Opportunities for Bandwidth Adaptation in Microsoft Office
Documents

Eyal de Laraf, Dan S. Wallach?, and Willy Zwaenepoel?

t Department of Electrical and Computer Engineering
i Department of Computer Science
Rice University
{delara,dwallach,willy } @cs.rice.edu

Abstract

Microsoft Office, the most popular office productiv-
ity suite, produces large documents that can result
in long download latencies for platforms with lim-
ited bandwidth. To reduce latency and improve
the user’s experience, these documents need to be
adapted for transmission on a limited-bandwidth
network.

To identify opportunities for adaptation, we charac-
terize documents created by three popular applica-
tions from the Microsoft Office suite: Word, Pow-
erPoint, and Excel. Our study encompasses over
12,500 documents retrieved from 935 different Web
sites.

Our main conclusions are: 1) Microsoft Office
documents are large and require adaptation on
bandwidth-limited clients; 2) embedded objects and
images account for the majority of the data in these
documents, with image types being the most popu-
lar non-text content, suggesting that adaptation ef-
forts should focus on these elements; 3) compression
considerably reduces the size of these documents;
and 4) the internal structure of these documents
(pages, slides, or sheets) can be used to download
elements on demand and reduce user-perceived la-
tency.

1 Introduction

Microsoft Office is the most popular productivity
suite for creating documents. Its popularity derives,
to some extent, from its ability to create compound
documents that include data from more than one

application. The potentially large size of these docu-
ments results in long download and upload latencies
for mobile clients accessing the documents through
bandwidth-limited links [3, 11, 22]. To reduce la-
tency and improve the user’s experience, compound
documents and the applications that operate on
them need to adapt to the available bandwidth.

To identify opportunities for adapting compound
documents we need to understand their main char-
acteristics. However, most studies of content types,
especially those done on the Web [4, 21, 23, 24]
have consistently ignored compound documents or
treated them as opaque data streams, ignoring the
rich internal structure that can be used to enhance
bandwidth adaptation. In this paper we present
an analysis of Office compound documents down-
loaded from the Web. We focus on those charac-
teristics of Office documents that have implications
for bandwidth-limited clients, and identify opportu-
nities for adaptation. Although we report our find-
ings with an emphasis on bandwidth-limited clients,
we believe that these results will be useful for of-
fice suite designers and people interested in working
with compound documents in general.

We undertook this study as part of our Puppeteer
project, which uses component-based technology to
adapt applications for different operating environ-
ments. Puppeteer is well suited for adapting com-
pound documents that include data generated by
several software components. By exposing the hi-
erarchy of component data in the compound docu-
ment, and making calls to the run-time APIs that
the components expose, Puppeteer adapts applica-
tions without changing their source code. In con-
trast, traditional adaptation approaches have not
been successful for applications that operate on
compound documents mainly because the complex

and proprietary nature of these applications thwarts
source code modifications [9, 10] and the inclu-
sion of several complex data types, usually embed-
ded in a single file, makes system-based adaptation
hard [12, 18, 20].

For this paper, we studied compound documents
generated by three popular applications of the Office
suite: Word, PowerPoint, and Excel. We chose to
focus on Office applications based on four factors.
First, Office is the most widely-used productivity
suite. Moreover, a significant number of Microsoft
Office documents are available on the Web, enabling
us to gather the data for our experiments. Sec-
ond, the Office file formats, although proprietary,
are reasonably well documented. Third, the Office
applications are highly integrated with each other
and have published run-time APIs that can be used
by Puppeteer to adapt the applications. Fourth,
Office 2000 supports two native file formats: the
proprietary OLE-based binary format and a new
XML format. By using Office 2000 to convert old
files to the new XML format, we can compare the
tradeoffs of using a proprietary binary-based file for-
mat against a modern standards-based text format,
both as intermediate formats suitable for document
editing, and as publishing formats, suitable only for
reading.

Although we concentrate exclusively on Office doc-
uments, we believe that our results apply to com-
pound documents generated by other productivity
suites. Since most of these suites support roughly
the same features (embedding, images, etc), and
document content is driven largely by user needs,
it is likely that the main characteristics of docu-
ments produced by various productivity suites (e.g.
distribution of document size, percentage that have
images, number of pages, slides, etc.) would be sim-
ilar.

We downloaded over 12,500 documents, comprising
over 4 GB of data, from 935 different sites. Our
main results are:

1. Office documents are large, with average sizes
of 196 KB, 891 KB, and 115 KB for Word,
PowerPoint and Excel respectively. Their large
sizes suggest a need for adaptation in low band-
width situations.

2. Office documents are component rich. 18.19%
of Word documents and 46.38% of PowerPoint
documents have at least one embedded compo-

nent. Images were the most common compo-
nent type.

