
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Migrating an MVS Mainframe Application to a PC

Glenn S. Fowler, Andrew G. Hume, David G. Korn and Kiem-Phong Vo
AT&T Labs – Research

180 Park Avenue, Florham Park, NJ 07932, USA�
gsf,andrew,dgk,kpv � @research.att.com

Abstract

Due to advances in computer architecture, performance
of the PC now exceeds that of the typical mainframe.
However, computing cost on a mainframe continues to
greatly exceed that on a PC. Thus, migrating mainframe
applications to PC can result in substantial savings. The
major stumbling block in doing this is the cost of soft-
ware migration itself. This paper discusses an experi-
ment in using a software tool approach to migrate a large
billing application from MVS running on a mainframe
to UNIX running on a PC. We developed tools to port
the application from mainframe to PC with minimal code
rewriting and enable transferring data cheaply so that
processing can be done without interrupting other ongo-
ing mainframe operations. We were able to transfer data
from the MVS mainframe to a Linux PC and complete
its processing in less total time than if done entirely on
the original mainframe.

1 Introduction

Approximately 25 years ago John Linderman at Bell
Laboratories wrote a Technical Memorandum describing
the UNIX sort program. The state of Unix computers
was such that John concluded that it was faster to sort
a file by writing it to tape, transferring the tape to the
mainframe to sort, and then loading the result back to the
Unix machine. Much has changed in 25 years. Proces-
sor speed, memory, disk capacity, and network speeds
have followed Moores law and improved exponentially.
A 3GHz processor is cheaper now than a 1Mhz processor
was then. A gigabyte of memory costs around $300 com-
pared to $30,000 for a megabyte. A 250 gigabyte disk
now costs around $250 compared to about $10,000 for a
100 megabyte drive. Meanwhile, networking speeds of
64 kilobits a second have increased to a Gigabit a sec-
ond. The price/performance of mainframes has lagged
behind the PC’s to the extent that a mainframe computer
with the equivalent power as a PC now costs at least two
orders of magnitude higher.

Beyond hardware costs, the software costs for main-
frames are also at least an order of magnitude higher
than that for PCs. There are two reasons for this. First,
the number of mainframes is substantially less than the
number of small computers so that software production
costs are amortized against a smaller population. Second
and more importantly, software development on main-
frames now requires specialized, vanishing skills due to
the use of antiquated programming languages and tools
such as COBOL and JCL. To contain the high cost of
software development on mainframes, Information Tech-
nology organizations have experimented with various ap-
proaches to migrate computing to smaller computers.

The most direct approach to migration is to simply
rewrite mainframe applications to run on PCs. This
task is difficult as everything from the operating system,
databases, the languages, and even the character set rep-
resentations are different between these computing en-
vironments. Further, the people who wrote the original
system may no longer be around and there may not be
enough documentation to provide a complete descrip-
tion to duplicate. This means that massive code reengi-
neering effort is necessary. Lastly, even if a large soft-
ware application is successfully rewritten, it may still
need to interoperate with other mainframe systems. This
means that data migration and/or transcoding must be ad-
dressed upfront along with code rewriting and scalable
data transport between machines must be available. Al-
though many software tools and techniques for software
and data reengineering [2, 6, 7, 15] are available, the risk
in conducting such a migration effort is enormous. The
peril of this approach was highlighted recently in an ar-
ticle on the New York Times � on the cost overrun in
an effort to modernize the Internal Revenue Service soft-
ware system.

A more reasonable approach adopted by a number of
IT organizations is to encapsulate the mainframe by pro-
viding standard access to data, and then using PC’s to
add new functionality. While this strategy does make it
possible to add new features more cheaply, the large cen-
tral costs of maintaining the mainframe remain. In addi-
�
http://www.nytimes.com/2003/12/11/business/11irs.html

tion, as the data streams between the different environ-
ments diverge, it becomes difficult to perform decision
supporting tasks such as data mining that may require
fine-grained data integration and manipulation.

