burstiness, and provides both high throughput and
reasonably low response times.

Our comparison of user-mode and kernel-mode servers
produces considerably different results than recent work by
Joubert et al. [15]. Their research concludes that kernel-mode
servers perform two to three times faster than their user-mode
counterparts when serving in-memory workloads. Their ex-
periments on Linux demonstrate that TUX achieved 90%
higher performance than the fastest user-mode server (Zeus)
measured on Linux. While there are undeniable benefits to
the kernel-mode architecture (integration with the TCP/IP

 0

 1000

 2000

 3000

 4000

 5000

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

TUX accept-limit-Inf
TUX accept-limit-1
userver accept-limit-Inf
userver accept-limit-1

Figure 17: µserver and TUX latencies under the
SPECweb99-like workload

stack, zero copy disk I/O, eliminating kernel crossings, etc.),
our comparison shows that a user-mode server can rival the
performance of TUX.

Some of the gains in user-mode performance are due to the
zero-copy sendfile implementation that is now available
on Linux. There are also differences in workloads. Specif-
ically, Joubert et al. used a HTTP 1.0 based SPECweb96
workload, while we use a HTTP 1.1 based SPECweb99 work-
load. Lastly, we note the use of different operating system
versions, a different performance metric, and possibly differ-
ent server configurations. In spite of these differences, our
work demonstrates that a well tuned user-mode server can
closely rival the performance of a kernel-mode server under
representative workloads.

7 Discussion

Accept strategies can have considerable impact on web server
performance. As a result, we believe these strategies should
be considered (along with other parameters that affect per-
formance) when comparing different web servers. We point
out that every server has an implicit accept strategy. Perhaps
without realizing it, every server makes a decision regard-
ing what portion of the available work should be immediately
processed. We emphasize that we have not fully explored
the parameter space of possible accept strategies. Instead, we
have devised a simple method for demonstrating that accept
strategies can have considerable impact on performance in
three very different servers. In the future, we plan to investi-
gate techniques for dynamically obtaining a balanced accept
strategy that will self-tune for different hardware, operating
systems, and even server architectures.

This paper presents a detailed comparison of the µserver
and TUX. It is tempting to compare the graphs containing
the µserver and Knot results in order to compare the perfor-
mance of the event-driven and multi-threaded servers. How-
ever, such a comparison would be unfair since Knot and the
µserver were run in slightly different (hardware and software)
environments. As a result, we refrain from direct compar-

isons of these two servers.
The results obtained with the two workloads studied in

this paper show that the accept strategy has a bigger impact
on throughput under the one packet workload than with the
SPECweb99-like workload. This is especially important in
light of recent studies that have highlighted deficiencies of
the SPECweb99 workload.

Nahum [18] analyzes the characteristics of the
SPECweb99 workload in comparison with data gath-
ered from several real-world web server logs. His analysis
reveals many important shortcomings of the SPECweb99
benchmark. For example, the SPECweb99 benchmark does
not use conditional GET requests, which account for 28%
of all requests in some server traces, and often result in
the server transmitting an HTTP header and no file data.
Nahum also reports that SPECweb99’s 5,120 byte median
file size is significantly larger than the 230 bytes observed
in one popular log. The combinations of these observations
indicates that the demand for new connections at web servers
is likely to be much higher than the demand generated by a
SPECweb99-like workload.

Further evidence for this conclusion is provided by
Jamjoom et al. [14]. They report that many popular browsers
issue multiple requests for embedded objects in parallel. This
is in contrast to using a single sequential persistent connection
to request multiple objects from the same server. This strat-
egy results in between 1.2 and 2.7 requests per connection
which is considerably lower than the average of 7.2 requests
per connection used by SPECweb99.

While a SPECweb99-like workload is still useful for mea-
suring web server performance, it has a number of shortcom-
ings and should not be used as the sole measure of server
performance. Our one-packet workload highlights a number
of phenomena (small transfer sizes, a small number of re-
quests per connection) reported in recent literature. More im-
portantly, as implemented by CNN.com, this is perhaps the
best way to serve the most clients under conditions of ex-
treme overload. In our work, it is useful because it places
high demands on the server to accept new connections.