3. In large documents, images and components
account for the majority of the data, suggest-
ing that they should be the main target of the
adaptation effort.

4. For small documents, the XML format pro-
duces much larger documents than OLE. For
large documents, there is little difference.

5. Compression considerably reduces the size of
documents in both formats. Moreover, once
compressed there is no significant difference in
the sizes of the two file formats.

6. XML formats are easier to parse and manipu-
late than the OLE-binary formats.

The rest of this document is organized as follows.
Section 2 provides some background on compound
documents and their enabling technology. We also
discuss relevant characteristics of the three Office
applications that we use in this study. Section 3 de-
scribes the documents we used in our experiments.
Section 4 presents our experimental results. Sec-
tion 5 discusses the relevance of our findings to other
productivity suites. Finally, section 6 discusses our
conclusions.

2 Background

To its user, a compound document appears to be
a single unit of information, but in fact it can con-
tain elements created by different applications. A
compound document could, for instance, consist of
a spreadsheet and several images embedded into a
text document.

In the general case, every data type in a compound
document (spreadsheet, text, image, sound, etc.)
is created and managed by a different application.
The different applications used to create the docu-
ment can be thought of as software components that
provide services that are invoked to create, edit, and
display the compound document.

In the remainder of this section we review the tech-
nologies used by Office to enable compound docu-
ments. We start with an overview of COM, OLE,

and Automation. We then talk about the two na-
tive file formats supported by Office. Finally, we
present a taxonomy of components found in Office
applications.

2.1 COM, OLE and Automation

Office compound documents are based on the Com-
ponent Object Model (COM) [5] and the Object
Linking and Embedding (OLE) [6] standards, which
govern the interactions between the various software
components used to create compound documents.

COM enables software components to export well-
defined interfaces and interact with one another.
In COM, software components implement their ser-
vices as one or more COM objects. Every object
implements one or more interfaces, each of which
exports a number of methods. COM components
communicate by invoking these methods.

OLE is a set of standard COM interfaces that en-
able users to create compound document by linking
and embedding objects (components) into container
applications, hence the name OLE.

Automation is an OLE technology, which enables
third party applications to remotely control Of-
fice applications. Puppeteer adapts applications, to
a large extent, by invoking Automation interfaces
to modify application behavior when executing on
bandwidth limited platforms. For example, using
Automation interfaces, Puppeteer can adapt a large
PowerPoint presentation by loading only a couple
of slides, instead of the full presentation, before re-
turning control to the user. While the user works
on these slides, Puppeteer loads the remaining slides
in the background, and as new slides become avail-
able, it instructs PowerPoint to append them to the
presentation.

2.2 File formats

Office 2000 supports two native file formats: the tra-
ditional OLE-based binary format (hereafter, “OLE
archive”) and a new XML-based format. The OLE
archives [13, 14, 15] rely on the OLE Structured
Storage Interface (SSI) to provide a unified view
of the compound document in a single file. SSI
implements an abstraction similar to a file system

£= Word Document. 8.0
Data
Table
CompObj
WordDocument
SummaryInformation
DocumentSurmmaryInformmation
ObjectPool
=z Excel. Chart8.0

B Workbook

B Summaryinformation

B DocumentSurmmaryinformation
g= PowerPoint.Slide.8.0
Pictures
PowerPointDocurmnent
Swmmarydnformation
DocumentSurmmaryInformation

(F [[[[iw) [[

() [(i) i)

Figure 1: Word archive. The figure shows two em-
bedded objects, an Excel chart and a PowerPoint
slide, each stored in a separate SSI storage.

within a single file. It supports two types of ob-
jects: storages and streams. Storages are analogous
to directories and contain streams or more storages.
Streams are analogous to files and contain the com-
ponents’ data. Office applications vary in the way
they use the OLE SSI to store embedded objects.
Word and Excel, for instance, use a separate storage
for every embedded component, making the compo-
nent structure of the document visible to the OLE
SSI. For example, figure 1 shows the structure of
a Word archive with two embedded components.
Notice how Word keeps each embedded object in a
separate SSI storage. In contrast, PowerPoint com-
presses embedded object native data and stores it
in the main application stream. While this strategy
increases document, compression, it limits the abil-
ity of third-party applications to manipulate com-
ponents within a PowerPoint document.

The new XML format [17] provides a more browser-
friendly option for storing Office documents. While
an OLE archive appears as a single file, an XML
document appears as an entire directory of XML
files, approximately one per component, image, or
slide. The current implementation of Office sup-
ports two forms of XML output: a compact low-
fidelity representation that can be read by browsers
but cannot be edited by Office tools, and a larger
high quality representation that supports editing.
In this study we focus on the latter XML represen-
tation because it is semantically comparable to the

OLE archive.

