USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27-July 2, 2004

THE ADVANCED COMPUTING §YSTEMS ASSOCIATION

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Modular Construction of DTE Policies

Serge E. Hallyn Phil Kearns
IBM Linux Technology Center College of William and Mary
Austin, TX 78759 Williamsburg, VA 23185
hallyn@cs.wm.edu kearns@cs.wm.edu
Abstract only be entered through files labeled with types explic-

_) _ itly marked as entry types for that domain. These files

This paper describes a tool which composes a polyre called entry points for that domain. Domains may
icy for a fine-grained mandatory access control systemyy transition to certain other domains. There are two
(DTE) from a set of mostly independent policy modules. yypes of domain transitions. The first, callegec , is
For a large system with many services, a DTE policy beéojuntary, while the second, callealito , is manda-
comes unwieldy. However, many system services angpry. When a process under some domain executes a file
security extensions can be considered to be largely staRgnich is an entry point to another domain, to which the
dalone. By providing for explicit grouping, namespacesfirst domain has auto access, then the process will tran-
and globbing by namespaces, mter-module access rulegion to the new domain. If the file was an entry point to
can be made generic enough to permit modules t0 bgnother domain to which the first had exec access, then
mixed and matched as needed. As a result, it becomege process ordinarily does not switch domains. It may
easier to extend a policy, debug a policy, and to distributqequest a domain transition by performing
meaningful policy modules with new software.

echo -n <new_domain> > \

1 Introduction Iproc/<pid>/attr/exec

Domain and Type Enforcement (DTE) [1] is a fine- pofore executing the new file.

grained mandatory access control system. An imple- the pTE policy file specifies all types, all domains,
mentation exists for Linux as a Loadable Security Mod-{4 fije system’s type assignments, domain to type ac-
ule (LSM) [16]. The DTE LSM reads the policy it ogq domain signal access, permitted domain transi-
enforces through a text file through sysfs. The policyijong and domain entry points. See [7] for more details
language closely resembles TIS's original DTEL policy 41,0t the policy file.
language, whiph was explicitly i_ntended to be intuitive pgjicies for fine-grained MAC systems are mostly
to read and wr|t.e. We _have previously presented tools tQ,structed as one unit and by hand. For instance, a
analyze and edit policies. We now present a tool to comy1qqjve effort is under way to create a complete, safe,
pose policies from policy modules, which are smaller, 5| i,y policy for several distributions of Linux [13,
simpler policy excerpts. In practice, we find policy mod- 1 41 1ools exist [8] for analyzing DTE policies, and
ules far simpler to work with than a single large policy. g0y work is also being done for policies of other fine-
We begin by describing DTE and DTE policies in grained MAC systems [9, 12, 15]. Nevertheless, work-
more detail. Next we describe the syntax of a policying with a large policy remains a painful experience.
module. We describe methods of grouping types and dogygyever, when working with large policies, patterns be-
mains, the priority assigned to access rules based UPQ§in 1o emerge. Policies typically consist of several sets
source and target, and hooks for system interaction durss qomains and types. The entities within a set work
ing policy compilation. Then we describe a ftpd protec- ogether to achieve some goal, and the sets often inter-
tion policy previously presented[7], and show how the 4¢t very little. For instance, in the ftp policy presented
ftp-relevant portion of this policy becomes a module. [7], the domainftpd _d, and the typestpd _t and
> DTE ftpd xt , work together to protect the system from an
unsafe binary. By removing these entities, and all ref-
specifies two types of labels, called types and do-erences to them, the remaining policy becomes simpler.
DTE specifi yp f label lled typ dd h h ining policy b impl
mains. It assigns types to files, and domains to pro\We call this collection of domains, types, and all access
cesses. File access is controlled from domains to typesules pertaining to them, a module. The ftp module is
and signal access is controlled between processes in dishown in Figure 3, and will be described in Section 4.
ferent domains. A process may transition to a new Allowing policies to be composed from simple, mean-
domain only on a call teexecve . A domain may ingful, and coherent pieces will serve several purposes.