8 Conclusions

This paper examines the impact of connection-accepting
strategies on web server performance. We devise and study
a simple method for altering the accept strategy of three
architecturally different servers: the user-mode single pro-
cess event-drivenµserver, the user-mode multi-threaded Knot
server, and the kernel-mode TUX server.

Our experimental evaluation of different accept strate-
gies expose these servers to representative workloads involv-
ing high connection-rates, and genuine overload conditions.
We find that the manner in which each server accepts new
connections can significantly affect its peak throughput and
overload performance. Our experiments demonstrate that

well-tuned accept policies can yield noticeable improvements
compared with the base approach used in each server. Under
two different workloads, we are able to improve throughput
by as much as 19% – 36% for TUX, 0% – 32% for Knot, and
39% – 71% for the µserver. As a result, we point out that re-
searchers in the field of server performance must be aware of
the importance of different accept strategies when comparing
different types of servers.

Lastly, we present a direct comparison of the user-mode
µserver and the kernel-mode TUX server. We show that the
gap between user-mode and kernel-mode architectures may
not be as large as previously reported. In particular, we find
that under the workloads considered the throughput of the
user-mode µserver rivals that of TUX.

In future work we plan to examine techniques for making
more informed decisions about how to schedule the work that
a server performs. We believe that by making more informa-
tion available to the server we can implement both better and
dynamic policies for deciding whether the server should en-
ter a phase of accepting new connections (the accept-phase)
or working on existing connections (the work-phase). Addi-
tionally this information would permit us to implement more
controlled policies by limiting the length of each phase.

9 Acknowledgments

We gratefully acknowledge Hewlett Packard (through the
Gelato Federation), the Ontario Research and Development
Challenge Fund, and the National Sciences and Engineering
Research Council of Canada for financial support for portions
of this project. This work has benefited substantially from
discussions with and feedback from Martin Arlitt, Michal Os-
trowski, Brian Lynn, Amol Shukla, Ken Salem, Mohammed
Abouzour and our shepherd Vivek Pai.

References

[1] M. Arlitt and T. Jin. Workload characterization of the
1998 World Cup web site. IEEE Network, 14(3):30–37,
May/June 2000.

[2] G. Banga, P. Druschel, and J.C. Mogul. Resource con-
tainers: A new facility for resource management in
server systems. In Operating Systems Design and Im-
plementation, pages 45–58, 1999.

[3] G. Banga and J.C. Mogul. Scalable kernel performance
for Internet servers under realistic loads. In Proceedings
of the 1998 USENIX Annual Technical Conference, New
Orleans, LA, 1998.

[4] G. Banga, J.C. Mogul, and P. Druschel. A scalable and
explicit event delivery mechanism for UNIX. In Pro-
ceedings of the 1999 USENIX Annual Technical Con-
ference, Monterey, CA, June 1999.

[5] Gaurav Banga and Peter Druschel. Measuring the
capacity of a web server. In Proceedings of the

USENIX Symposium on Internet Technologies and Sys-
tems (USITS), Monterey CA, December 1997.

[6] T. Brecht and M. Ostrowski. Exploring the performance
of select-based Internet servers. Technical Report HPL-
2001-314, HP Labs, November 2001.

[7] A. Chandra and D. Mosberger. Scalability of Linux
event-dispatch mechanisms. In Proceedings of the 2001
USENIX Annual Technical Conference, Boston, 2001.

[8] Computer Science and Telecommunications Board.
The Internet Under Crisis Conditions: Learning from
September 11. The National Academies Press, 2003.

[9] Frank Dabek, Nickolai Zeldovich, M. Frans Kaashoek,
David Mazires, and Robert Morris. Event-driven pro-
gramming for robust software. In Proceedings of the
10th ACM SIGOPS European Workshop, pages 186–
189, September 2002.

[10] Peter Druschel and Gaurav Banga. Lazy receiver pro-
cessing (lrp): A network subsystem architecture for
server systems. In Proceedings of the 2nd Sympo-
sium on Operating Systems Design and Implementation,
Seattle, Washington, October 1996.

[11] HP Labs. The userver home page, 2003. Available at
http://hpl.hp.com/research/linux/userver.

