
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Modular Construction of DTE Policies

Serge E. Hallyn
IBM Linux Technology Center

Austin, TX 78759
hallyn@cs.wm.edu

Phil Kearns
College of William and Mary

Williamsburg, VA 23185
kearns@cs.wm.edu

Abstract

This paper describes a tool which composes a pol-
icy for a fine-grained mandatory access control system
(DTE) from a set of mostly independent policy modules.
For a large system with many services, a DTE policy be-
comes unwieldy. However, many system services and
security extensions can be considered to be largely stan-
dalone. By providing for explicit grouping, namespaces,
and globbing by namespaces, inter-module access rules
can be made generic enough to permit modules to be
mixed and matched as needed. As a result, it becomes
easier to extend a policy, debug a policy, and to distribute
meaningful policy modules with new software.

1 Introduction
Domain and Type Enforcement (DTE) [1] is a fine-
grained mandatory access control system. An imple-
mentation exists for Linux as a Loadable Security Mod-
ule (LSM) [16]. The DTE LSM reads the policy it
enforces through a text file through sysfs. The policy
language closely resembles TIS’s original DTEL policy
language, which was explicitly intended to be intuitive
to read and write. We have previously presented tools to
analyze and edit policies. We now present a tool to com-
pose policies from policy modules, which are smaller,
simpler policy excerpts. In practice, we find policy mod-
ules far simpler to work with than a single large policy.

We begin by describing DTE and DTE policies in
more detail. Next we describe the syntax of a policy
module. We describe methods of grouping types and do-
mains, the priority assigned to access rules based upon
source and target, and hooks for system interaction dur-
ing policy compilation. Then we describe a ftpd protec-
tion policy previously presented[7], and show how the
ftp-relevant portion of this policy becomes a module.

2 DTE
DTE specifies two types of labels, called types and do-
mains. It assigns types to files, and domains to pro-
cesses. File access is controlled from domains to types,
and signal access is controlled between processes in dif-
ferent domains. A process may transition to a new
domain only on a call toexecve . A domain may

only be entered through files labeled with types explic-
itly marked as entry types for that domain. These files
are called entry points for that domain. Domains may
only transition to certain other domains. There are two
types of domain transitions. The first, calledexec , is
voluntary, while the second, calledauto , is manda-
tory. When a process under some domain executes a file
which is an entry point to another domain, to which the
first domain has auto access, then the process will tran-
sition to the new domain. If the file was an entry point to
another domain to which the first had exec access, then
the process ordinarily does not switch domains. It may
request a domain transition by performing

echo -n <new_domain> > \
/proc/<pid>/attr/exec

before executing the new file.
The DTE policy file specifies all types, all domains,

the file system’s type assignments, domain to type ac-
cess, domain signal access, permitted domain transi-
tions, and domain entry points. See [7] for more details
about the policy file.

Policies for fine-grained MAC systems are mostly
constructed as one unit and by hand. For instance, a
massive effort is under way to create a complete, safe,
SELinux policy for several distributions of Linux [13,
14]. Tools exist [8] for analyzing DTE policies, and
such work is also being done for policies of other fine-
grained MAC systems [9, 12, 15]. Nevertheless, work-
ing with a large policy remains a painful experience.
However, when working with large policies, patterns be-
gin to emerge. Policies typically consist of several sets
of domains and types. The entities within a set work
together to achieve some goal, and the sets often inter-
act very little. For instance, in the ftp policy presented
in [7], the domainftpd d, and the typesftpd t and
ftpd xt , work together to protect the system from an
unsafe binary. By removing these entities, and all ref-
erences to them, the remaining policy becomes simpler.
We call this collection of domains, types, and all access
rules pertaining to them, a module. The ftp module is
shown in Figure 3, and will be described in Section 4.

Allowing policies to be composed from simple, mean-
ingful, and coherent pieces will serve several purposes.

First, creation of policies will become far more efficient.
For instance, when adding a new domain to an exist-
ing policy, one might have to enter hundreds of type
accesses in order to get it properly interacting with the
current policy. In contrast, modules allow domains and
types to be grouped at several levels, and access to be
specified using any of these groups.