First, creation of policies will become far more efficient. [absolute] domain [injout] <gen_dom> \
For instance, when adding a new domain to an exist- [autolexec|none] |

ing policy, one might have to enter hundreds of type [absolute] type <gen_type> <type_acc>|
accesses in order to get it properly interacting with the ~assert <policy_name> <data> |

current policy. In contrast, modules allow domains and DEFAULT_DOMAIN

types to be grouped at several levels, and access to beTh d in definiti decl : for th
specified using any of these groups. e domain definitions declare a unique name for the

Second, adding a feature to a policy, such as a ne\Homain, a set of entry types, and a set of access rules per-

method of controlling access to the shadow file, or pro—tamlng to the new ‘?'0"‘?“”- D_omaln transition or signal
access rules may be , in which case they specify ac-

tection from a critical binary in which an as-yet un- ¢ her d] h d . h
solved vulnerability has been found, will become a sim-céssrom OF erdomains to the new domain, Qrt ey may
be out , defining access from the new domain to other

pler task. The module can be written entirely from itsd ins. Si ¢ . biects. which t
own point of view. Furthermore, in researching the state omains. SIince ypes are passive objects, which canno

of the current policy, in order to understand how to prop_themselves access other types or domains, the type ac-

erly insert a new feature, one need only look at those“€SS rules in a domain definition do not include ite

modules which can affect the new functionality. orout keyword. . _ . .
Third, modules may be helpful in simplifying the Exactly one domain definition applied to a policy
analysis, and proof of invariants, of policies. For in- must contain the keywofEFAULTDOMAIN That do-

stance, several modules may be trivially shown to be ir_main will be assigned to the first process on the system.

relevant to the ability of thinetd daemon, if remotely
exp!oited, to erase thetmp log file. _ type <type_name>
Finally, because a module g.enerally encodes domains, <type_line>+
types, and access rules which work together toward gpq
some end, it is a natural way to express the security
policy changes necessary for a new piece of software<type_line> ::=
Software companies and free software groups, there- <path_type> <path_name>+ |
fore, could distribute policy modules along with soft- [absolute] access <gen_dom> <type_acc>|

ware packages. <default_type> |
assert <policy_name> <data>

<type_def> ::=

3 Module File Specification
. . <default_type> :=
We now discuss the structure of a module file. The mod- pepaAULT ETYPE | DEFAULT_UTYPE | \

ule Syntax Specification follows. DEFAULT RTYPE
<module_file> = Type definitions declare a unique name for the type, a
<module>+ set of paths assignment rules, and a set of access rules.
<module> = Clearly, the access rules are only incoming from do-
Module <mod name> mains. A type whose definition contains the keyword
[<domain_d5f>|<type_def>| \ DEFAULTRTYPEwWiIll be assigned to the root of the
<group_def>]+ file system, and recursively to its descendants until an-
end other type assignment rule applies. Alternatively, one
type may be labeled &3EFAULTETYPE and another
<domain_def> ::= may be labeled aBEFAULTUTYPE The first will be
domain <dom_name> assigned to the root of the file system, and the second
en;dom_llne>+ will be assigned to its descendants until another type as-

signment rule applies.
Both type and domain definitions may contain
ssert statements. These are used for maintenance
of policy constraints. They are stored with the type def-
gnition until module application, but their interpretation

A module file may contain more than one module.
Each module may contain several domain, type, an
group definitions, as well as the access rules pertainin

to them. and enforcement is defined by the named policy consis-

<dom line> == tency class, any number of which may be written by the
entries <type_name>+ | policy authors to ensure the maintenance of any module
[absolute] signal [injout] <gen_dom> \ properties. The last line of thigpd xt type defini-

