
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

KDE Kontact: An Application Integration Framework
PIM Components Get Together

David Faure
KDE Project

faure@kde.org

Ingo Klöcker
KDE Project

kloecker@kde.org

Tobias König
KDE Project

tokoe@kde.org

Daniel Molkentin
KDE Project

molkentin@kde.org

Zack Rusin
KDE Project
zack@kde.org

Don Sanders
KDE Project

sanders@kde.org

Cornelius Schumacher
KDE Project

schumacher@kde.org

Abstract

Kontact is the new integrated KDE personal informa-
tion management application. Well, it seems new, but
in fact only the shiny surface is new. Under the hood
well-known time-honored KDE applications like KMail,
KOrganizer, KAddressBook, KNotes and KNode do
their work. This paper describes how KDE component
technologies like KParts, DCOP or XMLGUI enable
embedding of applications to create something which is
more than the sum of the parts.

1 Introduction
Kontact [1] is a new KDE [2] application for managing
personal information like mail, appointments, todo lists
and contacts. It is based on existing KDE applications
which are embedded into a container framework by us-
ing KDE component technology and extending it where
required. Figure 7 shows a screenshot of the organizer
component in Kontact.

The functionality of Kontact emerges from integration
of the components on the application level. It doesn’t
compromise the ability of the components to run as in-
dividual stand-alone applications. The user retains the
choice whether to use the components as one applica-
tion aggregating all the functionality or to use some or
all parts as separate applications.

KDE is one of the major desktop environments for
Linux and Unix systems. it is based on the Qt toolkit
[29] and mostly written in C++. It consists of a frame-
work providing the desktop infrastructure and a wide
range of applications, from web browser and mail client,
through music players, games and educational software
to text editor and integrated development environment.
Kontact is part of the kdepim module of KDE which
contains tools for personal information management.

After a short discussion about components and mono-
lithism (section 2) this paper will give an introduction
into the Kontact component model (section 3) and a de-
tailed overview of the integration technologies used in

Kontact (section 4). It will discuss the importance of
open standards (section 5), give an insight into Kontact
as project (section 6) and will conclude with informa-
tion about the availability of Kontact (section 7), final
remarks (section 8) and some information about the au-
thors of Kontact (section 9).

2 Components vs. Monolithism
Why bother with integrating originally disparate appli-
cations? Why not build a monolithic integrated appli-
cation from ground up with all its parts fitting together
from the beginning?

The technical advantages are that a loose coupling
forces modularization and cleaner interface definitions.
This leads to a better factored architecture which is in-
herently easier to maintain and leverages reuse of exist-
ing code.

On an economical side this kind of reuse saves the
investments, in particular of time and effort of the open
source community, in the already existing applications.
All the components integrated into Kontact have a long
history as independent applications and provide a stable
and feature-rich base for the integrated framework.

There are also social reasons. Each of the different
Kontact component applications have their own healthy
developer communities. By providing a technical in-
tegration framework on the top of those applications
the developers also get integrated. They still main-
tain their application development environment but gain
a new sense of community on a higher level. The
Kontact experience shows that this works surprisingly
well and gives room for new synergies. The mono-
lithic approaches we have seen in the past in this area
have suffered from the not-invented-here syndrome and
reinvention-of-the-wheel scenarios. There are several
projects which tried to write a monolithic application
comparable to Kontact and failed because of these rea-
sons.

On a philosophical level the integration of GUI desk-
top applications as done by Kontact can also be seen as

interesting parallel to the classic philosophy of UNIX
commands, single-purpose commands which can be as-
sembled to complex and powerful aggregations to ful-
fill almost any task imaginable. By combining single-
purpose applications in an integrated suite for personal
information management this philosophy is raised to the
application level.

3 The Kontact Component Model
The Kontact framework acts as a container for plugging
in other applications as components. It provides the
standard environment like main window, menu, tool and
status bars as well as a navigation bar to control the em-
bedded components. Applications to be embedded into
this environment have to be accompanied by a Kontact
plugin. The plugin acts as mediator between the frame-
work and the application. It exposes the functionality of
the application which is being integrated by implement-
ing the Kontact Plugin API and interacts with the Kon-
tact Framework by using the Kontact Core API. All this
is done in-process. Communication between the compo-
nents is done via DCOP through clearly defined standard
interfaces. Figure 1 shows the component model.

The plugin API specifies functions which have to be
implemented by concrete plugins for providing access to
the corresponding KPart object, the summary view and
options how the component appears and is handled in the
framework application. This includes title labels, icons
and hints about the position in the navigation bar. In ad-
dition to that it provides functions to control the compo-
nent behavior, starting and selecting of a component, re-
questing if the component runs embedded or stand-alone
and access to the interfaces of the underlying component
technologies. Finally the plugin API provides functions
for handling of drag and drop functionality and user in-
terface actions.

The framework core API which gives the plugins ac-
cess to the framework mainly deals with loading and se-
lecting of plugins belonging to other components. Inter-
component communication is done by using the DCOP
interfaces of the individual components.

A Kontact plugin can provide an application or doc-
ument main view, a summary view and some specific
functionality and data like menu and toolbar actions,
configuration, ”about” data and more. If an application
already provides a KPart as part of its interface adding
a Kontact plugin in order to integrate it into Kontact is
only a few lines of code.

