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Abstract

In this paper we summarise four recent optimisations
to the FFS implementation in FreeBSD:soft updates,
dirpref, vmiodiranddirhash. We then give a detailed ex-
position of dirhash’s implementation. Finally we study
these optimisations under a variety of benchmarks and
look at their interactions. Under micro-benchmarks,
combinations of these optimisations can offer improve-
ments of over two orders of magnitude. Even real-world
workloads see improvements by a factor of 2–10.

1 Introduction

Over the last few years a number of interesting
filesystem optimisations have become available under
FreeBSD. In this paper we have three goals. First, in
Section 2, we give a summary of these optimisations.
Then, in Section 3, we explain in detail thedirhashopti-
misation, as implemented by one of the authors. Finally
we present the results of benchmarking various common
tasks with combinations of these optimisations.

The optimisations which we will discuss aresoft up-
dates, dirpref, vmiodir and dirhash. All of these op-
timisations deal with filesystem metadata.Soft up-
datesalleviate the need to make metadata changes syn-
chronously; dirpref improves the layout of directory
metadata;vmiodir improves the caching of directory
metadata; anddirhashmakes the searching of directo-
ries more efficient.

2 Summaries

For each optimisation we will describe the performance
issue addressed by the optimisation, how it is addressed
and the tradeoffs involved with the optimisation.

2.1 Soft Updates

Soft updates is one solution to the problem of keeping
on-disk filesystem metadata recoverably consistent. Tra-
ditionally, this has been achieved by using synchronous
writes to order metadata updates. However, the perfor-
mance penalty of synchronous writes is high. Various
schemes, such as journaling or the use of NVRAM, have
been devised to avoid them [14].

Soft updates, proposed by Ganger and Patt [4], allows
the reordering and coalescing of writes while maintain-
ing consistency. Consequently, some operations which
have traditionally been durable on system call return are
no longer so. However, any applications requiring syn-
chronous updates can still use fsync(2) to force specific
changes to be fully committed to disk. The implementa-
tion of soft updates is relatively complicated, involving
tracking of dependencies and the roll forward/back of
transactions. Thus soft updates trades traditional write
ordering, memory usage and code complexity for signif-
icantly faster metadata changes.

McKusick’s production-quality implementation [8] has
been found to be a huge win in real-world situations.
A few issues with this implementation persist, such as
failure to maintain NFS semantics. Long standing is-
sues, such as disks appearing full because of outstanding
transactions have recently been resolved.

In FreeBSD 5.0-current, soft updates has been combined
with snapshots to remove the need for a fullfsck at
startup [7]. Instead, the filesystem can be safely preened
while in use.

2.2 Dirpref

Dirpref is a modification to the directory layout code in
FFS by Orlov [10]. It is named after theffs dirpref
function, which expresses a preference for which inode
should be used for a new directory.



The original policy implemented by this function was to
select from among those cylinder groups with above the
average number of free inodes, the one with the smallest
number of directories. This results in directories being
distributed widely throughout a filesystem.

The new dirpref policy favours placing directories close
to their parent. This increases locality of reference,
which reduces disk seek times. The improved caching
decreases the typical number of input and output opera-
tions for directory traversal. The obvious risk associated
with dirpref is that one section of the disk may become
full of directories, leaving insufficient space for associ-
ated files. Heuristics are included within the new policy
to make this unlikely. The parameters of the heuristic
are exposed viatunefs so that they may be adjusted
for specific situations.

2.3 Vmiodir

Vmiodir is an option that changes the way in which di-
rectories are cached by FreeBSD. To avoid waste, small
directories were traditionally stored in memory allo-
cated withmalloc . Larger directories were cached by
putting pages of kernel memory into the buffer cache.
Malloced memory and kernel pages are relatively scarce
resources so their use must be restricted.

Some unusual access patterns, such as the repeated
traversal of a large directory tree, have a working set that
consists almost exclusively of directories. Vmiodir en-
ables direct use of the virtual memory system for direc-
tories, permitting maximal caching of such working sets,
because cached pages from regular files can be flushed
out to make way for directories.

Here the trade-off is that while some memory is wasted
because 512-byte directories take up a full physical
page, the VM-backed memory is better managed and
more of it is usually available. Once a modest amount
of memory is present in the system, this results in bet-
ter caching of directories. Initially added to FreeBSD in
June 1999 by Dillon, vmiodir was disabled by default
until real-world use confirmed that it was usually at least
as good as the more frugal scheme.

2.4 Dirhash

A well-known performance glitch in FFS is encountered
when directories containing a very large number of en-

tries are used. FFS uses a linear search through the di-
rectory to locate entries by name and to find free space
for new entries. The time consumed by full-directory
operations, such as populating a directory with files, can
become quadratic in the size of the directory.

The design of filesystems since FFS has often taken ac-
count of the possibility of large directories, by using B-
Trees or similar structures for the on-disk directory im-
ages (e.g., XFS [16], JFS [1] and ReiserFS [13]).