Aside from the number of files that they use, the
two file formats differ mostly in their representa-
tion of text and formating information. Images and
embedded component native data have similar rep-
resentation in both formats, with the caveat that
component data in the XML-based format is stored
in a compressed OLE archive. Moreover, both for-
mats keep in persistent storage two versions of the
OLE components they embed. The first one consists
of the embedded component’s native data, which is
used to initialize the component. This data is cre-
ated and managed by the component itself. The
second representation is a cached image of the state
of the component the last time it was instantiated.
This image, although created by the component, is
managed by the container application. This image
serves two purposes. First, it allows the document
to be rendered quickly, since the code that under-
stands the component’s specific type need not be
executed until the user wishes to modify the com-
ponent. Second, the cached image allows the doc-
ument to be rendered even on systems where some
component types are not installed.

There is a significant difference in the way Office
supports these two file formats. Office is able to load
OLE archives incrementally over a random access
file system. In contrast, XML documents must be
read in their entirety before control is returned to
the user, leading to higher latencies for opening and
storing XML-based documents.

2.3 Component taxonomy

Conceptually, Office documents may have up to
three classes of components: images, OLE-based
embedded components, and virtual components.
Images are graphic data that are stored and ma-
nipulated directly by the application. This includes
the cached versions of any embedded components
and any graphic data that the application manip-
ulates directly. OLE-based embedded components
are data created using a separate application, as
described above. Among the most common types
of embedded components are components that im-
plement image types. To differentiate these image
types (which are created by a separate application,
and hence a type of component) from the primitive
images managed by the application we will use the
term “image components.” Finally, virtual compo-

Application | Documents | Sites
Word 6481 | 236
PowerPoint 2167 | 334
Excel 4056 | 378

Table 1: Data set. This table presents for each ap-
plication, the number of documents and the number
of Web sites from which they originated.

nents are objects that are not implemented as OLE-
based components but that are perceived by the user
as separate entities (i.e., pages in Word, slides in
PowerPoint, and sheets in Excel).

3 Data set

We collected Word, PowerPoint, and Excel docu-
ments from the Web. First, we used the AltaVista
search engine [1] to obtain an initial set of URLs. In
the first two weeks of October 1999, we searched for
pages having links to files with suffixes we were in-
terested in (doc, ppt, and x1s). For example, we
used the query link:ppt domain:edu to search for
HTML pages in the edu domain that have links
to PowerPoint documents. Then, we used GNU
Wget [19] to recursively retrieve documents from
our initial search results.

The reliance on a search engine to obtain the docu-
ments raises the question of the set representativity.
On one hand, a search engine is likely to produce re-
sults that are dependent on the popularity of certain
pages and documents, skewing the distribution to-
wards these particular document types and produc-
ing a non-random set of documents. On the other
hand we observe that our documents are fairly well
distributed among domains, covering a wide range
of user types. Moreover, the shape of the document
size plots of section 4.1 and their close fit to the
power-law distribution are similar to the results ob-
tained by Cunha et. al. [7] in a study of client-based
traces covering over half a million user requests for
WWW documents.

All downloaded documents were in the binary OLE
archive format. Because Office file formats vary
from one version of Office to another, we first con-
verted all our data to the Office 2000 formats. We
removed documents that appeared to be corrupt or
were not actually Office documents. The doc suf-
fix, in particular, tends to be used by many appli-

Number of Documents

0 50 100 150
Document Size (KB)

——Word = =PPT - - - ‘Excel

Figure 2: Size distribution of Word, PowerPoint,
and Excel documents. Shown are documents with
sizes up to 180 KB.

cations other than Microsoft Word. We also elimi-
nated duplicates, removing approximately 5% of our
data set.

We converted all the data to Office 2000 formats
and we obtained the XML-based representation us-
ing Office’s OLE Automation interfaces [16]. We
wrote a simple Java application that uses OLE Au-
tomation to remotely control Office applications to
perform data conversions.

Table 1 shows a summary of the documents. For
each application, it presents the number of docu-
ments, and the number of Web sites from which
they originated.

4 Experimental results

This section presents statistics we have measured for
Office documents and the components within them.
Based on these statistics, we identify opportunities
for adapting the documents to bandwidth limited
clients.

4.1 Document size

Table 2 shows general statistics for Word, Power-
Point, and Excel documents'. The most striking

1 The document size measurements for table 2 and figures 2
and 3 are based on the raw documents retrieved from the Web

Application
Statistic Word PowerPoint Excel
average (KB) | 196.24 891.48 | 115.02
stdev (KB) 528.44 2145.35 | 438.70

Table 2: Document size statistics.

aspects of the data are the large average size of the
documents and the large standard deviations of our
sample.