Second, adding a feature to a policy, such as a new
method of controlling access to the shadow file, or pro-
tection from a critical binary in which an as-yet un-
solved vulnerability has been found, will become a sim-
pler task. The module can be written entirely from its
own point of view. Furthermore, in researching the state
of the current policy, in order to understand how to prop-
erly insert a new feature, one need only look at those
modules which can affect the new functionality.

Third, modules may be helpful in simplifying the
analysis, and proof of invariants, of policies. For in-
stance, several modules may be trivially shown to be ir-
relevant to the ability of theinetd daemon, if remotely
exploited, to erase theutmp log file.

Finally, because a module generally encodes domains,
types, and access rules which work together toward
some end, it is a natural way to express the security
policy changes necessary for a new piece of software.
Software companies and free software groups, there-
fore, could distribute policy modules along with soft-
ware packages.

3 Module File Specification
We now discuss the structure of a module file. The mod-
ule syntax specification follows.

<module_file> ::=
<module>+

<module> ::=
Module <mod_name>

[<domain_def>|<type_def>| \
<group_def>]+

end

<domain_def> ::=
domain <dom_name>

<dom_line>+
end

A module file may contain more than one module.
Each module may contain several domain, type, and
group definitions, as well as the access rules pertaining
to them.

<dom_line> ::=
entries <type_name>+ |
[absolute] signal [in|out] <gen_dom> \

<sig_num> |

[absolute] domain [in|out] <gen_dom> \
[auto|exec|none] |

[absolute] type <gen_type> <type_acc>|
assert <policy_name> <data> |
DEFAULT_DOMAIN

The domain definitions declare a unique name for the
domain, a set of entry types, and a set of access rules per-
taining to the new domain. Domain transition or signal
access rules may bein , in which case they specify ac-
cess from other domains to the new domain, or they may
be out , defining access from the new domain to other
domains. Since types are passive objects, which cannot
themselves access other types or domains, the type ac-
cess rules in a domain definition do not include thein
or out keyword.

Exactly one domain definition applied to a policy
must contain the keywordDEFAULTDOMAIN. That do-
main will be assigned to the first process on the system.

<type_def> ::=
type <type_name>

<type_line>+
end

<type_line> ::=
<path_type> <path_name>+ |
[absolute] access <gen_dom> <type_acc>|
<default_type> |
assert <policy_name> <data>

<default_type> ::=
DEFAULT_ETYPE | DEFAULT_UTYPE | \

DEFAULT_RTYPE

Type definitions declare a unique name for the type, a
set of paths assignment rules, and a set of access rules.
Clearly, the access rules are only incoming from do-
mains. A type whose definition contains the keyword
DEFAULTRTYPEwill be assigned to the root of the
file system, and recursively to its descendants until an-
other type assignment rule applies. Alternatively, one
type may be labeled asDEFAULTETYPE, and another
may be labeled asDEFAULTUTYPE. The first will be
assigned to the root of the file system, and the second
will be assigned to its descendants until another type as-
signment rule applies.

Both type and domain definitions may contain
assert statements. These are used for maintenance
of policy constraints. They are stored with the type def-
inition until module application, but their interpretation
and enforcement is defined by the named policy consis-
tency class, any number of which may be written by the
policy authors to ensure the maintenance of any module
properties. The last line of theftpd xt type defini-
tion in Figure 3 is an example of an assert statement,

instructing a module loaded asblp to label this type as
protected.

<group_def> ::=
group domain <dom_name>

import <dom_name>+
end

<group_def> ::=
group type <type_name>

import <type_name>+
end

<gen_dom> ::= all | none | <dom_name>
<gen_type> ::= all | none | <type_name>

Grouping is accomplished on several levels. First, the
keywordall refers to all domains or types which are
currently known. Second, a group definition in a module
may bind a name to a set of domains or types.