Dirhash retrofits a directory indexing system to FFS.
To avoid repeated linear searches of large directories,
dirhash builds a hash table of directory entries on the
fly. This can save significant amounts of CPU time for
subsequent lookups. In contrast to filesystems originally
designed with large directories in mind, these indices are
not saved on disk and so the system is backwards com-
patible.

The cost of dirhash is the effort of building the hash table
on the first access to the directory and the space required
to hold that table in memory. If the directory is accessed
frequently then this cost will be reclaimed by the saving
on the subsequent lookups.

A system for indexing directories in Linux’s Ext2
filesystem has also recently been developed by Phillips
[11]. This system saves the index on disk in a way that
provides a good degree of backwards compatibility.

3 Inside Dirhash

Dirhash was implemented by Ian Dowse in 2001 in
response to discussions on thefreebsd-hackers
mailing list. Dirhash builds a summary of the directory
on its first access and then maintains that summary as
the directory is changed. Directory lookup is optimised
using a hash table and the creation of new directory en-
tries is optimised by maintaining an array of free-space
summary information.

Directories are hashed only if they are over a certain
size. By default this size is 2.5KB, a figure which should
avoid wasting memory on smaller directories where per-
formance is not a problem. Hashing a directory con-
sumes an amount of memory proportional to its size. So,
another important parameter for dirhash is the amount of
memory it is allowed to use. Currently it works with a
fixed-size pool of memory (by default 2MB).
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Figure 1: Directory Caching in FreeBSD. The major
caches affecting directory lookups are shown on the left
and the corresponding call stack is shown on the right.

Both these parameters of dirhash are exposed by sysctl,
in addition to another option that enables extra sanity
checking of dirhash’s summary information.

3.1 Existing Directory Caching in FreeBSD

The translation of filenames to vnodes is illustrated in
Figure 1. An important part of this process is the name
cache, implemented invfs cache.c . Here a global
hash table is used to cache the translation of<directory
vnode, path component> pairs to vnodes.

A cache entry is added when a component is first looked
up. Cache entries are made for both successful and failed
lookups. Subsequent lookups then avoid filesystem-
level directory searches, unless access to the underlying
directory is required.

Name cache entries persist until the associated vnodes
are reclaimed. Cache entries for failed lookups are lim-
ited to a fixed proportion of the total cache size (by de-
fault 1/16). Some operations result in the entries relating
to a particular vnode or a particular filesystem being ex-
plicitly purged.

The name cache can help in the case of repeated ac-
cesses to existing files (e.g., Web serving) or accesses
to the same non-existent file (e.g., Apache looking for
.htaccess files). The name cache cannot help when
the filename has not been previously looked up (e.g.,
random file accesses) or when the underlying directory
must be changed (e.g., renaming and removing files).

3.2 Dirhash Based Name Lookups

Like the name cache, dirhash also maintains a hash ta-
ble for mapping component names to offsets within the
directory. This hash table differs from the global name
cache in several ways:

• The tables are per directory.

• The table is populated on creation by doing a pass
over the directory, rather than populated as lookups
occur.

• The table is a complete cache of all the directory’s
entries and can always give a definitive yes or no
answer whereas the name cache contains only the
positive and negative entries added by lookups.

• Dirhash stores just the offset of directory entries
within its table. This is sufficient to read the appro-
priate directory block from the buffer cache, which
contains all the information needed to complete
the lookup. In contrast, the VFS name cache is a
filesystem-independent heavyweight cache storing
the component name and references to both direc-
tory and target vnodes within its hash table.

Since dirhash only needs to store an offset, it uses an
open-storage hash table rather than using linked lists (as
the name cache does). Use of linked lists would increase
the table size by a factor of two or three. Hash colli-
sions within the table are resolved using linear-probing.
This has the advantage of being simple and, unlike some
other open storage schemes, some deleted entries can be
reclaimed without the need to rebuild the table. Specifi-
cally, deleted entries may be marked as empty when they
lie at the end of a chain.

Due to the initial population of the dirhash table, filling
the name cache with a working set ofm files from a di-
rectory of sizen should costn + m rather thannm for
random accesses without dirhash. If a working set of
files is established in the name cache, then the dirhash
hash table will no longer be accessed. The case of se-
quential directory access was traditionally optimised in
the FFS code and would have given a cost ofm. A se-
quential lookup optimisation is also present in dirhash;
after each successful lookup, the offset of the following
entry is stored. If the next lookup matches this stored
value then the sequential optimisation is enabled. While
the optimisation is enabled, dirhash first scans through
the hash chain looking for the offset stored by the previ-
ous lookup. If the offset is found, then dirhash consults
that offset before any other.
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Figure 2: File Creation: Cost per Creation
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Figure 3: File Removal: Cost per Removal
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Figure 4: Sequential stat(2) of Files: Cost per stat(2)