<sig_num> | tion in Figure 3 is an example of an assert statement,

instructing a module loaded adp to label this type as Type of access Priority level

protected. Absolute single in 12
Absolute single out 11
<group_def> ::= Absolute group in 10

group domain <dom_name>

' Absolute group out 9

import <dom_name>+ Absolute all in 8

end Absolute all out 7

<group_def> ::= S?ngle dest?nat?on in 6

group type <type_name> Single Qestlnatlon out 5

import <type_name>+ Group in 4

end Group out 3

Default (all) in 2

<gen_dom> := all | none | <dom_name> Default (all) out 1

<gen_type> := all | none | <type_name>

Grouping is accomplished on several levels. First, the Figure 1: Priorities of access rules

keywordall refers to all domains or types which are

curren.tly known. Second, a group _definition inamodulegn whether any module defines a type by that name. A
may bind a name to a set of domains or types. _ namespace placeholder is the parent of a domain, type,

For instance, the following module segment def'”esorgroup, which is not itself defined to be a domain, type,
or group. It can be referred to during namespace glob-

bing, but will not appear in the final policy.

a group of domains which may transition to user do-
mains, and may require to files such.bashrc and

.Xsession .
_ _ Namespace globbing works as follows. When a
group login_domains_g name ends in+, it refers to all descendants under
import login_d su_d this name. When a name ends in, it refers to
end only the immediate children of this name. Therefore
A separatec11 module might extend this group using base.+ includesbase.extraneous.root -, but
) _ base.* does not. Ifbase.extraneous were itself
group login_domains_g extend a type, therbase.* would include this type, as would
import xdm_d base.+
end o
in order to borrowlogin _d's andsu d'srightstoread 3-1 Priority of Access Rules
user login files. Since domains and types can declare conflicting access

_ The f‘|3|||°Wi|?9dm°dU|e segment defines a type whichjes we must clearly define the priority of access rules.
Is actually calledoot t. Much thought has been given to the current priorities,

type base.extraneous.root_t which have been somewhat modified following experi-

DEFAULT_RTYPE ence with an earlier module compiler prototype. The

[.] priority takes the form of an integer between 1 and 12.

end The priority assigned to access rules is shown in Fig-
ure 1.

Sinceroot _t is the type name which will be used in the Each ¢ . f th . finf
final DTE policy, no names within the namespace may ach type of access consists of three pieces of infor-

actually clash. Modules may refer to this type using anymat'on' (':"St’ _'t can t;]m hO,rF’UL)];I'h%lsvr\(/erllatwe tg the.
of the following names: type or domain in which it is defined. en a domain

specifies a certain type access, this @ia access rule,

all as the access is outbound from the domain. If a type
base.+ defines access from some domain, thimis as the ac-
base.extraneous.+ cess is inbound from the domain to the type. The second
base.extraneous.* piece of information relates to the precision of the rule
base.extraneous.root_t target. When an access rule names a specific domain or
root_t type, this issingle access. If the rule names a group,

In addition, any type groups which have imported thisor a namespace expansion suctSasvices.* , this
type can also be used to refer to this type. is group access. If the rule targets the keywaidl ,

The namebase.extraneous may be a real type, thisis of courseall access. Finally, the rule is either
or it may simply be a namespace placeholder, dependingbsolute or not. This depends only upon whether the

oukrwhE

access rule is preceded by the keywalld . 3.2 Module Application

If two conflicting rules have been defined pertaining o set of modules may be applied simultaneously, and
to the access permitted from a domain to another dosore than one set may be applied in series. For in-

main or type, th_en the rule with the highest prior_ity_will stance, we may begin by combining a set of base mod-
be applied. For instance, the base module’s definition ODIes, then apply a set of service modules, and finally ap-

typebase _t specifies that all domains haabsolute ply a module to ensure a particular security feature. We
accessxld (read, execute, lookup, and descend) oy st therefore clearly define the behavior of group ex-
base _t . This rule isabsolute all in , and there- pansion across multiple module applications.

fore has a priority of 8. Assume we write a new module, Fqr named domain and type groups referenced in ac-
defining a domain intended to contain untrusted codegess rules. the group is expanded at the time of mod-
The domain definition might contain the statement: e application. In other words, for each member of the
group, a new access rule is defined with the same access

absolute e all none ! o)
P details as the original rule. Each newly created rule is

This rule is absolute all out , and therefore associated with group priority, to ensure proper res-
is priority 7. Since arabso'ute a” in access 0|uti0n Of any future COﬂfliCtS. If the gI’OUp haS not yet
rule has a higher priority thaabsolute all out , been defined, an error is raised and compilation fails.