Figure 2 shows the size distribution of Word, Pow-
erPoint, and Excel documents. The histogram plots
documents with sizes up to 180 KB. We observe
that the distributions have the same general shape:
a cluster around a common small value with a fairly
long tail.

Figure 3 characterizes the distributions’ tails by
plotting document size frequencies for documents
larger than 100 KB on a log-log scale. The linear
fit? of the transformed data (y ~ z~!712%) with
R? = 0.8938 suggests that the tail of the size dis-
tribution closely follows a power-law distribution,
which is consistent with the large standard devia-
tions of Table 2. The log-log scale histograms for
the individual Word, PowerPoint, and Excel docu-
ments are not shown here since they are all simi-
lar to the cumulative distribution, with linear fits
of y ~ z=1824 o 1332 4 p-1T485 ang
R? = 0.8612, R?2 = 0.8352, and R? = 0.8226, re-
spectively.

Interestingly, these results are similar to the findings
of Cunha et. al. [7] where the size of HTML-based
Web documents was found to follow the power-law
distribution. However, while Cunha et. al. found
that most HTML documents are quite small (usu-
ally between 256 and 512 bytes), Office documents
tend to be much larger. Common sizes of Word
and Excel documents size range from 12 KB to
24 KB, and common PowerPoint documents range
from 48 KB to 80 KB.

4.2 Size breakdown

Figure 4 shows the breakdown of document sizes for
Word documents. For every size category it shows

rather than the normalized Office 2000 translations described
in Section 3.

2 R? value ranges from 0 to 1 and reveals how closely the
estimated trendline approximates the actual data. The closer
the value is to 1, the better the estimate.

1000) y — 2000X»L7124
2
8 R? =0.8938
£
E 100
(&)
[e]
[a)
ks
g 101
£
>
zZ
1 T T 1
10 100 1000 10000

Document Size (KB)

Figure 3: Size distribution of larger Office docu-
ments on a log-log scale. Document size frequencies
are measured with 16384 byte bins.

the contributions of text, formatting information,
embedded objects, and images to the documents
size. We measured similar breakdowns for Power-
Point and Excel document, but because of space
concerns we do not include them in this paper. The
PowerPoint documents showed a similar trend to
that of figure 4, while in Excel documents the text
component accounts for over 95% of the document
size in all the size categories.

Figure 4 show that small Word documents are dom-
inated by text and formatting information. For
larger Word documents, however, image and embed-
ded component data become the prevalent contrib-
utors to document size. This data strongly suggests
that efforts to improve access to compound docu-
ments should focus on the image and the embedded
component data.

One possible optimization would be to remove the
embedded component native data from documents
that are fetched exclusively for reading. As de-
scribed in section 2.2, this data is only necessary
when editing an embedded component. Users are
still able to display the document using the cached
image of the component. We measured the savings
of this schema and found that it would lead to a
reduction in bandwidth requirements for Word and
PowerPoint documents as high as 35% and 21%, re-
spectively. PowerPoint documents show less poten-
tial benefit because PowerPoint compresses its com-
ponents data before storing it in the OLE archive,
whereas Word does not use compression.

100% -

o 80%

N

(7]

= 60% -

(0]

S 40%

(&)

[e]

o 20% -|
0% -

O N N> D O O AN D o

N O D DY XD
RSN S AN
Document Size (KB)

®text O objects Mimages # format

Figure 4: Size breakdown of Word documents. The
plot shows that as documents get bigger, images and
embedded component data account for most of the
document’s size.

4.3 Comparing OLE archives and XML

The results of our comparison are shown in table 3
and figures 5, 6, and 7. The data reveals that the
XML representation can be significantly larger, re-
quiring up to five times more space. XML efficiency
is particularly low for small files, which according
to our data are the most prevalent. However, XML
efficiency improves dramatically as documents get
larger.

To understand this, we must consider what hap-
pens when a document is converted from an OLE
archive to XML. Text and formatting represented
in XML takes more space than in Microsoft’s inter-
nal representation. This explains the inefficiency of
XML for small files. However, the XML conversion
compresses embedded component data. PowerPoint
already compresses its embedded component data,
but Word and Excel do not. Because larger docu-
ments tend to be mostly images and components
(see Figure 4), the XML representation becomes
more efficient for large documents, and is even more
efficient than the OLE archive for Word documents
larger than 1 MB. Excel documents are primarily
text and are most efficiently represented as OLE
archives.

4.4 Compression

For the OLE archives, we compressed the document
by applying gzip to the OLE archive. For the XML

Document Size (normalized)

Document Size (KB)

®OLE OXML B OLE gzip &2 XML gzip

Figure 5: Size distribution of Word documents,
with and without compression, for OLE archive and
XML formats. Sizes are normalized by the size of
the uncompressed OLE archive.