A comparison between cost per operation of the tradi-
tional linear scheme and dirhash for file creation and re-
moval is shown in Figures 2 and 3 respectively. The
costs for large directories are shown on the left and those
for small directories are on the right. All these tests were
performed with our benchmarking hardware described
in Section 4.2. For creation with the linear scheme, we

can see the cost of creations increasing as the directory
size increases. For dirhash the cost remains constant
at about50µs. Files were removed in sequential order,
so we expect the cost to be roughly constant for both
schemes. This is approximately what we see (dirhash
around35µs, linear around45µs), though the results are
quite noisy (perhaps due to delayed operations).
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Figure 5: Random stat(2) of Files: Cost per stat(2)
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Figure 6: stat(2) of Nonexistent Files: Cost per stat(2)

The cost ofstat operations, both with and without
dirhash, are shown in Figure 4 for sequentially ordered
files, in Figure 5 for randomly ordered files and Figure 6
for nonexistent files. Where the name cache has a sig-
nificant impact on the results, we show figures for both
a purged cache and a warm cache. Sequential operation
here shows a cost of about5µs if the result is in the name
cache,7µs for dirhash and9µs for the linear search. For
random ordering, results are similar for the name cache
and dirhash. Here the linear search shows the expected
linear growth rate. Both these graphs show an interest-
ing jump at about 4000 files, which is explained below.
Operating on nonexistent files incurs similar costs to op-
erating on files in a random order. As no lookups are
repeated, the name cache has no effect.

As mentioned, only directories over 2.5KB are usually
indexed by dirhash. For the purposes of our tests, direc-
tories of any size were considered by dirhash, allowing
us to assess this cut-off point. It seems to have been
a relatively good choice, as dirhash look cheaper in all
cases at 2KB and above. However, in practice, directo-
ries will be more sparsely populated than in these tests as

file creation and removal will be interleaved, so 2.5KB
or slightly higher seems like a reasonable cut-off point.

The elbow in Figure 2 and the jump in Figures 4 and 5 at
around 4000 vnodes is caused by an interaction between
the test used, the way vnodes are recycled and the name
cache:

1. For this test,stat is called on the files. Files are
not held open nor read, meaning that no reference
is held on the vnode in the kernel.

2. Consequently the vnodes end up on a ready-to-
reuse list, but otherwise remain valid. Once there
are kern.minvnodes vnodes allocated in the
system, vnodes on the ready-to-reuse list are used
in preference to allocating new vnodes. At this
stage the vnode is recycled and its old contents be-
comes invalid.

3. The invalidation of vnodes purges the name cache
of entries referring to those vnodes.
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exactly that much free space. The final entry of
dh firstfree is the first block with enough space to
create an entry of any size.

The default value ofkern.minvnodes on the test
system is 4458. Altering this value causes the jump in
the graph to move accordingly. In the usual situation
where files are open and data is in the buffer cache, vn-
ode reuse begins much later.

3.3 Locating Free Space with Dirhash

Dirhash also maintains two arrays of free-space sum-
mary information (see Figure 7 for an example). The
first array,dh blkfree , maps directory block numbers
to the amount of free space in that block. As directory
blocks are always 512 bytes and the length of entries is
always a multiple of 4 bytes, only a single byte per block
is required.

The second array,dh firstfree , maps an amount of
free space to the first block with exactly that much free
space, or to−1 if there is no such block. The largest
legal FFS directory entry has a size of 264 bytes. This
limits the useful length of thedh firstfree array be-
cause there is never a need to locate a larger slot. Hence,
the array is truncated at this size and the last element
refers to a block with at least enough space to create the
largest directory entry.

As entries are allocated and freed within a block, the first
array can be recalculated without rescanning the whole
block. The second array can then be quickly updated
based on changes to the first.

Without dirhash, when a new entry is created, a full
sweep of the directory ensures that the entry does not
already exist. As this sweep proceeds, a search for suit-
able free space is performed. In order of preference, the
new entry is created in:

• the first block with enough contiguous free space;

• the first block with enough free space but requires
compaction;

• a new block.

When dirhash is used, the full sweep is no longer
necessary to determine if the entry exists and the
dh firstfree array is consulted to find free space.
The new entry is created in the first block listed in this
array that contains enough free space.

These two policies are quite different, the former pre-
ferring to avoid compaction and the latter preferring to
keep blocks as full as possible. Both aim to place new
entries toward the start of the directory. This change of
policy does not seem to have had any adverse effects.

3.4 Memory Use, Rehashing and Hash Dis-
posal

Dirhash uses memory for the dirhash structure, the hash
table and the free-space summary information. The
dirhash structure uses 3 pointers, 9 ints, 1doff t and
an array of 66 ints fordh firstfree , about 320 bytes
in total.

The hash table is initially sized at 150% of the maximum
number of entries that the directory could contain (about
1 byte for every 2 bytes of the directory’s size). The table
used is actually two-level, so an additional pointer must
be stored for every 256 entries in the table, or one pointer
for every 2KB on the disk. Thedh blkfree array is
sized at 150% of the blocks used on the disk, about 1
byte for every 340 on disk. This gives a total memory
consumption of266 bytes+0.505dirsize on a machine
with 32-bit pointers or278 bytes+ 0.507dirsize on a
64-bit platform.