The strategy which we chose to explore is to develop
tools that allow much of the current mainframe software
to run on the PC with little or no change. The original
code can be either automatically converted or interpreted.
As the software must handle both mainframe and native
PC data, tools are provided to transparently and cheaply
move data between the two environments. Of course,
the software on the new system still requires much of
the same skill set to maintain as it did on the mainframe.
However, once on the PC, the software can be incremen-
tally rewritten. In this way, significant savings can be
realized early with small upfront costs. There have been
a few efforts along this direction, most notably the works
by Henault [12], Rossen [17] and Townsends [18]. Both
of these stopped at translating the Job Control Language
scripts into Unix shell scripts.

The rest of the paper describes the tools and tech-
niques developed in an experiment to move a mainframe
application to PC’s. The ported application was run
alongside its mainframe original to test correctness and
measure performance.

2 The application to be migrated
Daily operations in a corporation like AT&T are domi-
nated by large mainframe applications. It is important
for the success of any migration project to quickly show
advantage over existing practice. This implies the below
criteria for selecting a test case for our approach to soft-
ware migration:

� Ease of implementation: For fast demonstration
of concepts, we wanted an application that would
showcase the use of tools. In particular, our AST
Toolkit [9, 10] provided a large collection of soft-
ware tools for various aspects of computing, rang-
ing from compression [21] and sorting to script-
ing [13] and software configuration [8]. So we
wanted an application making extensive use of these
techniques.

� Correctness and significance: To show effective-
ness, we wanted an application with sufficient pro-
cessing complexity, dealing with large data and in-
dependent from any MVS database. The database
independence aspect enabled running the migrated
version on the PC alongside its mainframe counter-
part and testing the results. At the same time, cost
savings could be shown by measuring the perfor-
mance of both versions.

The application that we chose was a part of the
VTNS Billing Edge biller. This system processed billing
records for approximately 340 business customers per
month. Billing records were fixed size, 650 bytes, but the
number of records per customer could vary anywhere be-
tween one and around 40 million. Data processing was
done in two cycles. The larger cycle on the ���	��
 pro-
cessed about 290 customers with total data about 560 gi-
gabytes and required about 60 CPU hours of mainframe
computing. The smaller cycle on the ������ handled the
rest of the customers with approximately 140 gigabytes
of data and required about 24 CPU hours.

Table 1: Code sizes

Language #Files #LOCs
COBOL 30 15K

JCL 900 100K

Table 1 summarizes the size of the application.
COBOL is the main programming language used on
mainframes. JCL is the Job Control Language used to
write scripts to execute processes similarly to the shell
language [13] on a Unix system. We note that the chosen
application is just a small part of the entire biller which
is more than 1.5M COBOL LOCs.

Figure 1 shows the data processing for this applica-
tion. The names of the components are as defined by the
overall biller. The workflow among the components is as
follows:
� The input data to our application is generated by

three external systems encapsulated in the diamond
boxes.

� The JCL scripts, VMURH1 and VMURH4 (in el-
lipses), run COBOL programs to process this data
into records sorted in various ways. Certain non-key
fields of records that compare equal may be summa-
rized to produce various sorted output files. Note
also that VMURH1 is generic and only driven by
customer-specific data but VMURH4 is a JCL script
generated per customer.

� The output of VMURH1 for all customers are then
merged together by JCL scripts VMURH31Q and
VMURH31!Q into files by types.

� Finally, the files grouped by types via VMURH31Q
are processed by a set of ten processes
VTUDHR[01-10] into files to be processed
by other systems.

The internal working of the above software compo-
nents are opaque to us. However, understanding them is

VNS5H30F

VMURH1

BVN5H30B AVN5H30Y

VMURH31!Q VMURH31Q

VMUDHR01

VMUDHR[02-10]

VMURH4

Figure 1: Processing customer data.

not necessary in a tool approach to migration. We only
need to ensure that the processes can be compiled and
executed or interpreted on the PC’s to produce the same
data as on the mainframe.

3 Software tools
Our AST Toolkit consists of an extensive collection of
tools portable across nearly all flavors of Unix. In fact,
these tools run transparently on both the PC and the
UNIX System Services [1] part of MVS. However, there
are major differences between mainframe MVS and PC
UNIX that necessitate a number of new tools and tech-
niques:

� Software to copy files between mainframe and PC.

� A COBOL compiler.

� A way to read and execute the MVS job control lan-
guage, JCL.