the new untrusted domain will receiveld access to For namespace globbing, that fsand+, the currently

base _t , even though it asked for none. Had it in fact defined descendants and children (respectively) of the

gotten none, then it would not be able to access anparent being expanded are used. For instance, assume

types at all, as it could not descend to them through théve applying a module which contains the rule

root of the file system. Similarly, if any types defined in ;. some_domain

the new modgle are intended to be accesse_d t_)y the_un- type base.exec.+ rwx

trusted domain, then these types must specify incomingnq

access from the untrusted domairedsolute , to en-

sure that that it will override the untrusted domain’s out- If the only children of base.exec defined

going type access definition. On the other hand, the baséus far are the two typebase.exec.sbin and

policy specifies a typbin _t , which includes a normal base.exec.bin , then only these types are in-

group in definition. As this is of a lower priority than cluded in this rule. A later module may define type

absolute out , the access rule specified by the new base.exec.javabin , but this type will not be added

module’s untrusted domain is chosen, denying the unto the access rule.

trusted domain all access to typim _t . As we will see, Theall target keyword is treated somewhat differ-

this is a crucial element of the ftp module, preventing theently. An access rule directedaft will be expanded

ftp server from providing attackers with root shells, for at the time of module application. Again the new ac-

instance. cess rules resulting from the expansion are stored with
Note that incoming access overrides outgoing accesan all level for later conflict resolution. However, a

for the same target precision amtsolute status. generic form of the rule is also stored. All such generic

More specific rules override more general rules, unlesgules are expanded each time a set of modules is applied.

theabsolute keyword is present in one of the rules. I the rule had not previously been applied, any policy
The usage of these keywords is intended to be intuconsistency modules will be consulted at the new rule

itive. However, a switch to usage of simple numeric pri- creation, just as with any other new access rule. For ex-

ority has not been ruled out. For instance, in place of ample, the base module defines default accless to

typebase _t for all domains. This rule is expanded

absolute domain in \ after each module application, so that all domains will
login_domains_grp auto be granted this access.
a module would specify 3.3 Keyword Substitution
One of the goals listed in Section 2 for the use of pol-

domain in login_domains_grp \)) i~ S .
auto 60 icy modules is to facilitate distribution of policy mod-

ules with new software. It must therefore be possible to
. apply policy modules across a variety of systems. To
The disadvantages to this are that module authorsccomplish this in any meaningful way will often re-
might require a deeper understanding of how policyquire some bit of system interaction. For instance, a
compilation is affected by the priorities, and would needpolicy module distributed wittkdm might require label-
to consider these effects explicitly for each access rule.ing each user$HOME/.xsession as an entry type

to the user domain. This requires system interaction ta@bsolute access rules, are automatically inherited by

determine valid users on this system who actually havehe children of a type. On the other hand, this may sim-

a$HOME/.xsession file. ply needlessly complicate the process of policy creation,
The prototype module compiler provides system in-the simplification of which is the precise goal of the pol-

teraction through aexec keyword. This is augmented icy compiler. Currently, the notion of inheritance does

with looping support over variables which have been sehot exist in the module compiler.

usingexec . Using these features, an excerpt of the xdm

policy might look as follows: 4 Ftpd Protection Module

1 define xsession f exec /bin/ls \ Ft.p daemons provide agrgatdeal of interaction, usually
> Thome/*/ xsession with completely unauthenticated, or anonymous, users.
3 In order to permit user logins, however, some ftp dae-
4 type xdm_out fromuser et mons run as rpot. A programmiqg error such as buffer
5 epath Jete/X11/xdm/Xsession overflow or st_rlng forma_\t vulnerability can th_erefore lead
6 to the execution of arbitrary commands using superuser
7 foreach file ‘xsession f privileges by anyone on the internet.

8 epath ‘file’ 4.1 Original Policy

9 endforeach file . .