For instance, the following module segment defines
a group of domains which may transition to user do-
mains, and may require to files such as.bashrc and
.xsession .

group login_domains_g
import login_d su_d

end

A separatex11 module might extend this group using

group login_domains_g extend
import xdm_d

end

in order to borrowlogin d’s andsu d’s rights to read
user login files.

The following module segment defines a type which
is actually calledroot t .

type base.extraneous.root_t
DEFAULT_RTYPE
[...]

end

Sinceroot t is the type name which will be used in the
final DTE policy, no names within the namespace may
actually clash. Modules may refer to this type using any
of the following names:

1. all
2. base.+
3. base.extraneous.+
4. base.extraneous.*
5. base.extraneous.root_t
6. root_t

In addition, any type groups which have imported this
type can also be used to refer to this type.

The namebase.extraneous may be a real type,
or it may simply be a namespace placeholder, depending

Type of access Priority level
Absolute single in 12
Absolute single out 11
Absolute group in 10
Absolute group out 9
Absolute all in 8
Absolute all out 7
Single destination in 6
Single destination out 5
Group in 4
Group out 3
Default (all) in 2
Default (all) out 1

Figure 1: Priorities of access rules

on whether any module defines a type by that name. A
namespace placeholder is the parent of a domain, type,
or group, which is not itself defined to be a domain, type,
or group. It can be referred to during namespace glob-
bing, but will not appear in the final policy.

Namespace globbing works as follows. When a
name ends in.+ , it refers to all descendants under
this name. When a name ends in.* , it refers to
only the immediate children of this name. Therefore
base.+ includesbase.extraneous.root t , but
base.* does not. Ifbase.extraneous were itself
a type, thenbase.* would include this type, as would
base.+ .

3.1 Priority of Access Rules

Since domains and types can declare conflicting access
rules, we must clearly define the priority of access rules.
Much thought has been given to the current priorities,
which have been somewhat modified following experi-
ence with an earlier module compiler prototype. The
priority takes the form of an integer between 1 and 12.
The priority assigned to access rules is shown in Fig-
ure 1.

Each type of access consists of three pieces of infor-
mation. First, it can bein or out . This is relative to the
type or domain in which it is defined. When a domain
specifies a certain type access, this is aout access rule,
as the access is outbound from the domain. If a type
defines access from some domain, this isin , as the ac-
cess is inbound from the domain to the type. The second
piece of information relates to the precision of the rule
target. When an access rule names a specific domain or
type, this issingle access. If the rule names a group,
or a namespace expansion such asServices.* , this
is group access. If the rule targets the keywordall ,
this is of courseall access. Finally, the rule is either
absolute or not. This depends only upon whether the

access rule is preceded by the keywordall .
If two conflicting rules have been defined pertaining

to the access permitted from a domain to another do-
main or type, then the rule with the highest priority will
be applied. For instance, the base module’s definition of
typebase t specifies that all domains haveabsolute
accessrxld (read, execute, lookup, and descend) to
base t . This rule isabsolute all in , and there-
fore has a priority of 8. Assume we write a new module,
defining a domain intended to contain untrusted code.
The domain definition might contain the statement:

absolute type all none

This rule is absolute all out , and therefore
is priority 7. Since anabsolute all in access
rule has a higher priority thanabsolute all out ,
the new untrusted domain will receiverxld access to
base t , even though it asked for none. Had it in fact
gotten none, then it would not be able to access any
types at all, as it could not descend to them through the
root of the file system. Similarly, if any types defined in
the new module are intended to be accessed by the un-
trusted domain, then these types must specify incoming
access from the untrusted domain asabsolute , to en-
sure that that it will override the untrusted domain’s out-
going type access definition. On the other hand, the base
policy specifies a typebin t , which includes a normal
group in definition. As this is of a lower priority than
absolute out , the access rule specified by the new
module’s untrusted domain is chosen, denying the un-
trusted domain all access to typebin t . As we will see,
this is a crucial element of the ftp module, preventing the
ftp server from providing attackers with root shells, for
instance.