� A sort program compatible with the IBM sort pro-
gram.

� A way to schedule jobs on the PC’s to efficiently
process data.

3.1 Copying data between mainframe and
PC

There are number of issues in moving data between MVS
and PC. We discuss each below:

� File system differences: Much of MVS data are
stored in MVS partitioned data sets. MVS parti-
tioned data sets are similar to UNIX archives which

can be mapped into Unix directories on the PC. For-
tunately, the MVS Unix System Services provides
a cp command that can extract the individual files
from a partitioned data set and copy them from the
MVS file system to the UNIX file system. In par-
ticular, it copies a partitioned dataset into a Unix di-
rectory so that each member becomes a file. Then,
the pax utility can be used to archive this directory
into either cpio or tar format and transfer the data to
the PC via ftp.

COBOL source files, however, are not stored in a
partitioned data sets. Instead, they were stored in
a sequential data set in a format understood by an
MVS tool named ca-librarian [3]. As the interface
to ca-librarian is interactive and menu-based, it is
difficult to extract and copy multiple files in bulk.
We reengineered this data format and built it into
our AST pax command. This allows us to simply
copy the ca-librarian sequential data set and read it
on the PC using pax.

� Expensive data movement: A major problem with
moving data between the mainframe and the PC is
volume. With existing data connection, transfer rate
is between 1 and 2 megabytes per second. A month
worth of data for our application is about 700 giga-
bytes. This means that transferring data from main-
frame to PC alone could be anywhere between 97
hours up to 184 hours. Thus, we investigated com-
pression tools such as gzip and compress to reduce
the data size. As observed elsewhere [4, 5, 19],
fixed-length records data were amenable to com-
pression by first transforming the data to be column-
major instead of row-major. We wrote a simple
compressor that transposed rows and columns, then
applied run length and static Huffman encoding.

This technique compressed three times better than
compress and twice better than gzip and ran about
4 times faster than both tools. On MVS, we were
able to compress a gigabyte of data in 80 seconds
and got about a factor of 25 compression. In this
way, the 700 gigabytes per month of data could be
compressed and transferred in around 20 hours.

� Different character sets: MVS uses EBCDIC to
store text while Unix uses ASCII. This means that
text files must be converted to ASCII en route to
the PC and back to EBCDIC in the other direction.
Since our compressor was built into the Vcodex
package [21] which supports general data transfor-
mation, it was a simple matter to add character set
transcoding before encoding or after decoding.

3.2 COBOL
With about 15 KLOCs of COBOL to be migrated, even
if we were proficient in COBOL (and we were not),
it would have taken a significant amount of time to
rewrite the application in C. Thus, we looked into ob-
taining a COBOL compiler for PCs. After failing to
get proper licensing terms for a commercial COBOL
compiler, we started experimenting with openCOBOL,
an Open Source COBOL compiler written by Keisuke
Nishida [16]. Although this compiler did provide most
needed features, there were a number of changes needed
to support a large application like ours. We discuss these
next:
� Language additions: The openCOBOL language

lacked a number of features supported by the IBM
COBOL compiler. For example, IBM COBOL pro-
vides an ENTRY statement that enables multiple en-
tries to a procedure and a WHEN-COMPILED preset
variable stores that date and time that the program is
compiled. These features had to be added in order
to compile the existing COBOL code.

The IBM compiler allowed specifications such as
ASSIGN TO DA-S-VMUR102B without quoting
whereas the openCOBOL one required that the
dataset name be quoted. We modified the compiler
to accept this syntax and to skip over the DA-S-
prefix and then use the VMUR102B as the name of
an environment variable to search for to find the ac-
tual file name.
With JCL, multiple files can be specified for each
dataset. In that case, the files are virtually concate-
nated into a single input data stream. We modified
the openCOBOL compiler to accept a space sepa-
rated list of file names as the value of an environ-
ment variable and open them sequentially as if they
formed a single concatenated file.

The generation of the main program was modified
so that a USING clause would get the data from the
first argument passed to the program.