10 Figure 2 demonstrates policy to protect a system from

ftpd. While a DTE system could actually boot and run
12 access login_domains_grp r with this policy, it is a minimalist policy de;igned only

13 end to protect from ftpd. An actual useful policy would be

14 much larger, but contain a nearly identical set of ftp pro-
tections. The policy provides protection from attack-
ers by containing the ftp daemon to a domain, called
ftpd _d, which has limited access rights. This domain is
not allowed to transition into any other domains, so that

The first command, on lines 1 and 2, assigns toany code executed (legitimately or not) by the ftp dae-
the variablexsession _f the result of executing the mon will also be subject to the same access restrictions.

11 access user_d rwxlcd

15 domain user_d extend
16 entries xdm_out_fromuser_et
17 end

command/bin/ls /home/*/.xsession . This The domain is automatically entered whenever a privi-
will contain a list of all user.xsession files, one leged process executéssr/sbin/in.ftpd . ltre-

per line. Lines 7 through 9 loop over each line quires permission to execute its entry point, library files,
returned by thels command, each time adding a and files located undénome/ftp/bin . Itneedsread
new epath line to thexdm_out _fromuser _et type and write access to devicdbpme/ftp/incoming ;
definition, and replacindfile* with the next file. a transfer log, and some temporary files. The domain

The result is a type to which the user domain mayis refused the ability to execute anything it might have
write, and which those domains which are membergwritten. It has permission to read undeome/ftp

of the login _domains _grp group may read. The /etc , and, unfortunately, the password and shadow
last three lines extend theser .d domain such that files. However, it lacks permissions to execute files un-
other domains may transition into it by executing theder/bin , /usr/bin , etc. Therefore all existing ex-
.xesssion files which were found. Of course, in ploits, which require the ability to executéin/cat

many cases more complicated calculations than a diredetc/passwd” or/bin/sh , will fail.

tory listing will be required. The output from any script
or program can be assigned to variables. However, thél'2 Ftp Module

use of complicated external scripts might add an unwelWe now separate the ftp functionality out from the
come element of unpredictability to the policy creation policy and into a module. The ftp module is found
process. The policy consistency classes will offer somén Figure 3. It again defines #ipd _d domain, and
support to system administrators trying to keep this inftpd _t, ftpd _et, ftpd xt, andftpd _wt types.
check, and graphical analysis tools will remain availableThe ftpd _d definition specifies inbound domain tran-

for analyzing the final policy. sitions fromboot _t , and from all domains defined un-
. derAdmin.services . Ftpd _d may not transition to
3.4 Inheritance any other domains, so this access rulalisolute

An issue which may deserve further consideration is thafThis does not completely rule oétpd _d being per-
of inheritance. It would seem to make sense to construamitted to transition to another domain. However, in or-
the type namespace such that certain properties, perhagsr for ftpd _d to be allowed to transition to another

ftpd protection policy

types root_t login_t user_t spool_t binary_t lib_t passwd_t shadow_t dev_t \
config_t ftpd_t ftpd_xt w_t

domains root_d login_d user_d ftpd_d

default_d root_d

default_et root_t

default_ut root_t

default_rt root_t

spec_domain root_d (/bin/bash /sbin/init /bin/su) (rwxcd->root_t \
rwxcd->spool_t rwecdx->user_t rwdc->ftpd_t rxd->lib_t rxd->binary t \
rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t rwxcd->config_t \
rwxcd->w_t) (auto->login_d auto->ftpd_d) (0->0)

spec_domain login_d (/bin/login /bin/login.dte) (rxd->root_t rwxcd->spool_t \
rxd->lib_t rxd->binary_t rwxcd->passwd_t rxwcd->shadow_t rwxcd->dev_t \
rxwd->config_t rwxcd->w_t) (exec->root_d exec->user_d) (14->0 17->0)

spec_domain user_d (/bin/bash /bin/tcsh) (rwxcd->user_t rxwcd->shadow_t \
rwxcd->spool_t rxd->lib_t rxd->binary_t rwxcd->passwd_t rwxd->root_t \
rwxcd->dev_t rxd->config_t rwxcd->w_t) (exec->root_d) (14->0 17->0)