4 Application Integration Technologies
The KDE framework provides a rich variety of integra-
tion technologies [5]. They have been used on a com-
ponent level for applications like the KDE web browser
Konqueror [14] and on a slightly higher level in the KDE

office suite KOffice [15]. Kontact constitutes the integra-
tion on the highest level - the level of complete applica-
tions.

This section will present the KDE component tech-
nology KParts (section 4.1), the desktop communication
protocol DCOP (section 4.2), the user interface descrip-
tion framework XMLGUI (section 4.3), the integrated
configuration framework (section 4.4), and the KDE re-
sources framework KResources (section 4.5).

4.1 KParts
KParts is the KDE component technology introduced
with Konqueror and KOffice. A KPart is a dynamically
loadable module which provides an embeddable doc-
ument or control view including associated menu and
toolbar actions. A broker returns KPart objects for cer-
tain data or service types to the requesting application.
KParts are for example used for embedding an image
viewer into the web browser or for embedding a spread
sheet object into the word processor.

KPart instrumentation of an application is a low-effort
task, because all the technologies used are usually al-
ready utilized in the existing code. There are no new
programming languages, external processes or protocols
involved. It basically boils down to the implementation
of a specific C++ interface. Kontact components all have
a KPartification history of heroic one-weekend or even
one-afternoon hacks.

4.1.1 What’s a KPart?
KParts consist of a view object embeddable in a user in-
terface frame, associated actions like menus items and
toolbar buttons and optional extension objects for han-
dling the status bar or special functionality like the for-
ward, backward and history functions of a browser. They
are accompanied by metadata like author and copyright
information and service types the KPart provides. The
metadata is provided as files adhering to the Desktop
Entry Standard [35]. This standard, hosted by freedesk-
top.org, is used in many other places in KDE and other
desktop environments, e.g. GNOME [3], to store meta-
data.

The view object provided by KParts is a standard user
interface component which is usually embedded as main
component into the main window of the embedding ap-
plication. It represents the view or main work area of the
functionality provided by the KPart.

In addition to the view the KPart provides user inter-
face actions which correspond to menu items or tool-
bar buttons. The menus and toolbars of KParts are com-
bined with the menus and toolbars of the main window
or other components. The actions are described and cre-
ated based on an XML descriptions of the available ac-
tions. This mechanism is known as XMLGUI. It is de-

Kontact Core API

Summary View

View

Kontact Core API

KPart

View
KMail

KOrganizer

KAddressbook

Integrated Functionality

− Common Menu/Toolbar Actions

− Configuration

− Status Bar

− Drag&Drop

− Tip of the Day

− About Data

KPart

Kontact
PluginSummary View

.

.

.

K
o

n
ta

ct
 P

lu
g

in
 A

P
I

Embedded Application

DCOP

Figure 1: Kontact Component Model

scribed in more detail in section 4.3.
Special functionality of the embedding application for

use by the KPart can be provided by extension objects
which are created by the KPart and made externally vis-
ible. One example is the status bar extension which gives
KParts access to the status bar of the main window of the
embedding application. The KPart sends the messages
to be shown in the status bar to the extension and the
embedding application takes care of showing them and
synchronizing the status bar information when different
KParts are activated.

4.1.2 KParts Framework

KParts are loaded as dynamically loadable modules at
run-time. A trader mechanism based on the service types
provided by the KParts is used to select the KPart which
fits best to the data or application to be handled and the
preferences of the user. For example in Kontact this
mechanism is used to find the applications which pro-
vide the Kontact integration, and in Konqueror it is used
to find appropriate viewer and editor parts for handling
documents of specific MIME types.

The actual KPart API basically consists of the func-
tions to select, load and find the desired KPart instance.
Specific functionality of the KPart instances is realized

by subclassing. The document handling KParts used
in applications like Konqueror, for example, provide
an interface to load and save documents in a network-
transparent way in the classes ReadOnlyPart and
ReadWritePart [7].

Communication between KParts is done via the Desk-
top Communication Protocol (see section 4.2). This ex-
tends the API of the specific KParts by functions not
only available to the embedding framework but also
available to other components within or out of the pro-
cess of the embedding application.

The KPart interfaces don’t include remote function
calls, unlike many other component technology frame-
works like DCOM [8] from Microsoft, UNO [10] from
OpenOffice.org or Bonobo [11] from GNOME. Histor-
ically the predecessor of the KParts framework which
was based on CORBA [9] from The Open Group did
so, but due to its complexity it wasn’t accepted by ap-
plication developers and it was eventually replaced by
the current combination of KParts and DCOP which
provides a simpler framework for use within a desk-
top environment. For a more detailed description of the
KParts component architecture including a comparison
with other models, especially CORBA based models see
[6].

4.1.3 Use of KParts in Kontact

The classical KParts model originates from document-
oriented views in KOffice and Konqueror. The differ-
ence in Kontact is that the KPart instances are not as-
sociated to specific documents, but represent views to
more global objects, like the user’s mails, calendar or
contact data. Kontact doesn’t subclass the KPart’s API,
but uses DCOP calls to access the specific functionality
of the embedded applications.