� Performance: Initial testing of the compiler re-
vealed that it could not handle files larger than 2
gigabytes. After fixing this problem, we found the
compiler to be too slow mostly due to its arithmetic
processing. We were able to rewrite this part of the
code and some other parts to improve the speed of
compiled code by a factor of five. Adjusting for the
relative speed of computation on MVS, the com-
piler now produces faster code than that produced
by the IBM compiler.

� Character sets: Since the compiler is ASCII-based,
string data in data files must be in ASCII. We started
by converting string fields in each record from
EBCDIC into ASCII and left numeric fields alone.
This was not sufficient since these data files may
have string and numeric data in the same columns
across different records. The solution was to con-
vert all bytes to ASCII and modify the arithmetic
conversion routines of the compiler to convert back
to EBCDIC when doing the conversions.

� Processing compressed data: We modified the com-
piler to automatically handle data compressed by
the mentioned compressor. By convention, such
compressed data are kept in files whose names end
in .qz. Thus, if the compiler opens such a file
for sequential reading, data is automatically decom-
pressed before reading. Conversely, for sequential
writing, the data is automatically compressed.

We were able to work with Nishida to add all of
the needed language features as well as other modifica-
tions into the openCOBOL compiler. In this way, future
projects migrating COBOL programs can build on our
work.

Finally, the compiler converts each COBOL module
to C and then invokes the GNU C compiler, gcc, to build
an object file. The object files are then linked with a run-
time library supporting various COBOL features to make
an executable program. We wrote nmake makefiles [8] to
automate this process. However, given the large number
of makefiles that must be written in a large application,
we are investigating automatically generating them.

3.3 Sorting
The MVS sort program has a number of features beyond
normal sorting. For example as records are read, files can
be created by selecting certain subset of the fields to cre-
ate new records. Records comparing equal by keys may

also be merged by summing certain field values. The
description of what keys to sort on, how to do merging,
and what additional files to create is defined in a separate
specification called sort control cards. These features of
MVS sort were used extensively in our chosen applica-
tion.

The AST sort program is a superset of the UNIX sort
utility defined in the POSIX standard. A feature of the
AST sort not apparent at the command level is that it is
just a driver on top of a sorting library designed in the
Disciplines and Methods paradigm [20]. This paradigm
provides a standard API via the discipline mechanism to
extend library functionality. We were able to duplicate
the required functionality of MVS sort by writing a few
disciplines that make use of MVS sort control cards to
process a record when it is read or to merge records com-
pared equal in the same way that MVS sort does it. The
sort disciplines are implemented as shared library plug-
ins. This means that discipline-specific overhead is only
incurred after the plugin is loaded at runtime.

For full MVS compatibility, we extended AST sort to
deal with fixed length records and binary coded decimal
fields. Similar to modifications to the COBOL compiler,
the sort program could also handle concatenation of files
and data compression with the .qz suffix.

On MVS, our sort runs about 5% faster than MVS
sort. However, the two sort programs occasionally pro-
duces records in different order since ours is stable while
MVS sort is not. That is, our sort preserves file order for
records that compare equal by keys while MVS sort does
not provide this guarantee.

3.4 JCL
JCL, the job control language for MVS, plays much the
same role as the UNIX shell does in that it invokes pro-
grams or scripts in some order and takes actions based
on the results. The chosen application executes over 100
thousand lines of JCL about 90% of which are generated
and the remaining 10% are fixed. A JCL script is gener-
ated for each customer by accessing the DB2 database.
These scripts merely call MVS sort with various con-
trol card decks generated from within the scripts. To
eliminate these JCL scripts would require access to the
database from UNIX. To avoid this complexity, we kept
the generation of these scripts on MVS and then pro-
cessed them on UNIX.

We wrote jcl, a JCL interpreter, that allows the use
of the hierarchical Unix file system instead of the flat
MVS file names via file name prefix mapping. For
example, a partitioned data set for control cards, say
SYS1.CTLCDLIB, would be mapped to the directory
$ � BILLROOT � /cntlcard so that its control cards
would be stored in separate files in this directory. jcl first

parses JCL scripts into a linked list of program step struc-
tures. This list is traversed to either generate ksh shell
scripts or to execute. jcl also provides debugging support
that can be used to determine the overall structure and re-
lationships between a collection of JCL scripts. For ex-
ample, the --noexec option interprets the JCL but does
not execute external programs and the --list=item op-
tion lists the items referenced by each JCL step.