spec_domain ftpd_d (/usr/sbin/in.ftpd) (rwcd->ftpd_t rd->user_t rd->root_t \
rxd->lib_t r->passwd_t r->shadow_t rwcd->dev_t rdx->ftpd_xt \
rd->config_t rwcd->w_t d->spool_t) () (14->root_d 17->root_d)

assign -u /home user_t

assign -u /tmp spool_t

assign -u /var spool_t

assign -u /dev dev_t

assign -u /scratch user_t

assign -r /usr/src/linux user_t

assign -u /usr/sbin binary_t

assign -e /usr/sbin/in.ftpd ftpd_xt

assign -r /home/ftp/bin ftpd_xt

assign -e /var/run/ftp.pids-all ftpd_t

assign -r /homel/ftp ftpd_t

assign -e /var/log/xferlog ftpd_t

assign -r /lib lib_t

assign -e /etc/passwd passwd_t

assign -e /etc/shadow shadow_t

assign -e /var/log/wtmp w_t

assign -e /var/run/utmp w_t

assign -u /etc config_t

Figure 2: A DTE policy to protect fronwvu-ftpd

Module Service.ftp
domain ftpd_d

entries ftpd_et
absolute domain out all none
domain in boot_d auto
domain in Admin.services.+ exec
absolute type all none
signal out boot_d 14,17
signal out Admin.services.+ 14,17

end
type ftpd_t
access all none
absolute access ftpd_d rld
rpath /home/ftp
end
type ftpd_et
access all r
absolute access ftpd_d rx
epath /usr/sbin/in.ftpd
end
type ftpd_xt
access all none
absolute access ftpd_d rxid
access root_d rwcld
rpath /home/ftp/bin
assert mblp protect
end
type ftpd_wt
access all none
absolute access ftpd_d rwcld
rpath /home/ftp/incoming
end

End

Figure 3: FTP Policy Module

domain, the other domain would have to explicitly ask5 Control

for fipd _d to be permitted to transition to it, or add e simplest way to compile DTE modules into a policy
ftpd _d to a group and provide that group with inbound js 15 yse the command line utiligte _pc.py . A list of
transition access. the modules to be applied is placed into a file, which is
Typeftpd _t is located undefhome/ftp . Only given as a command line argumentite _pc.py . The
ftod .d may observe this type, no one may mod- resulting policy is placed into a file also specified as an
ify or execute. The filelusr/sbin/in.ftpd IS argument.
the entry type through whiclitpd _d may be en- Usingdte _pc.py , all modules are applied simulta-
tered, signified both by thépd _et type definition, neously. Greater control over module application can be
and theentries line in tthtpd _d definition. The had on the python command line, or by writing custom
files under/home/ftp/bin ~ , labeled asftpd xt, module application scripts. The following python lines,

may be executed bftpd _d, and written byroot .d. forinstance, combine the two modulesse anduser |,
There is no single domain which may both modify and then apply a third modulép .

and execute these files. Finally, the files located under) _
/home/ftp/incoming , labeledftpd _wt, may be ch’;n DT'ZMOdﬁ'I'eb'mpO” ModuleFile
written, but not executed bigpd _d. It may not be ac- Irstmods will be an array containing

db ther d : # the "base" and "ftp" modules
cessed by any other domains. firstmods = ModuleFile("base").Modules()

This set of accesses was also accomplished using thstmods.extend(
ftp policy. In fact, the module will eventually be com- ModuleFile("user").Modules()
piled into a policy. However, using the module, we are)
able to limit statements concernirfigpd _wt to the 6 ftomod = ModuleFile("ftp").Modules()
simple lines which define the type, and trust that any do = DTEPolicy.Policy()
mains which are later added undeimin.services # Apply "base” and "user" together

will be able to transition tétpd _d. z-aNpp'y—mOOI'”'??t(fertmOdS)t |
. . . ow apply "ftp" separately
A detailed discussion of p.apply_modules(ftpmod)

p.write("dte_output_file.conf")