Note that incoming access overrides outgoing access
for the same target precision andabsolute status.
More specific rules override more general rules, unless
theabsolute keyword is present in one of the rules.

The usage of these keywords is intended to be intu-
itive. However, a switch to usage of simple numeric pri-
ority has not been ruled out. For instance, in place of

absolute domain in \
login_domains_grp auto

a module would specify

domain in login_domains_grp \
auto 60

.
The disadvantages to this are that module authors

might require a deeper understanding of how policy
compilation is affected by the priorities, and would need
to consider these effects explicitly for each access rule.

3.2 Module Application
A set of modules may be applied simultaneously, and
more than one set may be applied in series. For in-
stance, we may begin by combining a set of base mod-
ules, then apply a set of service modules, and finally ap-
ply a module to ensure a particular security feature. We
must therefore clearly define the behavior of group ex-
pansion across multiple module applications.

For named domain and type groups referenced in ac-
cess rules, the group is expanded at the time of mod-
ule application. In other words, for each member of the
group, a new access rule is defined with the same access
details as the original rule. Each newly created rule is
associated with agroup priority, to ensure proper res-
olution of any future conflicts. If the group has not yet
been defined, an error is raised and compilation fails.
For namespace globbing, that is,* and+, the currently
defined descendants and children (respectively) of the
parent being expanded are used. For instance, assume
we applying a module which contains the rule

domain some_domain
type base.exec.+ rwx

end

If the only children of base.exec defined
thus far are the two typesbase.exec.sbin and
base.exec.bin , then only these types are in-
cluded in this rule. A later module may define type
base.exec.javabin , but this type will not be added
to the access rule.

The all target keyword is treated somewhat differ-
ently. An access rule directed atall will be expanded
at the time of module application. Again the new ac-
cess rules resulting from the expansion are stored with
an all level for later conflict resolution. However, a
generic form of the rule is also stored. All such generic
rules are expanded each time a set of modules is applied.
If the rule had not previously been applied, any policy
consistency modules will be consulted at the new rule
creation, just as with any other new access rule. For ex-
ample, the base module defines default accessrld to
type base t for all domains. This rule is expanded
after each module application, so that all domains will
be granted this access.

3.3 Keyword Substitution
One of the goals listed in Section 2 for the use of pol-
icy modules is to facilitate distribution of policy mod-
ules with new software. It must therefore be possible to
apply policy modules across a variety of systems. To
accomplish this in any meaningful way will often re-
quire some bit of system interaction. For instance, a
policy module distributed withxdm might require label-
ing each user’s$HOME/.xsession as an entry type

to the user domain. This requires system interaction to
determine valid users on this system who actually have
a$HOME/.xsession file.

The prototype module compiler provides system in-
teraction through anexec keyword. This is augmented
with looping support over variables which have been set
usingexec . Using these features, an excerpt of the xdm
policy might look as follows:

1 define xsession_f exec /bin/ls \
2 /home/*/.xsession
3
4 type xdm_out_fromuser_et
5 epath /etc/X11/xdm/Xsession
6
7 foreach file ‘xsession_f‘
8 epath ‘file‘
9 endforeach file
10
11 access user_d rwxlcd
12 access login_domains_grp r
13 end
14
15 domain user_d extend
16 entries xdm_out_fromuser_et
17 end

The first command, on lines 1 and 2, assigns to
the variablexsession f the result of executing the
command/bin/ls /home/*/.xsession . This
will contain a list of all user.xsession files, one
per line. Lines 7 through 9 loop over each line
returned by thels command, each time adding a
new epath line to thexdm out fromuser et type
definition, and replacing‘file‘ with the next file.
The result is a type to which the user domain may
write, and which those domains which are members
of the login domains grp group may read. The
last three lines extend theuser d domain such that
other domains may transition into it by executing the
.xesssion files which were found. Of course, in
many cases more complicated calculations than a direc-
tory listing will be required. The output from any script
or program can be assigned to variables. However, the
use of complicated external scripts might add an unwel-
come element of unpredictability to the policy creation
process. The policy consistency classes will offer some
support to system administrators trying to keep this in
check, and graphical analysis tools will remain available
for analyzing the final policy.