The dirhash information is just a cache, so it is safe to
discard it at any time and it will be rebuilt, if necessary,



on the next access. In addition to being released when
the directory’s vnode is freed, the hash is freed in the
following circumstances:

• Adding an entry would make the table more than
75% full. Due to the linear probing algorithm,
some hash table slots for deleted entries may not
be reclaimed and marked empty. These are also
counted as “used” slots.

• The directory grows too large for the number of en-
tries in thedh blkfree array.

• The directory shrinks so that thedh blkfree ar-
ray is less than one eighth used. This corresponds
to the directory being truncated to about 20% of its
size at the time the hash was built.

• The hash is marked for recycling.

Hashes may be marked for recycling when dirhash wants
to hash another directory, but has reached its upper mem-
ory limit. If dirhash decided to recycle other hashes, then
the hash table and thedh blkfree array are released,
but the dirhash structure remains allocated until the next
access to the corresponding directory. This simplifies
the interaction between the locking of the vnode and the
locking of the dirhash structure.

To avoid thrashing when the working set is larger than
the amount of memory available to dirhash, a score sys-
tem is used which achieves a hybrid of least-recently-
used (LRU) and least-frequently-used (LFU). This is in-
tended to limit the rate of hash builds when the working
set is large.

3.5 Implementation Details and Issues

The implementation of dirhash is relatively straightfor-
ward, requiring about 100 lines of header and 1000 lines
of C. The actual integration of the dirhash code was un-
obtrusive and required only small additions to the sur-
rounding FFS code at points where lookups occurred
and where directories were modified. This means it
should be easy for other systems using FFS to import
and use the code.

The hash used is the FNV hash [9], which is already
used within the FreeBSD kernel by the VFS cache and
in the NFS code. The hash table is maintained as a two-
level structure to avoid the kernel memory fragmenta-
tion that could occur if large contiguous regions were

allocated. The first level is an array of pointers allocated
with malloc . These point to fixed-size blocks of 256
offsets, which are currently allocated with the zone allo-
cator.

Some of the issues that emerged since the initial integra-
tion of dirhash include:

Expanded size of in-core inode:In FreeBSD-4, the
addition of the dirhash pointer to the in-core inode
structure resulted in the effective size of an in-core
inode going from 256 bytes to 512 bytes. This ex-
acerbated an existing problem of machines running
out of memory for inodes. Some of the fields in the
inode structure were rearranged to bring the size
back down to 256 bytes.

Unexpected directory states:Dirhash’s sanity check-
ing code was too strict in certain unusual cases.
In particular,fsck creates mid-block directory en-
tries with inode number zero; under normal filesys-
tem operation this will not occur. Also, dirhash has
to be careful not to operate on deleted directories,
asufs lookup can be called on a directory after
it has been removed.

Bug in sequential optimisation: The sequential opti-
misation in dirhash was not functioning correctly
until mid-November 2001, due to a typo which ef-
fectively disabled it. Once correctly enabled, se-
quential lookups seem a little faster (5%) rather
than a little slower (1–2%) when compared to se-
quential non-dirhash lookups. This is probably a
combination of two factors. First the non-dirhash
code remembers the last block in which there was a
successful lookup, but dirhash remembers the exact
offset of the entry. Thus the non-dirhash code must
search from the beginning of the block. Second, if
the entry was at the end of a block, then the tradi-
tional optimisation may result in two blocks being
fetched from the buffer cache, rather than one.

dh firstfree bug: The last entry of the
dh firstfree array was not always updated
correctly, unless there was a block with exactly
enough space for the largest directory entry. This
resulted in unnecessarily sparse directories.

More aggressive cleaning of deleted entries:If the
deletion of a hash entry resulted in a chain ending
with an empty slot, then dirhash can mark all the
slots at the end of the chain as empty. Originally it
was only marking the slots after the deleted entry
as empty.



Improved hash function: Originally, the final stage of
the hash function was toxor the last byte of the
filename into the hash. Consequently, filenames
differing only in the last byte end up closer together
in the hash table. To optimise this common case,
the address of the dirhash structure is hashed after
the filename. This results in slightly shorter hash
chains and also provides some protection against
hash collision attacks.

The last three issues were uncovered during the writing
of this paper (the version of dirhash used for the bench-
marks predates the resolution of these issues).

On investigation, several dirhash bug reports have turned
out to be faulty hardware. Since dirhash is a redundant
store of information it may prove to be an unwitting de-
tector of memory or disk corruption.

It may be possible to improve dirhash by storing hashes
in the buffer cache and allowing the VM system to reg-
ulate the amount of memory which can be used. Al-
ternatively, the slab allocator introduced for FreeBSD-5
may provide a way for dirhash to receive feedback
about memory demands and adjust its usage accordingly.
These options are currently under investigation.