assert mbip protect One advantage of using this code is the enhanced pre-

cision in group definitions as described in Section 3.2.
is beyond the scope of this paper. However a brief explaThat is, if any groups are defined and referenced in
nation is appropriate. If no policy constraint class namedbase or user , and then extended iftp , then the
mblp has been loaded, then this line will be ignored. If references to them ifase and user will not in-
this class has in fact been loaded, then it is instructed telude the members added ftp . Additionally, pol-
label this typeftpd _xt , using the keyworgrotect . icy consistency classes are only invoked before and af-
A class may do with this information what it likes. Itwill ter each DTEPolicgpply _modules() invocation, so
be called once before and once after each application ahe above code would force the applicatiorftpf to be
a set of modules, and given a copy of the policy at eachmore closely scrutinized. If all modules are applied at
point. Themblp class, in particular, will print a warning once, then a policy consistency class will only ever com-
if any domain is in fact allowed to modify the protected pare an empty policy to the final policy, which may not
type. This demonstrates the simplest use of policy conbe useful, depending upon the policy consistency class.
sistency classes. We could in fact write a class to simply
read assertions which must hold true in the policy. More6 ~ Related Work
interesting classes, suchm@blp , compare calculations The policy language read by the DTE module is based
on the policy before and after module application. in large part on the DTEL policy language used by the

The most significant advantage of separating the ftpriginal DTE on Unix implementation [1]. The pol-
module out from the base policy becomes apparent wheity consistency classes and related assert statements are
we consider writing more modules. For instance, thea generalization of the ideas proposed in [2]. Here
base policy module does not allow users to change theiBell-LaPadula [4] and Strict Integrity [3] relations, as-
passwords. To add this functionality, we use a modulesured pipelines [5], and the Clark-Wilson [6] concepts
such as thatin Figure 4. Nothing in the ftp module needf constrained data items (CDIs) and transformation
to change, and we do not need to consult the ftp modul@rocedures (TPs) were used to guarantee maintenance
while writing the password module. In contrast, addingof certain properties through dynamic policy changes.
password functionality to an existing policy could be- OO-DTE [11] applied DTE to CORBA distributed ob-
come very invasive. jects, and introduced an object oriented policy language,

Module password
domains passw_d
types passw_t passw_et shadow_t
type passw_et
epath /bin/passw
access all rx
access Admin.admins rwxlcd
end

type passw_t
epath /etc/passwd /etc/passwd.tmp /etc/.pwd.lock
access all r
access passw_d rw

end

type shadow_t
epath /etc/shadow
access all none
access login_domains_grp r
access passw_d rw
end

domain passw_d
type conf_t rlcd
entries passw_et
domain in all auto
domain out all none
end

End

Figure 4: Password Policy Module

DTEL++. In OO-DTE, a user's domain was used to 8 Availability

determine permission to execute or implement meth-r. . hTE | SMis available as part of the LSM project at
ods assigned to particular types. This is quite diﬁeremhttp://lsm.immunix.org . The policy compiler

from the meaning of DTE in a operating system such 885 available from http://www.nekonoken.org

Linux. _ . _ _ Both are licensed under the GPL.
SELinux policies [13], like DTE policy modules, are

compiled, in this case to a binary policy file. The g Acknowledgments

SELinux policy makes liberal use of macros, which are)

defined throughout the policy, and compiled using theHallyn's work was supported in part by a USENIX
ma4 preprocessor. SELinux policies are less structured®cholarship. The authors also wish to thank the paper

than policy modules. There is no sense of domains anghepherd, Crispin Cowan, for his helpful and construc-

types being objects, of access rules belonging to the deflve comments. _
inition of the source of target of the definition, or of pri- This work represents the view of the authors and does