Kontact loads a KPart object for each application it
embeds. The KPart provides the main view which is
usually used in the main window of the stand-alone ver-
sion of the application. Loading is done on demand,
so that only those objects consume memory and af-
fect startup time which are actually used. Unlike in
purely document-oriented user interfaces multiple KPart
instances are loaded in parallel and communicate with
each other, reflecting the situation of multiple applica-
tions running in parallel and working together. Con-
cerning the user interface there still is a primary KPart
instance which is active. This means that its view is
shown in the main window and its part-specific actions
are merged into the applications menus and toolbars.

4.2 Desktop Communication Protocol
(DCOP)

The Desktop Communication Protocol (DCOP) is the
well-known KDE inter-process communication mecha-
nism. It is based on a central server relaying function
calls between applications. DCOP makes use of the Qt
object serialization implementation and uses the Inter
Client Exchange (ICE) protocol [12] (part of X11R6) as
transport layer.

The key feature of DCOP that makes it a viable choice
for Kontact’s inter-component communication is that it
is also able to make in-process calls and thus minimizes
the overhead for communication inside the one-process
Kontact component assembly.

As this is done completely transparently to the sender
and receiver of DCOP calls, it makes it possible to either
run Kontact components inside of the Kontact frame-
work or as stand-alone applications without any differ-
ence to the user other than the additional GUI integration
inside the Kontact framework and the features this inher-
ently adds, e.g the integrated configuration, the summary
view or the extended drag and drop support. This gives
users the choice to run the application in a way that best
fits to their personal working style.

4.2.1 DCOP Implementation

DCOP communication between processes is mediated
by a special server process. This server is started with
each desktop session and handles all DCOP communi-

cation between applications belonging to this session.
When an application wants to talk to another applica-
tion it sends the request to the DCOP server which in
turn forwards the request to its destination. Responses
are sent back to the server which returns them to the ap-
plication from which the request originated. The fact
that communication goes through a server is completely
transparent to the applications using DCOP.

When an application provides a DCOP interface for
use by other processes it registers itself with the applica-
tion name with the DCOP server. In addition it registers
each DCOP interface it provides with a specific name
with the server. DCOP provides inspection functions so
that it is possible to browse DCOP interfaces in order to
find out which interfaces are registered and which func-
tions they provide.

Direct function calls are not the only way to use
DCOP. it is also possible to use a signaling mechanism
where an application registers for a specific signal and
the server then notifies the application when the signal is
emitted by the application which was requested. By us-
ing wild card matching flexible control over which sig-
nals an application listens to is possible.

Actual communication in DCOP is done using the
ICE library, part of the X server, as transport layer. The
communication is done by using Unix sockets. DCOP
intentionally doesn’t provide network transparent com-
munication because this isn’t required in normal desktop
scenarios and would add an additional level of complex-
ity as well as imposing a new class of security problems
which don’t need to be handled if network access is dis-
abled.

Serialization and deserialization of data is done by us-
ing the C++ stream operators associated with all the ba-
sic data types in the Qt toolkit. They use a compact bi-
nary format. This is hidden from the DCOP user. Only
if new or custom datatypes are to be sent over DCOP
do new stream operators have to be implemented. This
is mostly very easy because it can be based on existing
operators for the data types the new type is composed of.

DCOP interface compiler For convenient instrumen-
tation of an application with DCOP interfaces there is a
special tool, the dcopidl compiler. It takes a file describ-
ing the interface and generates the C++ code required to
implement the interface. The interface description file is
basically a C++ class header with some additional key-
words to identify the functions for instrumentation by
DCOP. So usually it is enough to add these keywords
to the already existing header declaring the functions to
be available via DCOP and run the dcopidl compiler on
this file. For normal compilation the special keywords
are defined to be empty so that they are ignored by the
compiler. Figure 2 shows an example of a header used

class KCalendarIface : public DCOPObject
{

K_DCOP
public:
KCalendarIface()

: DCOPObject("CalendarIface") {}

k_dcop:
virtual void showTodoView() = 0;
virtual void showEventView() = 0;

virtual void goDate(QDate date) = 0;
virtual void goDate(QString date) = 0;

};

Figure 2: Example code providing a DCOP interface

to generate a DCOP interface.
The dcopidl compiler also provides the capability to

generate stub classes which can be used to make DCOP
function calls. This way the DCOP call appears as nor-
mal type-safe function call to the calling application and
the DCOP communication and the fact that the call actu-
ally is a remote function call becomes completely trans-
parent to the applications using DCOP.

The KDE build system automates running the dcopidl
compiler so that DCOP interfaces can be added or used
by adding only a few lines to the Makefile templates or
header files.

The abstraction introduced by the dcopidl compiler
could be used to replace DCOP by another transport
mechanism without any changes to applications simply
by modifying the dcopidl compiler to generate stubs and
interface implementations for another transport mecha-
nism. This would be one way to add support for other
inter-process communication mechanisms like D-BUS
[13] or platform-specific technologies.

Application scripting DCOP is not limited to com-
munication between applications. It can also be used
by end users to control an application remotely. There
are several different methods available to do this conve-
niently. For example, one can use the dcop command
line tool for sending DCOP requests, the corresponding
GUI tool kdcop, or use the language bindings to script
the application in languages like Perl or Python.