Traditionally, directories were only considered for trun-
cation after a create operation, because the full sweep re-
quired for creations was a convenient opportunity to de-
termine the offset of the last useful block. Using dirhash
it would be possible to truncate directories when delete
operations take place, instead of waiting for the next cre-
ate operation. This has not yet been implemented.

3.6 Comparisons with Other Schemes

The most common directory indexing technique de-
ployed today is probably the use of on-disk tree struc-
tures. This technique is used in XFS [16] and JFS [1]
to support large directories; it is used to store all data in
ReiserFS [13]. In these schemes, the index is maintained
on-disk and so they avoid the cost of building the index
on first access. The primary downsides to these schemes
are code complexity and the need to accommodate the
trees within the on-disk format.

Phillips’s HTree system [11] for Ext2/3 is a variant of
these schemes designed to avoid both downsides. HTree
uses a fixed-depth tree and hashes keys before use to
achieve a more even spread of key values.

The on-disk format remains compatible with older ver-
sions of Ext2 by hiding the tree within directory blocks
that are marked as containing no entries. The disk for-
mat is constructed cleverly so that likely changes made
by an old kernel will be quickly detected and consistency
checking is used to catch other corruption.

Again, HTree’s index is persistent, avoiding the cost of
dirhash’s index building. However, the placing of data
within directory blocks marked as empty is something
which should not be done lightly as it may reduce ro-
bustness against directory corruption and cause prob-
lems with legacy filesystem tools.

Persistent indexes have the disadvantage that once you
commit to one, you cannot change its format. Dirhash
does not have this restriction, which has allowed the
changing of the hash function without introducing any
incompatibility. HTree allows for the use of different
hashes by including a version number. The kernel can
fall back to a linear search if it does not support the hash
version.

Another obstacle to the implementation of a tree-based
indexing scheme under FFS is the issue of splitting a
node of the tree while preserving consistency of the
filesystem. When a node becomes too full to fit into a
single block it is split across several blocks. Once these
blocks are written to the disk, they must be atomically
swapped with the original block. As a consequence,
the original block may not be reused as one of the split
blocks. This could introduce complex interactions with
traditional write ordering and soft updates.

A directory hashing scheme that has been used by
NetApp Filers is described by Rakitzis and Watson,
[12]. Here the directory is divided into a number of
fixed length chunks (2048 entries) and separate fixed-
size hash tables are used for each chunk (4096 slots).
Each slot is a single byte indicating which 1/256th of
the chunk the entry resides in. This significantly reduces
the number of comparisons needed to do a lookup.

Of the schemes considered here, this scheme is the most
similar to dirhash, both in design requirements (faster
lookups without changing on-disk format) and imple-
mentation (it just uses open storage hash tables to imple-
ment a complete name cache). In the scheme described
by Rakitzis and Watson the use of fixed-size hash tables,
which are at most 50% full, reduces the number of com-
parisons by a factor of 256 for large directories. This
is a fixed speed-up by a factorN = 256. As pointed
out by Knuth [6], one attraction of hash tables is that as
the number of entries goes to infinity the search time for



hash table stays bounded. This is not the case for tree
based schemes. In principal dirhash is capable of these
larger speed-ups, but the decision of Rakitzis and Wat-
son to work with fixed-size hash tables avoids having to
rebuild the entire hash in one operation.

4 Testimonial and Benchmark Results

We now present testimonial and benchmark results for
these optimisations, demonstrating the sort of perfor-
mance improvements that can be gained. We will also
look at the interaction between the optimisations.

First, our testimonials: extracting the X11 distribution
and maintaining a large MH mailbox. These are com-
mon real-world tasks, but since these were the sort of
operations that the authors had in mind when designing
dirpref and dirhash, we should expect clear benefits.

We follow with the results of some well-known bench-
marks: Bonnie++ [2], an Andrew-like benchmark,
NetApp’s Postmark [5], and a variant of NetApp’s Net-
news benchmark [15]. The final benchmark is the run-
ning of a real-world workload, that of building the
FreeBSD source tree.

4.1 The Benchmarks

The tar benchmark consisted of extracting the
X410src-1.tgz file from the XFree [17] distribution,
running find -print on the resulting directory tree
and then removing the directory tree.

The folder benchmark is based on an MH inbox which
has been in continuous use for the last 12 years. It in-
volves creating 33164 files with numeric names in the
order in which they were found to exist in this mailbox.
Then the MH commandfolder -pack is run, which
renames the files with names 1–33164, keeping the orig-
inal numerical order. Finally the directory is removed.

Bonnie++ [2] is an extension of the Bonnie benchmark.
The original Bonnie benchmark reported on file read,
write and seek performance. Bonnie++ extends this by
reporting on file creation, lookup and deletion. It bench-
marks both sequential and random access patterns. We
used version 1.01-d of Bonnie++.