=35

E 3

225

N 27

D15

CIC.) 17‘ N

€ 05 - EEEE
S o0

O T T T T T T T T T

Ee) Vv D> % D v
> 4% Y X S
Vo

Document Size (KB)

OLE OXML BOLE gzip BXML gzip

Figure 6: Size distribution of PowerPoint docu-
ments, with and without compression, for OLE
archive and XML formats. Sizes are normalized by
the size of the uncompressed OLE archive.

format, which uses several files, we compressed each
file separately. This strategy emulates the poten-
tial benefits of a network infrastructure with built-in
compression.

The results of these experiments are shown in ta-
ble 3 and figures 5, 6, and 7. Compression has a
dramatic effect on reducing the size of both OLE
archives and XML files, achieving savings as high
as 77% for the OLE and 90% for XML. Moreover,
the difference in size between compressed OLE and
compressed XML representations is small enough to
be insignificant. This implies that neither represen-
tation has an inherent bandwidth advantage when
used across a network.

Document Size (normalized)

LI P R N A I 2 R S e S
N T A DN OO
WP

Document Size (KB)

®OLE OXML B OLE gzip &4 XML gzip

Figure 7: Size distribution of Excel documents,
with and without compression, for OLE archive and
XML formats. Sizes are normalized by the size of
the uncompressed OLE archive.

4.5 Garbage collection

For OLE archives, Office optimizes “save” opera-
tions by appending modifications to the end of the
file rather than rewriting the whole file every time.
While this optimization allows for much faster doc-
ument saves, it can lead to a significant increase in
file sizes. If the user deletes or rewrites a substan-
tial portion of a document and saves it, the original
data, now garbage, will be retained. The extra data
does not pose a problem for clients accessing the
document over random access file systems, enabling
the application to skip the dead data. Clients ac-
cessing documents over protocols that do not sup-
port random access, such as HTTP, are forced to
download the whole document before opening it.
The end result is fetching extra data that is never
used.

In contrast, when a user asks Office to “save as,” a
new document is written from scratch, without any
garbage that may have been in the original docu-
ment.

We measured the changes in file size for OLE
archives by using the “save as” operation. In this
experiment we only considered documents that were
already in Office 2000 file formats. Other documents
are not included because the “save as” operation not
only results in garbage collection but also reformats
the documents to the Office 2000 formats, which
may change document size.

Application
Word PowerPoint Excel
Format | Statistic raw gzip raw gzip raw gzip
OLE average (KB) | 209.19 61.43 579.53 | 481.18 110.23 | 25.67
stdev (KB) 534.59 | 248.89 | 1671.36 | 1597.20 401.83 | 97.88
XML average (KB) | 226.43 74.14 795.17 | 549.03 336.90 | 28.37
stdev (KB) 583.79 | 297.21 | 1851.92 | 1713.56 | 1562.04 | 92.02

Table 3: Size statistics for documents in raw OLE, OLE compressed with gzip, raw XML, and XML
compressed with gzip. The statistics for OLE differ from those presented in Table 2 due to the conversion

to Office 2000 formats.

D
&)
|

N WwhH al
[el Ne) o
T R]

Percentage of Documents

0 2 4 8 16 32 64
Percentage Saved

Word OO PowerPoint W Excel

Figure 8: Percentage saved by garbage collection of
OLE archive documents.

Figure 8 shows the results of this experiment. Most
documents get some benefit from garbage collection.
Interestingly, 24% of Word documents and 35% of
PowerPoint documents achieve saving greater than
16%.

4.6 Components

In this section we first explore the effects of compo-
nents on document size. We then present detailed
statistics for the three types of components found in
Office documents: images, embedded components,
and virtual components.

4.6.1 Components and document size

We compared the sizes of Office documents with and
without embedded components. Unsurprisingly,
documents with embedded components are signifi-
cantly larger. For example, the average size of Word
documents with components is 557.28 KB, relative
to an average of 112.32 KB for documents with-

a o N o
o O O O
| | |]

N W
o O
| |

10 A

Average Number of Images
N
o

10l

o m

O RPN
AN PR

o

> O & oM
R P o
DS SRS

Document Size (KB)

Figure 9: Average number of images in PowerPoint
documents.

Application
Statistic Word | PowerPoint
% of documents with images | 34.62 77.01
avg. distinct images 6.01 10.62
avg. image size (KB) 21.58 47.82

Table 4: Images statistics for Word and PowerPoint
documents. The table shows the percentage of doc-
uments that have at least one images, the average
number of images in documents with images, and
the average image size.

out components. PowerPoint and Excel documents
show similar trends: PowerPoint documents average
1334.43 KB with components and 493.58 KB with-
out, and Excel documents average 509.71 KB with
components and 109.18 KB without.