3.4 Inheritance
An issue which may deserve further consideration is that
of inheritance. It would seem to make sense to construct
the type namespace such that certain properties, perhaps

absolute access rules, are automatically inherited by
the children of a type. On the other hand, this may sim-
ply needlessly complicate the process of policy creation,
the simplification of which is the precise goal of the pol-
icy compiler. Currently, the notion of inheritance does
not exist in the module compiler.

4 Ftpd Protection Module
Ftp daemons provide a great deal of interaction, usually
with completely unauthenticated, or anonymous, users.
In order to permit user logins, however, some ftp dae-
mons run as root. A programming error such as buffer
overflow or string format vulnerability can therefore lead
to the execution of arbitrary commands using superuser
privileges by anyone on the internet.

4.1 Original Policy
Figure 2 demonstrates policy to protect a system from
ftpd. While a DTE system could actually boot and run
with this policy, it is a minimalist policy designed only
to protect from ftpd. An actual useful policy would be
much larger, but contain a nearly identical set of ftp pro-
tections. The policy provides protection from attack-
ers by containing the ftp daemon to a domain, called
ftpd d, which has limited access rights. This domain is
not allowed to transition into any other domains, so that
any code executed (legitimately or not) by the ftp dae-
mon will also be subject to the same access restrictions.
The domain is automatically entered whenever a privi-
leged process executes/usr/sbin/in.ftpd . It re-
quires permission to execute its entry point, library files,
and files located under/home/ftp/bin . It needs read
and write access to devices,/home/ftp/incoming ,
a transfer log, and some temporary files. The domain
is refused the ability to execute anything it might have
written. It has permission to read under/home/ftp ,
/etc , and, unfortunately, the password and shadow
files. However, it lacks permissions to execute files un-
der /bin , /usr/bin , etc. Therefore all existing ex-
ploits, which require the ability to execute"/bin/cat
/etc/passwd" or /bin/sh , will fail.

4.2 Ftp Module
We now separate the ftp functionality out from the
policy and into a module. The ftp module is found
in Figure 3. It again defines aftpd d domain, and
ftpd t , ftpd et , ftpd xt , and ftpd wt types.
The ftpd d definition specifies inbound domain tran-
sitions fromboot t , and from all domains defined un-
derAdmin.services . Ftpd d may not transition to
any other domains, so this access rule isabsolute .
This does not completely rule outftpd d being per-
mitted to transition to another domain. However, in or-
der for ftpd d to be allowed to transition to another

ftpd protection policy
types root_t login_t user_t spool_t binary_t lib_t passwd_t shadow_t dev_t \

config_t ftpd_t ftpd_xt w_t
domains root_d login_d user_d ftpd_d
default_d root_d
default_et root_t
default_ut root_t
default_rt root_t
spec_domain root_d (/bin/bash /sbin/init /bin/su) (rwxcd->root_t \

rwxcd->spool_t rwcdx->user_t rwdc->ftpd_t rxd->lib_t rxd->binary_t \
rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t rwxcd->config_t \
rwxcd->w_t) (auto->login_d auto->ftpd_d) (0->0)

spec_domain login_d (/bin/login /bin/login.dte) (rxd->root_t rwxcd->spool_t \
rxd->lib_t rxd->binary_t rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t \
rxwd->config_t rwxcd->w_t) (exec->root_d exec->user_d) (14->0 17->0)

spec_domain user_d (/bin/bash /bin/tcsh) (rwxcd->user_t rxwcd->shadow_t \
rwxcd->spool_t rxd->lib_t rxd->binary_t rwxcd->passwd_t rwxd->root_t \
rwxcd->dev_t rxd->config_t rwxcd->w_t) (exec->root_d) (14->0 17->0)

spec_domain ftpd_d (/usr/sbin/in.ftpd) (rwcd->ftpd_t rd->user_t rd->root_t \
rxd->lib_t r->passwd_t r->shadow_t rwcd->dev_t rdx->ftpd_xt \
rd->config_t rwcd->w_t d->spool_t) () (14->root_d 17->root_d)