4.2.2 Use of DCOP in Kontact
For Kontact DCOP is the main communication mech-
anism between components. It is used for inter-
application communication which, depending on the
configuration of Kontact plugins, means interacting with
applications running as external processes with their
own user interface or running embedded into Kontact
in-process. DCOP handles in-process calls in a special
way without using the dcop server process in order to
optimize the efficiency of DCOP calls.

To maximize flexibility most of the interfaces used
for communication between components are not tightly
coupled to the implementation of the component. There
are abstract interfaces for services like ”email client” or
”organizer” which are implemented by specific applica-
tions like KMail or KOrganizer. In principle these ser-
vices could also be implemented by other applications,
so that the user could choose the specific application for
being used in Kontact. This might even be used to in-
tegrate non-KDE applications by adding a small DCOP
wrapper around the specific interfaces of the application
to be integrated.

As components are loaded on demand and stand-alone
applications might not yet have been started when an-
other component requests communication there is a spe-
cial service for starting DCOP services on demand. The
component is then started according to the users config-
uration inside Kontact or as stand-alone process when a
request to the service interface implemented by the com-
ponent is initiated.

One problem that arises with components being op-
tionally able to run stand-alone or embedded into the
Kontact framework application is that the name of the
application registering the DCOP interfaces is different
for these two cases. Thus components inside of Kontact
register twice, once with the name of the container ap-
plication and a second time with the name of the stand-
alone application, so that the interfaces are always avail-
able under the same name.

Unique Applications DCOP is also used for realizing
so-called ”unique applications”. These are applications
which can only be started once per session. This is for
example used to make sure that processing of mail fold-
ers, calendar or address book data always takes place in
a single process in order to avoid problems with concur-
rent access to the same data by different instances of an
application. A unique application has a simple standard
DCOP interface. When a unique application is started it
first looks if a process already has registered this stan-
dard DCOP interface under the name of the application.
If the process already exists it is called to handle the re-
quest to start another instance. This usually means that
an existing main window is activated or that command
line options are processed. If the process doesn’t exist
yet application startup proceeds and registers the DCOP
interface, so that it is visible for subsequent starting of
application instances.

The standard unique application handling isn’t com-
pletely sufficient for the case of Kontact, because an ap-
plication can be run in two ways, as stand-alone appli-
cation where the standard unique application handling
applies and as embedded component where the pro-
cess providing the unique DCOP interface is different

from the stand-alone case. A DCOP watcher class han-
dles this situation by forwarding the unique application
DCOP requests to the correct destination. This makes
sure that for example when calling KOrganizer from the
command line and a KOrganizer component in Kontact
is already running the component in Kontact is activated
instead of running a second instance stand-alone.

Hidden DCOP functions Kontact also makes use of a
special feature of the dcopidl compiler which allows de-
velopers to hide DCOP functions from the standard in-
terface inspection provided by the dcop and kdcop tools.
This makes it possible to hide parts of the DCOP inter-
faces, so that they can be used for inter-component com-
munication, but are not available to tools like dcop and
kdcop which rely on the interface inspection capabilities
of DCOP.

4.3 XMLGUI

The integration of separate applications into a common
main window requires merging of menus and toolbars.
KDE provides an abstract way to define menu and tool-
bar actions using XML descriptions of where the actions
are placed. These descriptions are loaded and processed
at run-time. This allows to change menus and toolbars
to be changed without changing code. It also provides a
way to manipulate menus and toolbars programatically
from outside the code implementing the actions.

This flexibility is a key requirement for embedding ac-
tions from different applications in a single framework.
It allows to menus to change dynamically and toolbars
to reflect the functionality provided by the currently se-
lected component. In addition to that it allows compo-
nents to inject additional actions which can optionally be
available independently of the selected component and
it makes it possible for the framework to remove actions
which would be redundant inside the integrated applica-
tion. Examples are configuration options, ”new” actions
and ”about” dialogs, which are all provided by global
actions of the container.

The menu and toolbar parts of KParts (see section 4.1)
are based on XMLGUI. Figure 3 shows an example of
an XML user interface action description.

One advantage of the XMLGUI mechanism is that
it makes it possible to provide a general configuration
mechanism for the actions to the user. There is a stan-
dard configuration dialog which enables the user to per-
sistently change which actions are shown as toolbar but-
tons.

Another advantage is that a it is possible to change
menus and toolbars of an application by just changing or
providing more specific action descriptions. This can be
used by system administrators to lock down applications
and make parts of the functionality unavailable to users.

<!DOCTYPE kpartgui >
<kpartgui version="15" name="kontact" >

<MenuBar>
<Menu name="file">

<text>&File</text>
<Action name="action_new"/>
<Separator/>
<Action name="file_quit"/>

</Menu>
<Menu name="settings">

<text>&Settings</text>
<Merge append="save_merge"/>
<Action name="settings_configure" />

</Menu>
</MenuBar>
<ToolBar name="mainToolBar">
<text>Main Toolbar</text>
<Action name="action_new"/>
<Merge/>
<Action name="help_whats_this"/>

</ToolBar>
</kpartgui>

Figure 3: Example XML description of user interface
actions

This is used by the KIOSK mode described in section
4.4.3.

4.4 Integrated Configuration
Configuration of Kontact is done by extending the mod-
ular mechanisms used in the desktop-wide KDE control
center to the application level. Configuration dialogs are
composed of modules which are dynamically loaded at
run-time. A generic configuration dialog provides ac-
cess to all modules relevant for the applications embed-
ded into Kontact.