[12] E. Hu, P. Joubert, R. King, J. LaVoie, and J. Tracey.
Adaptive fast path architecture. IBM Journal of Re-
search and Development, April 2001.

[13] J. Hu, I. Pyarali, and D. Schmidt. Measuring the impact
of event dispatching and concurrency models on web
server performance over high-speed networks. In Pro-
ceedings of the 2nd Global Internet Conference. IEEE,
November 1997.

[14] Hani Jamjoom and Kang G. Shin. Persistent dropping:
An efficient control of traffic aggregates. In Proceedings
of ACM SIGCOMM 2003, Karlsruhe, Germany, August
2003.

[15] Philippe Joubert, Robert King, Richard Neves, Mark
Russinovich, and John Tracey. High-performance
memory-based Web servers: Kernel and user-space per-
formance. In Proceedings of the USENIX 2001 Annual
Technical Conference, pages 175–188, 2001.

[16] C. Lever, M. Eriksen, and S. Molloy. An analysis of
the TUX web server. Technical report, University of
Michigan, CITI Technical Report 00-8, Nov. 2000.

[17] D. Mosberger and T. Jin. httperf: A tool for measur-
ing web server performance. In The First Workshop on
Internet Server Performance, pages 59—67, Madison,
WI, June 1998.

[18] Eric Nahum. Deconstructing SPECWeb99. In Proceed-
ings of the 7th International Workshop on Web Content
Caching and Distribution, August 2002.

[19] M. Ostrowski. A mechanism for scalable event notifica-
tion and delivery in Linux. Master’s thesis, Department
of Computer Science, University of Waterloo, Novem-
ber 2000.

[20] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel.
Flash: An efficient and portable Web server. In Pro-
ceedings of the USENIX 1999 Annual Technical Con-
ference, Monterey, CA, June 1999.

[21] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel.
IO-Lite: a unified I/O buffering and caching system.
ACM Transactions on Computer Systems, 18(1):37–66,
2000.

[22] N. Provos and C. Lever. Scalable network I/O in Linux.
In Proceedings of the USENIX Annual Technical Con-
ference, FREENIX Track, June 2000.

[23] N. Provos, C. Lever, and S. Tweedie. Analyzing the
overload behavior of a simple web server. In Proceed-
ings of the Fourth Annual Linux Showcase and Confer-
ence, October 2000.

[24] Red Hat, Inc. TUX 2.2 Reference Manual, 2002.
[25] Standard Performance Evaluation Corpora-

tion. SPECWeb99 Benchmark, 1999. http://-
www.specbench.org/osg/web99.

[26] W.R. Stevens. TCP/IP Illustrated, Volume 1. Addison
Wesley, 1994.

[27] Thiemo Voigt and Per Gunningberg. Handling multiple
bottlenecks in web servers using adaptive inbound con-
trols. In Proceedings of the International Workshop on
Protocols For High-Speed Networks, Berlin, Germany,
April 2002.

[28] Rob von Behren, Jeremy Condit, and Eric Brewer. Why
events are a bad idea for high-concurrency servers. In
9th Workshop on Hot Topics in Operating Systems (Ho-
tOS IX), 2003.

[29] Rob von Behren, Jeremy Condit, Feng Zhou, George C.
Necula, and Eric Brewer. Capriccio: Scalable threads
for internet services. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[30] M. Welsh and D. Culler. Virtualization considered
harmful: OS design directions for well-conditioned ser-
vices. In Proceedings of the 8th Workshop on Hot Top-
ics in Operating Systems (HotOS VIII), Schloss Elmau,
Germany, May 2001.

[31] M. Welsh, D. Culler, and E. Brewer. SEDA: An archi-
tecture for well-conditioned, scalable Internet services.
In Proceedings of the Eighteenth Symposium on Oper-
ating Systems Principles, Banff, Oct. 2001.

[32] Nickolai Zeldovich, Alexander Yip, Frank Dabek,
Robert T. Morris, David Mazieres, and Frans Kaashoek.
Multiprocessor support for event-driven programs. In
Proceedings of the USENIX 2003 Annual Technical
Conference, June 2003.