assign -u /home user_t
assign -u /tmp spool_t
assign -u /var spool_t
assign -u /dev dev_t
assign -u /scratch user_t
assign -r /usr/src/linux user_t
assign -u /usr/sbin binary_t
assign -e /usr/sbin/in.ftpd ftpd_xt
assign -r /home/ftp/bin ftpd_xt
assign -e /var/run/ftp.pids-all ftpd_t
assign -r /home/ftp ftpd_t
assign -e /var/log/xferlog ftpd_t
assign -r /lib lib_t
assign -e /etc/passwd passwd_t
assign -e /etc/shadow shadow_t
assign -e /var/log/wtmp w_t
assign -e /var/run/utmp w_t
assign -u /etc config_t

Figure 2: A DTE policy to protect fromwu-ftpd.

Module Service.ftp
domain ftpd_d

entries ftpd_et
absolute domain out all none
domain in boot_d auto
domain in Admin.services.+ exec
absolute type all none
signal out boot_d 14,17
signal out Admin.services.+ 14,17

end

type ftpd_t
access all none
absolute access ftpd_d rld
rpath /home/ftp

end

type ftpd_et
access all r
absolute access ftpd_d rx
epath /usr/sbin/in.ftpd

end

type ftpd_xt
access all none
absolute access ftpd_d rxld
access root_d rwcld
rpath /home/ftp/bin
assert mblp protect

end

type ftpd_wt
access all none
absolute access ftpd_d rwcld
rpath /home/ftp/incoming

end
End

Figure 3: FTP Policy Module

domain, the other domain would have to explicitly ask
for ftpd d to be permitted to transition to it, or add
ftpd d to a group and provide that group with inbound
transition access.

Type ftpd t is located under/home/ftp . Only
ftpd d may observe this type, no one may mod-
ify or execute. The file/usr/sbin/in.ftpd is
the entry type through whichftpd d may be en-
tered, signified both by theftpd et type definition,
and theentries line in the ftpd d definition. The
files under /home/ftp/bin , labeled asftpd xt ,
may be executed byftpd d, and written byroot d.
There is no single domain which may both modify
and execute these files. Finally, the files located under
/home/ftp/incoming , labeledftpd wt , may be
written, but not executed byftpd d. It may not be ac-
cessed by any other domains.

This set of accesses was also accomplished using the
ftp policy. In fact, the module will eventually be com-
piled into a policy. However, using the module, we are
able to limit statements concerningftpd wt to the 6
simple lines which define the type, and trust that any do-
mains which are later added underAdmin.services
will be able to transition toftpd d.

A detailed discussion of

assert mblp protect

is beyond the scope of this paper. However a brief expla-
nation is appropriate. If no policy constraint class named
mblp has been loaded, then this line will be ignored. If
this class has in fact been loaded, then it is instructed to
label this type,ftpd xt , using the keywordprotect .
A class may do with this information what it likes. It will
be called once before and once after each application of
a set of modules, and given a copy of the policy at each
point. Themblp class, in particular, will print a warning
if any domain is in fact allowed to modify the protected
type. This demonstrates the simplest use of policy con-
sistency classes. We could in fact write a class to simply
read assertions which must hold true in the policy. More
interesting classes, such asmblp , compare calculations
on the policy before and after module application.

The most significant advantage of separating the ftp
module out from the base policy becomes apparent when
we consider writing more modules. For instance, the
base policy module does not allow users to change their
passwords. To add this functionality, we use a module
such as that in Figure 4. Nothing in the ftp module needs
to change, and we do not need to consult the ftp module
while writing the password module. In contrast, adding
password functionality to an existing policy could be-
come very invasive.

5 Control
The simplest way to compile DTE modules into a policy
is to use the command line utilitydte pc.py . A list of
the modules to be applied is placed into a file, which is
given as a command line argument todte pc.py . The
resulting policy is placed into a file also specified as an
argument.