The Andrew filesystem benchmark involves 5 phases:

creating directories, copying a source tree into these
directories, recursivestat(2) of the tree (find -
exec ls -l and du -s ), reading every file (using
grep and wc), and finally compilation of the source
tree. Unfortunately, the original Andrew benchmark is
too small to give useful results on most modern systems,
and so scaled up versions are often used. We used a ver-
sion which operates on 100 copies of the tree. We also
time the removal of the tree at the end of the run.

Postmark is a benchmark designed to simulate typical
activity on a large electronic mail server. Initially a pool
of text files is created, then a large number oftransac-
tions are performed and finally the remaining files are
removed. A transaction can either be a file create, delete,
read or append operation. The initial number of files and
the number of transactions are configurable. We used
version 1.13 of Postmark.

The Netnews benchmark is the simplified version of
Karl Swartz’s [15] benchmark used by Seltzer et al. [14].
This benchmark initially builds a tree resembling inn’s
[3] traditional method of article storage (tradspool). It
then performs a large number of operations on this tree
including linking, writing and removing files, replaying
the actions of a news server.

As an example of the workload caused by software de-
velopment, the FreeBSD build procedure was also used.
Here, a copy of the FreeBSD source tree was checked
out from a local CVS repository, it was then built us-
ing make buildworld , then the kernel source code
searched withgrep and finally the object tree was re-
moved.

4.2 Benchmarking Method

The tests were conducted on a modern desktop system
(Pentium 4 1.6GHz processor, 256MB ram, 20GB IDE
hard disk), installed with FreeBSD 4.5-PRERELEASE.
The only source modification was an additional sysctl to
allow the choice between the old and new dirpref code.

Each benchmark was run with all 16 combinations of
soft updates on/off, vmiodir on/off, dirpref new/old and
dirhash maxmem set to 2MB or 0MB (i.e., disabling
dirhash). Between each run a sequence ofsync and
sleep commands were executed to flush any pend-
ing writes. As the directory in which the benchmark-
ing takes place is removed between runs, no useful data
could be cached.



This procedure was repeated several times and the mean
and standard deviation of the results recorded. Where
rates were averaged, they were converted into time-per-
work before averaging and then converted back to rates.
A linear model was also fitted to the data to give an in-
dication of the interaction between optimisations.

In some cases minor modifications to the benchmarks
were needed to get useful results. Bonnie++ does not
usually present the result of any test taking less than a
second to complete. This restriction was removed as
it usesgettimeofday() whose resolution is much
finer than one second. Recording the mean and standard
deviation over several runs should help confirm the va-
lidity of the result.

Postmark usestime() , which has a resolution of 1 sec-
ond. This proved not to be of high enough resolution in
several cases. Modifications were made to the Postmark
timing system to usegettimeofday() instead.

4.3 Analysis of Results

The analysis of the results was something of a challenge.
For each individual test there were 4 input parameters
and one output parameter, making the data 5 dimen-
sional. The benchmarks provided 70 individual test re-
sults.

First analysis attempts used one table of results for each
test. The table’s rows were ranked by performance. A
column was assigned to each optimisation and presence
of an optimisation was indicated by a bullet in the ap-
propriate column. An example of such a table is shown
in Table 1.

To determine the most important effects, look for large
vertical blocks of bullets. In our example, soft updates
is the most important optimisation because it is always
enabled in the top half of the table. Now, to identify
secondary effects look at the top of the upper and lower
halves of the table, again searching for vertical blocks
of bullets. Since dirpref is at the top of both the upper
and lower halves, we declare it to be the second most
important factor. Repeating this process again we find
vmiodir is the third most important factor. Dirhash, the
remaining factor, does not seem to have an important
influence in this test.

The table also shows the time as a percentage, where no
optimisations is taken to be 100%. The standard devi-
ation and the number of runs used to produce the mean

SU DP VM DH Mean Time% σ/
√
n n

• • • • 2032.85 46.78 0.31 4
• • • 2058.92 47.38 0.32 4
• • 2067.24 47.57 0.40 4
• • • 2118.72 48.76 0.03 4
• • • 2386.64 54.92 0.06 4
• • 2389.99 55.00 0.05 4
• • 2479.80 57.07 0.08 4
• 2489.56 57.29 0.04 4

• • • 3681.77 84.73 0.19 4
• • 3697.03 85.08 0.44 4
• 3724.66 85.72 0.17 4
• • 3749.88 86.30 0.24 4

• • 4260.20 98.04 0.06 4
• 4262.49 98.09 0.02 4

4345.38 100.00 0.05 4
• 4348.22 100.07 0.08 4

Table 1: Rank Table of Results for Buildworld

result are also shown.

An attempt to analyse these results statistically was
made by fitting to the data the following linear model,
containing all possible interactions:

t = Cbase +
CSUδSU + CDPδDP + CVMδVM + CDHδDH +
Coefficients for pairs, triples, . . .

HereCopts is a coefficient showing the effect of combin-
ing those optimisations andδopt is 1 if the optimisation
is enabled and 0 otherwise. Finding the coefficients is a
standard feature of many statistics packages.