The selection of the components which are present in
Kontact is done by an extension of the metadata associ-
ated with all programs. The generic KDE plugin selec-
tion infrastructure makes use of this data by providing a
backend for accessing activation state of plugins and a
GUI for the user selecting which plugins should be ac-
tive.

General access to the actual configuration options
is performed through the KDE configuration backend
(KConfig XT, see section 4.4.2). It provides an abstract
description of configuration options which is reused in
the GUI, a generated API to the configuration data which
is used to access and share configuration data in a well-
defined way, and other things, like the desktop lockdown
features of the KIOSK mode.

4.4.1 Common Configuration Dialog
The configuration dialog is one example where appli-
cation integration in Kontact is more than just merging
views in a common main window. The configuration di-
alog provides access to all options of the components se-

Figure 4: The Kontact configuration dialog

lected to be embedded into Kontact. It creates a common
hierarchical view of all available configuration pages.
See figure 4 for a screenshot of the integrated config-
uration dialog.

Technically the different pages of the configuration
dialog are implemented as dynamically loaded modules
using the same programming interfaces as the desktop-
wide KDE control center. Each module has an associ-
ated file which contains meta and control information
like the name of the module including translations, the
name of the library to load or the type of control module,
i.e. in which dialog and where in the hierarchy it is to be
shown. This file uses the Desktop Entry Standard [35].
This mechanism allows the construction of the naviga-
tion part of the dialog without actually loading the mod-
ules. The fact that the modules are implemented as in-
dependent modules allows them to be loaded on demand
as they are needed by the user interface, even without
requiring to have the KPart of the associated application
to be loaded in memory.

4.4.2 KConfig XT
For storage of configuration data the standard KDE
configuration backend is used. It stores the data as
grouped key-value pairs in simple files using an INI-
style syntax. The configuration backend supports cas-
cading configuration files, thanks to which users settings
are read and merged from several files, starting from
global system-wide files down to user-specific files in
the users home directory. In general information from
more specific files takes precedence over information
from more global files, but this can be modified in the
KIOSK mode.

KConfig XT (XT stands for ”extended technology”)
is an additional level of abstraction on top of the stan-
dard configuration backend. it is based on an abstract
description of the configuration using XML. See figure

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE kcfg SYSTEM "http://www.kde.org/

standards/kcfg/1.0/kcfg.dtd">
<kcfg>

<kcfgfile name="kontactrc"/>

<group name="View">
<entry type="String" name="ActivePlugin">

<default>kontact_summaryplugin</default>
</entry>

</group>

</kcfg>

Figure 5: Example XML file used by KConfig XT for
describing configuration options

5 for an example file. The description contains infor-
mation on the names and types of configuration entries,
the text used for labeling and explaining the options, de-
fault values and a logical grouping of the entries. It also
contains some control information like where the con-
figuration is stored.

Configuration Code Generator To provide applica-
tions with convenient and type-safe access to the con-
figuration data KConfig XT includes a tool for generat-
ing the C++ code, required to access the data, from the
XML descriptions files: the ”kconfig compiler”. The
generated code provides direct access to the configura-
tion entries by creating individual functions for each en-
try. These can be used within the application code when
access to specific entries is needed. There are various
options to control the generation of the code, so that it
can be adapted to the specific needs of applications. See
figure 6 for an example of generated code.

The generated classes also provide a generic way to
access the configuration entries. This is used for widely
used actions like reading and writing of the configuration
data. The generated class is also used for connecting
configuration dialogs to the backend in a generic way.
There is a special class KConfigDialog which asso-
ciates the widgets of a configuration with configuration
entries based on the names of the entries and the wid-
gets. This makes it very easy to create configuration di-
alogs because all handling of the actual data is done au-
tomatically in the backend and the developer only has to
create an XML description of the configuration options
and a corresponding dialog. If this is done with GUI de-
sign tools like Qt Designer [30] creating configuration
dialogs can be done without having to write more than a
few lines of code.

Tools There are some additional tools under develop-
ment which make use of the generic nature of the KCon-
fig XT framework. One is an application-independent
editor for configuration options which works on the con-

figuration files via KConfig XT. This allows to manipu-
late options which have no representation in the GUI, to
edit remote configuration files or to edit the configura-
tion of multiple applications in one go. The other tool
under development is a graphical editor for the KConfig
XT XML descriptions. This makes it possible to create
and edit configuration without having to know about the
XML format. Together with Qt designer this makes a
powerful suite of tools for easy implementation of the
configuration parts of applications.

Benefits The advantages of the KConfig XT approach
are that there is only a single location where configura-
tion keys and default values are specified, that there is
type-safe access to the data for applications, that details
of reading and writing the configuration, e.g. applying
default values, are automatically handled and that there
is a way to access the configuration in an abstract way,
which is in particular useful for generic tools not tied to a
specific set of configuration data, for example a generic
configuration dialog.

Kontact which, by its nature of application integra-
tion framework, combines a lot of configuration options
greatly benefits from the simplifications which are made
possible by the use of KConfig XT.