Usingdte pc.py , all modules are applied simulta-
neously. Greater control over module application can be
had on the python command line, or by writing custom
module application scripts. The following python lines,
for instance, combine the two modulesbase anduser ,
and then apply a third module,ftp .

from DTEModule import ModuleFile
firstmods will be an array containing
the "base" and "ftp" modules
firstmods = ModuleFile("base").Modules()
firstmods.extend(

ModuleFile("user").Modules()
)
ftpmod = ModuleFile("ftp").Modules()
p = DTEPolicy.Policy()
Apply "base" and "user" together
p.apply_modules(firstmods)
Now apply "ftp" separately
p.apply_modules(ftpmod)
p.write("dte_output_file.conf")

One advantage of using this code is the enhanced pre-
cision in group definitions as described in Section 3.2.
That is, if any groups are defined and referenced in
base or user , and then extended inftp , then the
references to them inbase and user will not in-
clude the members added inftp . Additionally, pol-
icy consistency classes are only invoked before and af-
ter each DTEPolicyapply modules() invocation, so
the above code would force the application offtp to be
more closely scrutinized. If all modules are applied at
once, then a policy consistency class will only ever com-
pare an empty policy to the final policy, which may not
be useful, depending upon the policy consistency class.

6 Related Work
The policy language read by the DTE module is based
in large part on the DTEL policy language used by the
original DTE on Unix implementation [1]. The pol-
icy consistency classes and related assert statements are
a generalization of the ideas proposed in [2]. Here
Bell-LaPadula [4] and Strict Integrity [3] relations, as-
sured pipelines [5], and the Clark-Wilson [6] concepts
of constrained data items (CDIs) and transformation
procedures (TPs) were used to guarantee maintenance
of certain properties through dynamic policy changes.
OO-DTE [11] applied DTE to CORBA distributed ob-
jects, and introduced an object oriented policy language,

Module password
domains passw_d
types passw_t passw_et shadow_t
type passw_et

epath /bin/passw
access all rx
access Admin.admins rwxlcd

end

type passw_t
epath /etc/passwd /etc/passwd.tmp /etc/.pwd.lock
access all r
access passw_d rw

end

type shadow_t
epath /etc/shadow
access all none
access login_domains_grp r
access passw_d rw

end

domain passw_d
type conf_t rlcd
entries passw_et

domain in all auto
domain out all none

end

End

Figure 4: Password Policy Module

DTEL++. In OO-DTE, a user’s domain was used to
determine permission to execute or implement meth-
ods assigned to particular types. This is quite different
from the meaning of DTE in a operating system such as
Linux.

SELinux policies [13], like DTE policy modules, are
compiled, in this case to a binary policy file. The
SELinux policy makes liberal use of macros, which are
defined throughout the policy, and compiled using the
m4 preprocessor. SELinux policies are less structured
than policy modules. There is no sense of domains and
types being objects, of access rules belonging to the def-
inition of the source of target of the definition, or of pri-
ority of conflicting access rules. SELinux policies make
use of simpleassert rules for safety constraints, but
no attempts have been made to provide more in-depth
analysis of the effects of a particular piece of policy dur-
ing compilation. SELinux policies are more detailed and
more complicated than DTE policies. The possibility
and usefulness of transcribing the idea of policy modules
to SELinux policies while keeping modules readable and
small, remains to be investigated.

Tools exist to aid in editing and analyzing DTE and
SELinux policies [8, 12, 15]. These tools analyze whole
policies, and therefore complement, rather than compete
with the DTE policy modules concept. The policy con-
sistency classes used by the module compiler are de-
signed to analyze the effect of particular policy enhance-
ments on the overall policy. The existing DTE policy
analysis tools can still be used on the policies resulting
from module compilation.

IBM Research is investigating the concept of access
control spaces [10], and working toward a method to de-
termine whether an SELinux policy satisfies certain in-
tegrity goals [9]. This work again analyzes whole poli-
cies. Ultimately, it is possible that Linux vendors could
use this approach to verify the correctness of a TCB in-
cluded with their distribution, while system administra-
tors could use policy consistency classes to analyze the
effects of their own policy modules on the base policy.