3.5 Job scheduling

An application on MVS consists of a number of jobs
some of which can run in parallel while others must wait
until some other set of jobs finish before they can start.
Let � and � be two jobs. We say that there is a directed
edge ����� if there is a constraint that � must be com-
pleted before � can start. In this way, the set of jobs and
constraints form a directed graph called the scheduling
graph.

Figure 2 shows a slice of the scheduling graph for our
application based on the processing of just two customers
xx and yy. This essentially executes the workflow pre-
sented in Figure 1 except that all customers are now be-
ing considered together so there are more opportunities
for parallelization. For example, as soon as the data pro-
duced by the external systems AVN5H30Y, VNS5H30F
and BVN5H30B for a particular customer are available,
the VMURH1 process for that customer can be started.
As long as there are enough processing power, the sched-
uler starts many such processes in parallel. The results
from these processes are further processed. In particular,
the merged results by VMURH31Q are passed on to the
VTUDHR processes.

By necessity, a scheduling graph must be acyclic so
that the jobs can be scheduled. In general, jobs may have
attributes associated with them such as completion time
or memory and disk resource constraints. In that case, it
is desirable to compute a schedule that optimizes some
parameters based on these attributes. When only a single
processor is available, any topological sort ordering of
the jobs produces a valid optimal schedule. However, on
a system with multiple processors, the scheduling prob-
lem is known to be NP-hard[11].

The MVS scheduler, New-Dimension, allows
scheduling constraints to be specified by filling out form
tables. Then, the scheduler controls resources of the
system and sequences the jobs appropriately. For the
PC’s, we opted to write a simple scheduler, which reads
lines from one or more queues specified as files, and
runs a command for each line it reads. At startup, the
scheduler is given a list of process resources and will
run a single job at a time through each resource. If
all resources are in use, the scheduler blocks until one
becomes available. If all the file queues are empty, the

VNS5H30Fxx

VMURH1xx

BVN5H30BxxAVN5H30Yxx

VMURH4xx VMURH31Q VMURH31!Q

VTUDHR01

VTUDHR[02-10]

VNS5H30Fyy

VMURH1yy

BVN5H30ByyAVN5H30Yyy

VMURH4yy

Figure 2: A scheduling graph.

scheduler will block until one of the file queues contains
some input to process.

The simple scheduler is adequate for our prototype.
However, in general, MVS scheduling has many facets
that we did not account for. We are investigating writing
a tool to read the MVS scheduling tables and perform the
appropriate scheduling on the PC’s.

4 Selecting a platform

We wanted to select a platform of hardware and software
fast enough to do the processing, able to store the data,
able to run all of the software, and at as low cost as pos-
sible. Based on price performance considerations, we
built a cluster of two machines, each with a 2.8 MHz.
Intel Pentium 4 processor, 1 gigabyte of 400 MHZ DDR
RAM, and two 256 gigabyte SATA disk drives. The ma-
chines are networked with Gigabit Ethernet. Unit test-
ing various CPU intensive programs showed that these
machines were about 7 times as fast as the MVS sys-
tems. The SATA disk drives were able to tranfer about
100 megabytes a second. The entire cost for both ma-
chines was under $4,000.

Since most of the processing was per customer and
could be done in parallel, we kept the machines loosely
coupled with separate file systems instead of using a sin-
gle shared file system. As data processing was intensive,
avoiding the overhead of a shared file system such as
NFS was a win overall. In data processing phases where
files must be merged, they could be copied to wherever
needed. Keeping a loosely coupled cluster of machines
made it simple to disconnect a bad machine or to add
new machines as needed. This increased fault-tolerance
and scalability.