4.6.2 Images

Images are the most common type of non-text data
found in Office documents. As table 4 shows,
34.62% of Word and 77.01% of PowerPoint docu-
ments have at least one image. We do not present

Application
Statistic Word | PowerPoint Excel
% with components 18.19 46.38 1.42
number of component types 55 11 8
average number of components 6.71 9.18 9.05
average component size (KB) 37.62 18.51 | 26.01
stdev (KB) 141.78 109.33 | 133.37

Table 5: Embedded components statistics. The table shows the percentage of documents that have at least
one embedded components, the number of different component types, the average number of components
in a document, and the average and standard deviation of the size of embedded components.

300 ~
250 -
200 -
150
100 +

Average Image Size (KB)

u
o o
|

T T T T T T T
© & b
& I 2

© &S

Document Size (KB)

Figure 10: Average image size in PowerPoint docu-
ments.

results for Excel documents as very few of them have
any images at all.

Figures 9 and 10 show the average number of dis-
tinct images and the average size of images for Pow-
erPoint documents. We plot the number of distinct
images instead of the total number of images be-
cause Office applications cache a single copy of ev-
ery image regardless of the actual number of times
the image appears in the document.

Both plots show similar trends, with increases in the
number and size of images as documents get big-
ger. These results are consistent with the findings
of section 4.2, where the size contribution of images
to document size becomes the dominant factor as
document size increases. The results for Word are
similar, and are omitted for brevity.

We compared the average size of images in Office
documents to the findings of previous Web stud-
ies [2, 23]. In general, these studies report the aver-
age size of images between 5 KB and 22 KB. In com-
parison, Office documents, especially PowerPoint
documents, tend to have larger images. These re-

sults suggest that image distillation and other adap-
tation techniques are at least as important for com-
pound documents as they are currently for Web doc-
uments.

We measured the reuse of images across our Power-
Point documents by calculating the Adler-32 check-
sum [8] of the image’s data and counting the num-
ber of documents that have images with the same
signatures. We found that of the 16,189 images em-
bedded in PowerPoint documents, only 14,016 are
distinct, while 1,241 images, or 8.85%, appeared in
more than one document. We calculated the po-
tential bandwidth savings of a perfect cache for a
PowerPoint client reading all the documents in our
dataset that came from the same Web site. We
found that 26% of the Web sites get some band-
width savings from the perfect cache, while 11% of
the sites see reductions in required bandwidth that
are greater than 20 %.

4.6.3 Embedded components

The data in table 5 shows that Office documents are
rich in component data, with 18.19% of Word docu-
ments and 46.38% of PowerPoint documents having
at least one embedded component. Furthermore,
the data shows a high diversity of component types,
with Word documents having the highest diversity.

Table 6 shows the popularity and average size of
component types for Word, PowerPoint, and Excel
documents. For all three applications, image com-
ponents are either the first or second most popular
type. Additionally, the average size of image com-
ponents is among the largest of all types. This evi-
dence further suggests that efforts toward reducing
file size should focus on image types.

We observed that for all three applications, the av-

120 4

a2
$ 100 -
c
g 80 A
§ 60 -
735 40 + H
£ = oalininsnninn]
> 0 D|:| I:I A0 =m
<I|00[O| N[00|O| <F| 00| O AN [T 00O [N | |00 (O || T O
O AN [H IO AN [H AN O[O0 | | AN LD || N[O
AN OO0 [HANLOOOHM [—NWOO
—I| N HN#OOE <
Word Pages PowerPoint Excel
Slides Sheets

Document Size (KB)

Figure 11: Average number of Word pages, Power-
Point slides, and Excel sheets.

erage number of embedded components and the av-
erage size of the components increases as documents
get bigger. This trend is similar to the one shown
in figure 9 and 10 for images, and is consistent with
the findings of section 4.2, where the contribution of
embedded components to the document size grows
significantly as document size increases.

4.6.4 Virtual components

Table 7 and figure 11 show the average number of
pages, slides, and sheets found in Word, PowerPoint
and Excel documents. The substantial number of
virtual components suggest that Office applications
should be adapted to fetch virtual components on
demand. To some extent this is already done by the
applications when reading OLE archives in random
access file systems or by Web browsers reading the
XML representation. However, when Office appli-
cations open documents where random access is not
available or when reading from the XML represen-
tation, they download the full document before re-
turning control to the user. While providing univer-
sal random access support is likely to prove difficult,
we believe that the current Office XML filters can
be improved to support on-demand fetching. Alter-
natively, Puppeteer could provide this type of adap-
tation. As describe in section 2.1, Puppeteer could
fetch the virtual components on demand and use
OLE Automation to append them to the applica-
tion.