7 Conclusion
By the very virtue of being fine-grained, policies for
MAC systems such as DTE and SELinux become very
large, currently tens of thousands of lines for SELinux.
Policy modules break this into a number of smaller
pieces, and permit authors to intelligently group ob-
jects and subjects to permit concise and expressive ac-
cess rules. The careful construction of a policy mod-
ule language results in a far more convenient, more ef-
ficient, and safer policy specification. In practice, it has
greatly eased the movement by the authors between var-
ious testing and development machines with various dis-
tributions.

8 Availability
The DTE LSM is available as part of the LSM project at
http://lsm.immunix.org . The policy compiler
is available fromhttp://www.nekonoken.org .
Both are licensed under the GPL.

9 Acknowledgments
Hallyn’s work was supported in part by a USENIX
Scholarship. The authors also wish to thank the paper
shepherd, Crispin Cowan, for his helpful and construc-
tive comments.

This work represents the view of the authors and does
not necessarily represent the view of IBM. IBM is a
registered trademark of International Business Machines
Corporation in the United States, other countries, or
both. Other company, product, and service names may
be trademarks or service marks of others.

References
[1] Lee Badger, Daniel F. Sterne, David L. Sherman,

Kenneth M. Walker, and Sheila A. Haghighat,A
Domain and Type Enforcement UNIX Prototype,
Usenix Security Symposium (1995).

[2] Tim Fraser and Lee Badger,Ensuring Continuity
During Dynamic Security Policy Reconfiguration
in DTE, Proceedings of IEEE Symposium on Re-
search in Security and Privacy, 1998.

[3] K. J. Biba, Integrity Considerations for Secure
Computer Systems, Mitre Technical Report ESD-
TR-76-372, 1977.

[4] D. E. Bell and L. J. LaPadula,Secure Computer
Systems: Unified Exposition and Multics Interpre-
tation, Mitre Technical Report ESD-TR-75-306,
1976.

[5] W.E. Boebert and R.Y. Kain,A Practical Alter-
native to Hierarchical Integrity Policies, Proceed-
ings of the National Computer Security Confer-
ence, 1985.

[6] David D. Clark and David R. Wilson,A Compar-
ison of Commercial and Military Computer Secu-
rity Policies, Proceedings of the IEEE Symposium
on Security and Privacy, 1987.

[7] Serge Hallyn and Phil Kearns,Domain and Type
Enforcement for Linux, ALS 2000.

[8] Serge Hallyn and Phil Kearns,Tools to Adminis-
ter Domain and Type Enforcement, LISA 2001, p.
151-156.

[9] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang,
Analyzing Integrity Protection in the SELinux Ex-
ample Policy, Usenix Security Symposium, 2003.

[10] Trent Jaeger and Xiaolan Zhang,Policy Manage-
ment using Access Control Spaces, ACM Transac-
tions on Information and System Security, 2003.

[11] Durward McDonnel and David Sames and Gregg
Tally and Robb Lyda,Security for Distributed
Object-Oriented Systems, DARPA Information
Survivability Conference and Exposition, June
2001.

[12] MITRE Corporation, SLAT: Information Flow
Analysis in Security Enhanced Linux, available at
http://www.nsa.gov/selinux .

[13] Stephen Smalley, Configuring the SELinux
Policy, NSA Technical Report, http:
//www.nsa.gov/selinux/papers/
policy2-abs.cfm .

[14] Stephen Smalley et al, SELinux mailing
list, http://www.nsa.gov/selinux/
list-archive/summary.cfm .

[15] Tresys Technology, Security-enhanced Linux
Policy Tools, http://www.tresys.com/
selinux/ , 2003.

[16] Christ Wright, Crispin Cowan, James Morris,
Stephen Smalley, and Greg Kroah-Hartman,Linux
Security Modules: General Security Support for
the Linux Kernel, Usenix Security Symposium,
2002.