The choice of an operating system was constrained by
the software to be run. The use of the AST Toolkit did

not constrain this choice in any way. However, the open-
COBOL compiler required the GNU-C compiler gcc and
certain GNU libraries. We finally chose Redhat Linux
9.0 primarily because we felt it would be easier to inte-
grate our solution into the billing application supported
by IBM. Our concerns with Redhat Linux were primarily
its erratic I/O performance. For example, the through-
put was actually higher by running a single customer at
a time on each system rather than running multiple cus-
tomers in parallel. However, we were not locked into any
operating system. We experimented running the software
with FreeBSD Unix. In contrast to Linux, the throughput
did increase when running two customers in parallel on
FreeBSD Unix. Finally, a UNIX based solution was cho-
sen rather than Windows mostly for reliability consider-
ation. However, all the tools could be run on Windows
using the UWIN software [14].

5 Results

Table 2: October 10, 2003 cycle.

Data #Files Raw Comp.
From mainframe 300 560GB 22GB
Generated on PC 1160 280GB 17GB

For testing, we processed data for the October 10,
2003 cycle. Table 2 summarizes the data that were trans-
ferred from the mainframe and generated on the PC’s.
Theoretically, the data could be compressed on the main-
frame in about 12.5 hours and transferred to the PC’s in
about 6 hours for a total of 18.5 hours. However, it took
us over 24 hours to move the data from the mainframe to
the PC’s, mostly due to long waiting time for mainframe

tape drives. Once the data arrived on the PC’s, process-
ing completed in under 19 hours. Thus, even with the
slow data transferring time, the output data was gener-
ated in about 43 hours. The same job took a total of 60
hour processing time on the mainframe. Note that, in this
case, we waited until all files were copied to the PC’s be-
fore processing. Our scheduler could be modified to al-
low overlapping of data transferring and data processing
to reduce elapse time even further. In addition, our set up
could be easily scaled up by adding more PC’s. We esti-
mated that with a 4 processor system, we could process
this data in under 12 hours.

CPU cycles on the mainframe costs about $20/hour
and network charge for data transmission to and from
mainframe is around $5/Gbyte. Thus, if the above data is
representative of the ������
 cycle, it could be compressed
and transferred between the mainframe and PC’s for less
than $1000. Generously doubling this to cover both the
������
 and the end of the month cycles, the total cost for
data transfer each month would be less than $2000. As-
suming that the PC’s cost $2000/month to own and op-
erate, the total cost for migrating to the PC’s would be
under $4000/month. As the current cost to run the appli-
cation on the MVS mainframe is estimated to be about
$20000/month, the data processing cost can be reduced
by more than a factor of 5 for this application using our
approach.

6 Conclusions

We presented a methodology to migrate mainframe ap-
plications to PC’s based on software tools. This approach
minimized software and data reengineering and enabled
smooth transition between the mainframe and the PC’s.
The work took place over a six month period and was
carried out by a small team of software experts without
prior MVS or COBOL skills. Much of the effort was
spent in learning MVS, COBOL, and in writing reusable
tools. Thus, the work could be easily duplicated on more
ambitious problems with far bigger payoffs.

In an experiment using the developed tools to move a
small but significant mainframe application to a system
of two PC’s costing less than $4000, we showed that over
80% of the monthly computing cost could be reduced,
saving more than $16000 per month. This cost improve-
ment was conservative. Most of the cost was driven by
moving data from the mainframe to the PC’s and that
could be easily eliminated by getting the data directly to
the PC’s. The migration of the entire billing application
to PC’s might save up to 90% of the ongoing costs.

Beyond software migration, the work on compres-
sion and sorting were of a general nature. For exam-
ple, the table compressor could be used to compress

any database tables using fixed length records. It was
shown elsewhere [19] that mainframe data of the type
mentioned here could be compressed by factors any-
where between 50 to 100 to 1. Thus, the compression
tool could be used to save disk space and tape usage
on the mainframe. Our sort tool employs better sort-
ing algorithms than MVS sort and the commercial Sync-
sort (http://www.syncsort.com/) software used in origi-
nal project. Thus, it can be used to both improve process-
ing and save the rather steep licensing fees being paid
yearly.

Looking forward, there are a number of threads to be
developed. For example, our test case does not involve
database and report generation issues which are impor-
tant in large applications. The questions of reliability,
effective scheduling of processes, and optimal partition-
ing and placement of large data on a cluster of loosely
coupled PC’s are of independent interest. Such prob-
lems should be dealt with in conjunction with migrating
a larger and more comprehensive application. We are
looking into that.