4.4.3 KIOSK Mode
To fine-tune the configurability of applications and to
give administrators a tool to control how users configure
their applications KDE provides the so-called KIOSK
mode. This is an extension of the standard configuration
backend which allows to control how configuration op-
tions can be changed. This offers all the tools required
for features like desktop-lockdown.

The key concept of the KIOSK mode are immutable
options. Any entry of a configuration file can be made
immutable by adding a special flag to its key. This means
that the configuration backend won’t write any changes
of this entry anymore. As configuration files are read in
a cascaded way an administrator can add the flag making
an entry immutable in a global configuration file which
the user doesn’t have permissions to write. This way the
option can’t be changed by the user anymore.

4.4.4 Configuration Wizards
With the integration of different applications in a com-
mon framework, as happens in Kontact, the need for
common configuration increases. There are several con-
figuration options which are the same for different appli-
cations, like name and email address of the user, depend
on each other or can be deduced from other options, like
server names, addresses of certain files or services on the
same server.

One example is the configuration for access to a
groupware server where data like addresses of incom-

namespace Kontact {

class Prefs : public KConfigSkeleton
{

public:
static Prefs *self();
˜Prefs();

/**
Set ActivePlugin

*/
static
void setActivePlugin(const QString & v)
{

if (!self()->
isImmutable("ActivePlugin"))

self()->mActivePlugin = v;
}

/**
Get ActivePlugin

*/
static
QString activePlugin()
{

return self()->mActivePlugin;
}

/**
Get Item object corresponding to
ActivePlugin()

*/
ItemString *activePluginItem()
{

return mActivePluginItem;
}

};

}

Figure 6: Code generated from the example XML of fig-
ure 5

ing and outgoing mail server or for accessing contact or
calendar data can be created from knowing which kind
of server is to be used together with address and login
information for a specific server.

Configuring this information in all the different appli-
cations is cumbersome, although the fine-grained config-
uration is needed for tuning the applications to special
needs and to be able to handle different usage scenar-
ios. The classical solution to this problem is to provide
configuration wizards which collect the required infor-
mation for configuration at a centralized location.

Wizard Rules In Kontact this problem is addressed
by a special kind of application-spanning configuration
wizard based on an extension of KConfig XT for propa-
gation of configuration options. The information which
is needed to deduce the detailed configuration for the in-
dividual applications is described by a standard KCon-
fig XT XML file and the corresponding GUI is created

on top of this. For propagation of the information to
the configuration of the individual applications a set of
rules is added to the KConfig XT XML file. These rules
can specify simple copying of data to other configuration
files or more complex conditional propagation based on
other data, e.g. based on the information if a special fea-
ture is enabled or not. it is also possible to define custom
rules which are accompanied by C++ code. This gives
the flexibility to also handle very complex cases.

Wizard User Interface The wizard dialog reads and
interprets the data and rules from the description files,
integrates the GUI for setting the options and applies the
data put in by the user according to the defined rules
to the configuration of the involved applications. This
mechanism makes it very easy to set up configuration
wizards as the application developer can use the generic
mechanisms and only needs to write code for handling
of special cases. It has the additional advantage that it
creates a formal specification of how the configuration
is affected by the wizard which can for example be ex-
ploited in the GUI to indicate how the different config-
uration options depend on each other without requiring
any special handling by the application developer.

Kontact provides wizards for configuring access for
groupware servers like Kolab [31] or eGroupware [32].
It would also be possible to use the wizard infrastructure
for setting up user profiles or to make it possible to apply
policies to the configuration. It might also be useful for
storing and reapplying certain configurations of individ-
ual users, e.g. when moving between different systems.

4.5 KResources Framework
The way an application like Kontact accesses its data
shows some common patterns for different data types.
For example calendar data and address book data are ac-
cessed in a similar way. It can be stored local or remote,
it can be stored in text files of different formats or in
databases-like systems, there can be different sources of
the same kind of data, which need different configura-
tion, data can be read-write or read-only, etc.

To address these problems in a common and consis-
tent way and to avoid duplication of code and effort Kon-
tact makes use of the so-called KResources framework
which provides an abstract interface for management of
data resources. This framework specifies an API for data
resources and the user interface to configure these re-
sources. The resource API includes functions for sav-
ing and restoring configuration, for opening and clos-
ing of resources, for loading and saving data, for nam-
ing resources and for handling write permissions. The
framework also provides a management class for han-
dling creation, modification, configuration and persis-
tance of KResources objects and a common configura-
tion module which operates on the abstract API of the

resources and so provides a user interface for manage-
ment of all different resource objects at a central place.
Usually there is only one set of resources per data type
which represents for example a central calendar or ad-
dress book for a user shared by different applications or
Kontact components.

Resource Families Deriving from the abstract inter-
face there is a set of classes defining resources for a cer-
tain type of data. They are called families in the KRe-
sources framework. Currently there are families for ex-
ample for calendars and address books.

For the different families there are various implemen-
tations of concrete resources, e.g. file based calendars
using the iCalendar format, address books accessed via
LDAP or resources accessing calendar and address book
data on a Kolab server. There are also a bit more exotic
resources like one that provides entries of a Bugzilla [33]
based bug-tracking system as todo list in KOrganizer.

All KResources are implemented as plugins and
loaded at run-time, so that memory consumption of Kon-
tact isn’t affected by unused resources and dependen-
cies on special external libraries are isolated in the plu-
gins without adding to the dependencies of the Kontact
framework application or other components.