Table 2 shows the results of fitting such a model to using
the same input data used to build Table 1. Only coef-
ficients that have a statistical significance of more than
1/1000 are shown. The coefficients suggests a 42.71%
saving for soft updates, a 14.28% saving for dirpref and
a 1.91% saving for vmiodir. The presence of a positive
coefficient for the combination of dirpref and soft up-
dates means that their improvements do not add directly,
but overlap by 4.57 percentage points.

If a coefficient for a combination is negative, it means
that the combined optimisation is more than the sum of
its parts. An example is shown in Table 3, where the
benefits of dirhash are dependent on the presence of soft
updates (see Section 4.4 for more details).

In some cases the results of fitting the linear model was
not satisfactory as many non-zero coefficients might be
produced to explain a feature more easily understood by
looking at a rank table, such as the one in Table 1, for
that test.

Attempts to graphically show the data were also made,



Factor ∆ %Time σ
base 100.00 0.24
DP -14.28 0.34
VM -1.91 0.34
SU -42.71 0.34
DP:SU 4.57 0.48

Table 2: Linear Model Coefficients: Buildworld

Factor ∆ %Time σ
base 100.00 0.01
SU -98.67 0.01
DH:SU -0.96 0.02

Table 3: Linear Model Coefficients: Removing MH
mailbox

x 1.0
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Figure 8: Improvement by Optimisation for Buildworld

but here the 5 dimensional nature of the data is a real ob-
stacle. Displaying the transition between various com-
binations of optimisations was reckoned to be most
promising. A decision was also made to display the
data on a log scale. This would highlight effects such
as those observed while removing an MH mailbox (Ta-
ble 3), where soft updates reduces the time to 1.3% and
then dirhash further reduces the time to 0.3%, which is a
relative improvement of around 70%.

Figure 8 again shows the results of the build phase of the
Buildworld benchmark, this time using a graphical rep-
resentation where optimisations are sorted left to right
by size of effect. The left-most triangle represents the
benefit of enabling soft updates. The next column (two
triangles) represents the effects of dirpref, starting with
soft updates on and off. The third column (four trian-
gles) represents vmiodir and the right-most triangles rep-
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Figure 9: Improvement Lattice for Buildworld

resent dirhash. Most of these triangles point up, repre-
senting improvements, but some point down, represent-
ing detrimental effects.

These graphs make it relatively easy to identify impor-
tant effects and relative effects as optimisations com-
bine. They have two minor weaknesses however. First,
not all transitions are shown in these graphs. Second, the
variance of results is not shown.

In an effort to produce a representation that shows both
of these factors, a graph of nodes was drawn, represent-
ing the various combinations of optimisations. An edge
was drawn from one node to another to represent the
enabling of individual optimisations. Thex coordinate
of the nodes indicates the number of enabled optimisa-
tions and they coordinate the performance. The height
of nodes shows the variance of the measurement.

Figure 9 shows the graph corresponding to the build
phase of the Buildworld benchmark. There are many
rising edges marked with soft updates and dirpref, indi-
cating that these are significant optimisations. Although
these graphs contain all the relevant information, they
are often cluttered, making them hard to read.

4.4 Summary of Results

Figure 10 presents a summary of the benchmark results
(the Bonnie++ file I/O and CPU results have been omit-
ted for reasons of space). Studying the results indicates
that soft updates is the most significant factor in almost
all the benchmarks. The only exceptions to this are
benchmarks that do not involve writing.



x1 x2 x5 x10 x20 x50 x100 x200 x500

Performance Improvement FactorBenchmark

Option Increases Performance
Option Reduces Performance below Optimal Combination

X11 Tar Archive
untar softupdates dirpref dh
find dirpref su

rm softupdates dirpref
MH Mail folder

Create softupdates dirhash
pack softupdates dirhash

rm softupdates dirhash
Bonnie++

Random File Create softupdates dirhash
Random File Delete softupdates dirhash

Random File Read dirhash
Sequential File Create softupdates dirhash
Sequential File Delete softupdates dirhash

Modified Andrew Benchmark
mkdir softupdates dirpref vmiodir

cp softupdates dirpref
stat dp

grep dp
Compile softupdates

rm softupdates vmiodir dirpref dh
Postmark

Creation Alone (1K files, 50K trans) softupdates
Creation (1K files, 50K trans) softupdates

Deletion Alone (1K files, 50K trans) softupdates dh vm
Deletion (1K files, 50K trans) softupdates

File Read (1K files, 50K trans) softupdates
Data Read (1K files, 50K trans) softupdates

Total (1K files, 50K trans) softupdates
Transaction (1K files, 50K trans) softupdates
Data Write (1K files, 50K trans) softupdates

Creation Alone (20K files, 50K trans) softupdates
Creation (20K files, 50K trans) softupdates

Deletion Alone (20K files, 50K trans) softupdates dirhash
Deletion (20K files, 50K trans) softupdates

File Read (20K files, 50K trans) softupdates
Data Read (20K files, 50K trans) softupdates

Total (20K files, 50K trans) softupdates
Transaction (20K files, 50K trans) softupdates
Data Write (20K files, 50K trans) softupdates

Creation Alone (20K files, 100K trans) softupdates
Creation (20K files, 100K trans) softupdates

Deletion Alone (20K files, 100K trans) softupdates dirhash vm
Deletion (20K files, 100K trans) softupdates

File Read (20K files, 100K trans) softupdates
Data Read (20K files, 100K trans) softupdates

Total (20K files, 100K trans) softupdates
Transaction (20K files, 100K trans) softupdates
Data Write (20K files, 100K trans) softupdates

Netnews Benchmark
Tree Build softupdates dp

Simulated News Operation su dp
Tree Removal softupdates dirpref

FreeBSD RELENG_4 Buildworld
cvs checkout softupdates dp

make buildworld su dp
find and grep dirpref
rm of /usr/obj softupdates dirpref

Figure 10: Summary of Results by Benchmark. Each bar shows the improvement factor for a single benchmark, and
a breakdown of that gain among the different optimisations. Only the uppermost path across the improvement lattice
is used, so larger gains appear on the left of the figure. For some tests, there are combinations of optimisations that
result in better performance than having all options enabled. This gain is displayed as dashed regions of the bars; the
end of the black region is the improvement factor with all optimisations on and the end of the whole bar is the gain
for the best combination.



Of the tests significantly affected by soft updates, most
saw the elapsed time reduced by a factor of more than
2 with soft updates alone. Even benchmarks where the
metadata changes are small (such as Bonnie++’s sequen-
tial data output tests) saw small improvements of around
1%.

Some of the read-only tests were slightly adversely af-
fected by soft updates (Andrew’s grep 0.7%, Andrew’s
stat 2.4%). This is most likely attributable to delayed
writes from other phases of the tests. In a real-world
read-only situation this should not be a problem, as there
will be no writes to interact with reading.

As expected, dirpref shows up as an important factor
in benchmarks involving directory traversal: Andrew,
Buildworld, Netnews and X11 Archive. For the majority
of these tests dirpref improves times by 10%–20%. Of
all the individual tests within these benchmarks, the only
one that is not noticeably affected is the compile time in
the Andrew benchmark.

Though it involves no directory traversal, the perfor-
mance of Postmark with 10,000 files does seem to be
very weakly dependent on dirpref. The most likely ex-
planation for this is that the directory used by Postmark
resides in a different cylinder group when dirpref is used
and the existing state of the cylinder group has some
small effect.

The impact of vmiodir was much harder to spot. On
both the Andrew compile phase, and the build and re-
move phases of Buildworld, there was an improvement
of around 2%. This is worthy of note as buildworld was
used as a benchmark when vmiodir was assessed.

Vmiodir and dirpref have an interesting interaction on
the grep and remove phases of the Andrew benchmark.
Both produced similar-sized effects and the effects show
significant overlap. This must correspond to vmiodir
and dirpref optimising the same caching issue associated
with these tasks.

As expected, dirhash shows its effect in the benchmarks
involving large directories. On the Folder benchmark,
dirhash takes soft updates’s already impressive figures
(×29, ×13 and×77 for create, pack and remove re-
spectively) and improves them even further (×12, ×38
and×3 respectively). However, without soft updates,
dirhash’s improvements are often lost in the noise. This
may be because dirhash saves CPU time and writes may
be overlapped with the use of the CPU when soft updates
is not present.

There are improvements too for Bonnie++’s large di-
rectory tests showing increased rates and decreased
%CPU usage. The improvements for randomly
creating/reading/deleting files and sequentially creat-
ing/deleting files are quite clear. Only Bonnie++’s se-
quential file reads on a large directory failed to show
clear improvements.

Some improvements were also visible in Postmark. The
improvements were more pronounced with 20,000 files
than with 10,000. When combined with soft updates,
overall gains were about 1%–2%. Dirhash presumably
would show larger benefits for larger file sets.

5 Conclusion

We have described soft updates, dirpref, vmiodir and
dirhash and studied their effect on a variety of bench-
marks. The micro-benchmarks focusing on individual
tasks were often improved by two orders of magnitude
using combinations of these optimisations.

The Postmark, Netnews and Buildworld benchmarks are
most representative of real-world workloads. Although
they do not show the sort of outlandish improvements
seen in the earlier micro-benchmarks, they still show
large improvements over unoptimised FFS.

Many of these optimisations trade memory for speed. It
would be interesting to study how reducing the memory
available to the system changes its performance.

We also studied dirhash’s design and implementation in
detail. Given the constraint of not changing the on-disk
filesystem format, dirhash seems to provide constant-
time directory operations in exchange for a relatively
small amount of memory. Whereas dirhash might not be
the ideal directory indexing system, it does offer a way
out for those working with large directories on FFS.
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