Acknowledgements
We would like to thank a number of colleagues who
provided assistance in this project. Silvia Coble and
Robert Cummins suggested the application to migrate
and helped obtaining data to understand what was
needed. Jim LaBarge from IBM helped with MVS ac-
counts and the Unix System Services. Doug Blewett
from AT&T Research helped select the hardware plat-
form, assembled it, and got it running. Finally, Chris
Olsen administered our system.

References
[1] z/OS UNIX System Services. In

http://www.ibm.com/servers/eserver/zseries/zos/unix/.

[2] P. Aiken. Data Reverse Engineering: Slaying the
Legacy Dragon. McGraw-Hill, 1995.

[3] Computer Associates. CA-Librarian User
Guide 4.3 for OS/390, z/OS, and VSE. In
http://www.dcs.rochester.edu/Documentation/CA-
Librarian%20V4.3/lib43%20User%20Guide.pdf,
2001.

[4] A. Buchsbaum, D. Caldwell, K. Church, G.S.
Fowler, and S. Muthukrishnan. Engineering the
Compression of Massive Tables: An Experimental
Approach. Proc. 11th ACM-SIAM Symp. on Disc.
Alg., pages 175–184, 2000.

[5] A. Buchsbaum, G.S. Fowler, and R. Giancarlo.
Improving Table Compression with Combinatorial
Optimization. Proc. 13th ACM-SIAM Symp. on
Disc. Alg., pages 213–222, 2002.

[6] Y.-F. Chen. The C Program Database and Its Ap-
plications. In Proc. of the Summer 1989 USENIX
Conference, pages 157–171, June 1989.

[7] Y.-F. Chen, G.S. Fowler, E. Koutsofios, and R.S.
Wallach. Ciao: A Graphical Navigator for Soft-
ware and Document Repositories. In International
Conference on Software Maintenance, 1995.

[8] Glenn S. Fowler. The Fourth Generation Make.
In Proc. of the USENIX 1985 Summer Conference,
June 1985.

[9] Glenn S. Fowler, David G. Korn, and Kiem-Phong
Vo. Principles for Writing Reusable Libraries.
In Proc. of the ACM SIGSOFT Symposium on
Software Reusability, pages 150–160. ACM Press,
1995.

[10] G.S. Fowler, D.G. Korn, S.C. North, and K.-P. Vo.
The AT&T AST OpenSource Software Collection.
In Proc. of the Summer 2000 Usenix Conference.
USENIX, 2000.

[11] R.L. Graham, E.L. Lawler, J.K. Lenstra, and
A.H.G. Rinnoy Kan. Optimization and approxima-
tion in deterministic sequencing ans scheduling: a
survey. In Ann. of Disc. Math., pages 5:287–326,
1979.

[12] H. Henault. A.C.M.U. : Auto-
mate de Conversion MVS-UNIX. In
http://www.hhns.fr/products/acmu/acmudoc.html.

[13] David G. Korn. ksh: An Extensible High Level
Language. In Proc. of the Usenix VHLL Confer-
ence, 1994.

[14] David G. Korn. Porting UNIX to Windows NT.
In Proc. of the 1997 Usenix Conference. USENIX,
1997.

[15] H.A. Muller, J.H. Jahnke, D.B. Smith, M.D. Storey,
S.R. Tilley, and K. Wong. Reverse engineering: a
roadmap. In ICSE — Future of SE Track, pages
47–60, 2000.

[16] K. Nishida. OpenCOBOL Home Page. In
http://www.opencobol.org, 2003.

[17] E. Rossen. The MVS to UNIX migra-
tion HOWTO. In http://people.linux-
gull.ch/rossen/software/migration/migration.html.

[18] O. Townsends. The Vancouver Utilities for Unix
and Linux. In http://www.uvsoftware.ca.

[19] B.D. Vo and K.-P. Vo. Using Column Dependen-
cies to Compress Tables. Data Compression Con-
ference, 2004.

[20] Kiem-Phong Vo. The discipline and method archi-
tecture for reusable libraries. Software—Practice
and Experience, 30:107–128, 2000.

[21] Kiem-Phong Vo. Vcodex: A Platform of Data Tran-
formers. Work in progress, 2004.