Change Notification The KResources framework also
includes a mechanism to notify different instances ac-
cessing the same set of resources about changes in the
resource configuration. All resource management ob-
jects running in the same desktop session communicate
with each other for this purpose, either in-process or be-
tween different processes by using DCOP. So if a new
calendar file is added to the user’s calendar in the central
resource management configuration module it automati-
cally appears in the calendar view of Kontact, regardless
of whether the calendar runs embedded in Kontact or as
stand-alone application.

5 Open Standards
One important aspect of interoperability between appli-
cations are open standards for file formats, network pro-
tocols and other ways of interaction or data exchange.
This is important for interoperation of components in-
side of Kontact as well as in a wider context of inter-
operation with all kind of applications and servers from
different provenience. The fact that the standards used
are open is of particular importance for Free Software
projects like Kontact to ensure that specifications and
other information is available to all developers and the
resulting code is free for distribution under Free Soft-
ware licenses.

Kontact makes use of a wide variety of open stan-
dards. It implements many of the mail-related RFCs,
including POP [18], IMAP [19] and SMTP [20]. The

address book component uses vCard [21][22] as storage
and exchanges format, and provides support for LDAP
[23] as an access protocol. Calendaring is based on
iCalendar [24] and the associated group scheduling stan-
dards iMIP [26] and iTIP [25].

6 Kontact as Project

In addition to the technical aspects of Kontact it is also
interesting how Kontact evolved as a project and how de-
velopment works in terms of social, organizational and
political aspects.

6.1 History

The history of Kontact is much longer than the history
of the current project known under the name Kontact. It
evolved along with the technologies it uses and together
with the community around the components it integrates.

KMail and KOrganizer were part of KDE almost from
the beginning, as separate applications. When develop-
ment for KDE 2 began the kdepim module was intro-
duced. This started as playground for a reimplementa-
tion of the KDE address book which then became the
KAddressBook of today and for an experimental new
mail client called ”Empath”. KOrganizer moved into the
kdepim module shortly before KDE 2.0 which was re-
leased in October 2000.

The first implementation of a KParts-based frame-
work that aimed at integrating various existing compo-
nents of personal information management software ap-
peared in the KDE CVS on March 22th 2000. It inte-
grated Empath and KOrganizer but never got to a state
where it really did something useful.

In April 2002 the initial version of the Kontact frame-
work was imported under the name Kaplan into the KDE
CVS. It was the result of a weekend-hack inspired by the
very modular plugin structure of what now is KDevelop
3 [36], which was at that time a brand-new rewrite of
KDevelop 2. It integrated KOrganizer and KAddress-
Book. Shortly after that KMail was also integrated, and
the resulting combination was released as Kontact for
the first time as a stable preview release.

At the beginning of 2003 after a meeting of many of
the core kdepim developers in Osnabrueck, Germany,
KMail was moved into the kdepim CVS module, now
combining all major components of Kontact in one mod-
ule. KDE 3.2, in the beginning of 2004, was the first
KDE release which included Kontact. This was version
0.8 and already provided a full set of features, mainly
due to the long history of its components.

Since then kdepim is working towards the next re-
lease which will be Kontact 1.0. One interesting aspect
is that the development communities of the different ap-
plications Kontact integrates also got integrated and now

form a robust and powerful team which, just as Kontact
itself, is more than the sum of its parts.

6.2 The Inner Workings of the Kontact
Team

Kontact is a classical Free Software project. It has con-
tributors all over the world with different backgrounds
and interests but with the common goal to work on Kon-
tact and make it a good application.

Communication and coordination between developers
is one crucial point of the project. Many different tools
are used for this purpose, e.g. CVS, Bugzilla, IRC, mail-
ing list, web pages, Wikis and more. The central place
for communication is the kde-pim mailing list which has
around 400 subscribers. More informal discussions as
well as communication among developers working to-
gether for example during bug fixing sessions happen
on IRC. Because contributors are distributed over many
different time zones there is activity in the Kontact IRC
channel almost 24 hours a day.

Personal meetings have become increasingly impor-
tant and shown to be essential for efficient discussion
of technical questions or common work on code as well
as for fostering the relationships between the developers
and increasing motivation and community feeling. Usu-
ally developers meet on trade shows or on the regular
yearly KDE-wide meetings, but in the past year and a
half dedicated meetings of the group of kdepim devel-
opers have also been established.

6.3 Commercial Improvement System

Most contributors of Kontact do their work in their free
time without getting paid for it. This inevitably leads to
conflicts with other engagements, be it the job, studying,
or social activities. Getting paid for working on Kon-
tact might alleviate these conflicts. In addition to that
there are often people who would like to contribute to
Free Software projects by spending some money. This
is often difficult, because there is no infrastructure for
receiving and distributing money.

For Kontact there is an attempt to provide a solution
for this problem by offering a commercial improvement
system [34]. This could be seen as continuation of the
voting system of Bugzilla [33]. The concept is that peo-
ple willing to spend some money for implementation of
certain features in Kontact pledge an amount of money
on the specific feature they would like to see imple-
mented. Developers prioritize their work oriented at the
accumulated amount of money per feature and work on
the features with the highest amount. Once the feature
is completed and the people pledging the money are sat-
isfied with the result, they actually transfer the money to
the developers having implemented the feature.