ority of conflicting access rules. SELinux policies make N0t necessarily represent the view of IBM. IBM is a
use of simpleassert rules for safety constraints, but registered trademark of International Business Machines
no attempts have been made to provide more in_deptﬁiorporation in the United States, other_ countries, or
analysis of the effects of a particular piece of policy dur-Poth. Other company, product, and service names may
ing compilation. SELinux policies are more detailed andPe trademarks or service marks of others.
more complicated than DTE policies. The possibility
and usefulness of transcribing the idea of policy moduIeéqmc(':'renc‘:"S
to SELinux policies while keeping modules readable and [1] Lee Badger, Daniel F. Sterne, David L. Sherman,
small, remains to be investigated. Kenneth M. Walker, and Sheila A. Haghigha,
Tools exist to aid in editing and analyzing DTE and Domain and Type Enforcement UNIX Prototype
SELinux policies [8, 12, 15]. These tools analyze whole Usenix Security Symposium (1995).
policies, and therefore complement, rather than compete,
with the DTE policy modules concept. The policy con-
sistency classes used by the module compiler are de-
signed to analyze the effect of particular policy enhance-
ments on the overall policy. The existing DTE policy
analysis tools can still be used on the policies resulting [3] K. J. Biba, Integrity Considerations for Secure
from module compilation. Computer Systemd/itre Technical Report ESD-
IBM Research is investigating the concept of access ~ TR-76-372,1977.

control spaces [10], and working toward a method to de- [4] D. E. Bell and L. J. LaPadulaSecure Computer

[2] Tim Fraser and Lee BadgeEnsuring Continuity
During Dynamic Security Policy Reconfiguration
in DTE, Proceedings of IEEE Symposium on Re-
search in Security and Privacy, 1998.

termine whether an SELinux policy satisfies certain in- Systems: Unified Exposition and Multics Interpre-
tegrity goals [9]. This work again analyzes whole poli- tation, Mitre Technical Report ESD-TR-75-3086,
cies. Ultimately, it is possible that Linux vendors could 1976.

use this approach to verify the correctness of a TCB in-
cluded with their distribution, while system administra-
tors could use policy consistency classes to analyze the
effects of their own policy modules on the base policy.

[5] W.E. Boebert and R.Y. KainA Practical Alter-
native to Hierarchical Integrity PoliciesProceed-
ings of the National Computer Security Confer-

ence, 1985.
7 Conclusion [6] David D. Clark and David R. WilsonA Compar-
By the very virtue of being fine-grained, policies for i§0n Of. Cpmmercial gnd Military Computer Sepu-
MAC systems such as DTE and SELinux become very ity Policies Proceedings of the IEEE Symposium
large, currently tens of thousands of lines for SELinux. on Security and Privacy, 1987.
Policy modules break this into a number of smaller [7] Serge Hallyn and Phil Kearn®omain and Type
pieces, and permit authors to intelligently group ob- Enforcement for LinuxALS 2000.

jects and subjects to permit concise and expressive ac-
cess rules. The careful construction of a policy mod-] :
ule language results in a far more convenient, more ef- ter Domain and Type EnforcemeitSA 2001, p.
ficient, and safer policy specification. In practice, it has 151-156.

greatly eased the movement by the authors between var{9] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang,
ious testing and development machines with various dis- Analyzing Integrity Protection in the SELinux Ex-
tributions. ample Policy Usenix Security Symposium, 2003.

Serge Hallyn and Phil Kearn§ools to Adminis-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Trent Jaeger and Xiaolan Zhangglicy Manage-
ment using Access Control SpacA€M Transac-
tions on Information and System Security, 2003.

Durward McDonnel and David Sames and Gregg
Tally and Robb Lyda,Security for Distributed
Object-Oriented SystemsDARPA Information
Survivability Conference and Exposition, June
2001.

MITRE Corporation, SLAT: Information Flow
Analysis in Security Enhanced Linuavailable at
http://www.nsa.gov/selinux

Stephen Smalley, Configuring the SELinux
Policy, ~NSA Technical Report, http:
[lIwww.nsa.gov/selinux/papers/
policy2-abs.cfm

Stephen Smalley et al, SELinux mailing
list, http://www.nsa.gov/selinux/
list-archive/summary.cfm

Tresys Technology, Security-enhanced Linux
Policy Tools http://www.tresys.com/
selinux/ , 2003.

Christ Wright, Crispin Cowan, James Morris,
Stephen Smalley, and Greg Kroah-Hartmlainux
Security Modules: General Security Support for
the Linux Kernel Usenix Security Symposium,
2002.