Word | PowerPoint | Excel
Statistic | Pages Slides Sheets
average 11.95 20.59 5.22
stdev 27.76 17.48 6.49

Table 7: Virtual components. The table shows
statistics for pages in Word, slides in PowerPoint,
and sheets in Excel documents.

5 Generality of results

In this section we discuss the applicability of our
findings to productivity suites other than Office. For
this discussion we assume that modern office pro-
ductivity suites support roughly the same features
(embedding, images, etc.) and that document de-
sign is driven largely by user needs.

While the average size of documents of different
productivity suites is likely to be dependent on
the specifics of the applications, the data suggest
that the shape of the size distribution of documents
would be similar for other productivity suites. We
base this claim on the similarities we observed in
the size distribution of Word, PowerPoint, and Ex-
cel documents. Although each application has a dif-
ferent file format (both for OLE archives and XML),
the size of their documents follow the power-law dis-
tribution closely.

The breakdowns of document sizes are likely to
be similar among productivity suites. While the
specifics of how data is divided between images and
components might change (e.g., a productivity suite
might implement all images as components), the in-
creasing contribution of images and components to
document size as documents grow is likely to hold
true. Likewise, document design being driven by
user needs, the structure of the documents (i.e., the
number of pages, slides, etc), the number of em-
bedded components found in documents, and the
popularity of images as the most common non-text
type of content are likely to be similar.

6 Conclusions and discussion

We characterized compound documents generated
by the three most popular applications of the Mi-
crosoft Office suite: Word, PowerPoint, and Ex-
cel. Our focus was on identifying opportunities

Application
Word PowerPoint Excel

Component Avg. Size (KB) | % of Occur. | Avg. Size (KB) | % of Occur. | Avg. Size (KB) | % of Occur.
Equation 0.74 51.12 0.81 1.82

Other Image 28.68 38.80 4.99 5.00
Word Picture 80.68 14.81 1.31 0.15 2066.83 1.00
Clip Art 10.38 8.93 5.00 41.12 2.56 15.00
Excel Sheet 153.46 8.53 53.18 5.27

OLE Link 23.80 3.90

Paint Brush 315.75 1.71 17.91 42.00
MS Draw 7.28 1.35

PowerPoint 41.74 0.96

Word 23.28 8.01 28.17 32.00
Graph 3.26 3.86

Sound 3.35 0.02

Other 97.52 8.68 8.72 0.94 2.39 5.00

Table 6: Average size and popularity of component types in Word, PowerPoint, and Excel documents.

for adapting these documents to the constraints of

5. The structure of Office documents (pages,

bandwidth-limited clients. Our study encompassed
over 12,500 documents, comprising over 4 GB of
data, retrieved from 935 different Web sites.

We identified the following opportunities for adap-
tation:

1. For large documents, images and components
account for the majority of the data. Moreover,
images and image components are the most
common non-text data found in Office docu-
ments. These results suggest that components,
and in particular images should be the main
focus of any adaptation efforts. We are cur-
rently in the process of adding quality-aware
transcoding and caching of images and compo-
nents to Puppeteer and plan to measure the
savings of these techniques.

2. For read only documents, discarding the native
component data results in savings of up to 35%
and 21% for Word and PowerPoint respectively.

3. Garbage collection of OLE archives achieves
savings greater than 16% for 24% of Word and
35% of PowerPoint documents.

4. Compression achieves savings of 77% for OLE
archives and 90% for XML. Moreover, once
compressed there is no significant difference in
the sizes of the two file formats. Since XML for-
mats are significantly easier to parse and ma-
nipulate than OLE archives, they are a more
attractive target for adaptation.

slides, and sheets) can be used to download el-
ements on demand and reduce the time that
users wait before they can start work on the
document.

Furthermore, our experience studying the Office file
formats resulted in the following insights:

1. The data suggests that the “save as” operation

is largely misunderstood by users. The large
savings that we show from garbage collection
suggest that users do not understand the impli-
cations of fast-save mode (the default), instead
believing the “save as” operation to be a way
to create a copy of the document.

. The lack of built-in support for compression

in OLE archives has forced designers to imple-
ment ad-hoc solutions to achieve high perfor-
mance. This experience suggests that a com-
pression feature would be a desirable addition
to OLE archives.

. OLE archive formats are likely to remain the

preferred intermediate format for Office docu-
ments, while the XML-based format will likely
be the format of choice for Web publishing.
The XML-based format has the advantage that
it can more easily be interpreted by applica-
tion other than Office (e.g., Web browsers). It
is also amenable to widespread browser tech-
niques that improve user perceived latency,
such as incremental rendering and fetch on-
demand. On the flip side, the current imple-

mentation of Office 2000 does not implement
incremental loading or writing of XML-based
documents, leading to higher latencies for open-
ing and storing XML-based documents than
those experienced on similar OLE archive doc-
uments. Moreover, some of the Office formats
do not yet have XML equivalents.