Figure 7: Kontact screenshot showing the active calendar component

7 Availability
Kontact is Free Software. Its library and interface parts
are available under the GNU Library General Public Li-
cense (LGPL) [28], the application itself is available un-
der the GNU General Public License (GPL) [27].

A first stable source code release of Kontact was done
in March 2003 [16]. The latest stable version was re-
leased as part of KDE 3.2 in February 2004. It can be
downloaded from the KDE FTP server [17]. The next
stable release (Kontact 1.0) is planned for mid of 2004.
This will be the first separate release of the kdepim mod-
ule independent of the other KDE modules. It will be
based on the KDE 3.2 libraries.

8 Conclusion
Kontact introduces a new level of desktop application in-
tegration based on the technologies of the KDE frame-
work. It provides mail, organizer, contact and other
components to deliver a solution for personal informa-
tion management and groupware. Its first full-featured
stable release is available since the beginning of 2004.

In addition to the integration on a technical level Kon-
tact has also integrated the development communities
forming a stronger and more productive community on a
higher level. This nicely demonstrates the power of Free

Software development.

9 About The Authors
This paper was written by Cornelius Schumacher. He
is a long-term kdepim contributor, one of the founders
of Kontact and maintainer of several KDE applications
and libraries, one of them being KOrganizer. He acts as
release coordinator for the Kontact 1.0 release.

The other founding authors of Kontact are Daniel
Molkentin, maintainer of the Kontact framework appli-
cation, and Don Sanders, one of the founders of kdepim
and co-maintainer of KMail. The original framework
code was written by Matthias Hoelzer-Kluepfel.

David Faure, Tobias Koenig, maintainer of KAddress-
Book and Ingo Kloecker, maintainer of KMail, have
done important contributions to Kontact and in partic-
ular to the Kontact application integration framework.

But the most important contributors to Kontact are the
developers, translators, documentation writers and other
contributors of the applications embedded into the Kon-
tact framework. Thanks to all of them.

References
[1] Kontact Homepage, http://www.kontact.

org

[2] KDE Homepage, http://www.kde.org

[3] GNOME Homepage, http://www.gnome.
org

[4] freedesktop.org, http://www.
freedesktop.org

[5] David Sweet et. al., KDE 2.0 Development, SAMS
(2000), http://www.andamooka.org/
kde20devel.

[6] David Faure, Coding with KParts, http:
//www-106.ibm.com/developerworks/
library/l-kparts/

[7] KParts API Documentation http://api.kde.
org/3.2-api/kparts/html/

[8] Distributed Component Object Model (DCOM),
http://www.microsoft.com/com/
tech/DCOM.asp

[9] Common Object Request Broker Architec-
ture (CORBA), http://www.omg.org/
gettingstarted/corbafaq.htm

[10] Universal Network Objects (UNO), http://
udk.openoffice.org/

[11] Bonobo document model, http:
//developer.gnome.org/arch/
component/bonobo.html

[12] Inter-Client Exchange (ICE) Protocol, http://
www.xfree86.org/current/ice.html

[13] D-BUS, http://freedesktop.org/
Software/dbus

[14] Konqueror Homepage, http://www.
konqueror.org

[15] KOffice Homepage, http://www.koffice.
org

[16] Kontact 0.2.1, http://kontact.org/
download

[17] KDE FTP Server, http://ftp.kde.org

[18] Post Office Protocol (POP), RFC 1939, http://
www.faqs.org/rfcs/rfc1939.html

[19] Internet Message Access Protocol (IMAP),
RFC 2060, http://www.faqs.org/rfcs/
rfc2060.html

[20] Simple Mail Transfer Protocol (SMTP), RFC 821,
http://www.faqs.org/rfcs/rfc821.
html

[21] vCard 2.1 Specification, http://www.imc.
org/pdi/vcard-21.txt

[22] vCard 3.0 Specification, RFC 2425, http://
www.imc.org/rfc2425, RFC 2426, http:
//www.imc.org/rfc2426

[23] Lightweight Directory Access Protocol (LDAP),
RFC 3377, http://www.faqs.org/rfcs/
rfc3377.html

[24] Internet Calendaring and Scheduling Core Object
Specification (iCalendar), RFC 2445, http://
www.imc.org/rfc2445

[25] iCalendar Transport-Independent Interoperability
Protocol (iTIP), RFC 2446, http://www.imc.
org/rfc2446

[26] iCalendar Message-based Interoperability Protocol
(iMIP), RFC 2447, http://www.imc.org/
rfc2447

[27] GNU General Public Licence, http://www.
gnu.org/copyleft/gpl.html

[28] GNU Library General Public Licence, http://
www.gnu.org/copyleft/lgpl.html

[29] Qt Toolkit, http://www.trolltech.com

[30] Qt Designer, http://www.trolltech.com

[31] Kolab, http://www.kolab.org

[32] eGroupware, http://www.egroupware.
org

[33] Bugzilla, http://www.bugzilla.org

[34] KDE Kontact Commercial Improvement System,
http://www.kontact.org/shopping

[35] Desktop Entry Standard, http://www.
freedesktop.org/Standards/
desktop-entry-spec

[36] KDevelop, http://www.kdevelop.org