References

[1]
[2]

[3]

[8]

[9]

[10]

[11]

[12]

Alta Vista
http://www.altavista.com.
ArLiTT, M. F., AND WiLLIAMSON, C. L.
Server workload characterization: the search
for invariants. In ACM SIGMETRICS Con-
ference (Philadelphia, Pennsylvania, 1996).
BAGRODIA, R., CHU, W. W., KLEINROCK,
L., AND PoPEK, G. Vision, issues, and archi-
tecture for nomadic computing. IEEFE Personal
Communications 2, 6 (Dec. 1995), 14-27.
BrAy, T. Measuring the Web. In The World
Wide Web Journal (1996), vol. 1-3.
BROCKSCHMIDT, K. Inside OLE. Microsoft
Press, 1995.

CHAPPELL, D. Understanding ActiveX and
OLE. Microsoft Press, 1996.

CunHA, C. R., BESTAVROS, A., AND CROV-
ELLA, M. E. Characteristics of WWW client-
based traces. Tech. Rep. TR-95-010, Boston
University, Apr. 1995.

DeuTscH, P., AND GaAIlLLy, J. L. ZLIB com-
pressed data format specification version 3.3.
http://src.doc.ic.ac.uk/Mirrors/ftp.
cdrom.com/pub/infozip/doc/rfc1950. txt,
May 1996.

Fox, A., GRIBBLE, S. D., CHAWATHE, Y.,
AND BREWER, E. A. Adapting to network
and client variation using infrastructural prox-
ies: Lessons and perspectives. IEEE Personal
Communications 5, 4 (Aug. 1998), 10-19.
JoseEpH, A. D., DELESPINASSE, A. F.,
TAUBER, J. A., GirrorD, D. K., AND
KaAsSHOEK, M. F. Rover: a toolkit for mobile
information access. In Proceedings of the 15th
ACM Symposium on Operating Systems Prin-
ciples (SOSP ’95) (Copper Mountain Resort,
Colorado, Dec. 1995), pp. 156-171.

Katz, R. H. Adaptation and mobility in wire-
less information systems. IEEE Personal Com-
munications 1, 1 (1994), 6-17.

KISTLER, J. J., AND SATYANARAYANAN, M.
Disconnected operation in the Coda file system.

home page.

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

ACM Transactions on Computer Systems 10, 1
(Feb. 1992), 3-25.

MICROSOFT CORPORATION. Microsoft Excel
File Format. Redmond, Washington, 1997.
MSDN Online, http://msdn.microsoft.com.
MICROSOFT CORPORATION. Microsoft Pow-
erPoint File Format. Redmond, Washing-
ton, 1997. MSDN Online, http://msdn.
microsoft.com.

MICROSOFT CORPORATION. Microsoft Word
File Format. Redmond, Washington, 1997.
MSDN Online, http://msdn.microsoft.com.
MICROSOFT PRESS. Microsoft Office 97 / Vi-
sual Basic Programmer’s Guide, 1997.
MICROSOFT PRESS. Microsoft Office 2000 /
Visual Basic Programmer’s Guide, 1999.
MumMERT, L. B., EBLING, M. R., AND
SATYANARAYANAN, M. Exploiting weak con-
nectivity for mobile file access. In Proceed-
ings of the 15th ACM Symposium on Operating
Systems Principles (Copper Mountain Resort,
Colorado, Dec. 1995).

Niksic, H. Gnu Wget. http://www.gnu.org/
manual/wget/ps/wget.ps, Sept. 1998.
NOBLE, B. D., SATYANARAYANAN, M.,
NARAYANAN, D.; TiwtoN, J. E., FLINN, J.,
AND WALKER, K. R. Agile application-aware
adaptation for mobility. Operating Systems Re-
view (ACM) 51, 5 (Dec. 1997), 276-287.
Prrkow, J. E. Summary of WWW character-
izations. In Proceedings of the Seventh Interna-
tional World Wide Web Conference (Brisbane,
Australia, Apr. 1998).

SATYANARAYANAN, M. Hot topics: Mobile
computing. IEEE Computer 26, 9 (Sept. 1993),
81-82.

SEDAYAO, J. ”"Mosaic will kill my network!”
- studying network traffic patterns of Mosaic
use. In Proc. of the 2nd International WWW
Conference (Chicago, Illinois, 1994).
WOODRUFF, A., AoKi, P. M., BREWER, E.,
GAUTHIER, P., AND ROWE, L. A. An in-
vestigation of documents from the World Wide
Web. In The World Wide Web Journal (1996),
vol. 1-3.

