
An Objectbase Schema Evolution approach to Windows NT Security

K. Barker
Advanced Database Systems and Applications Laboratory

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada

Raj Jayaplan, R. Peters
Advanced Database Systems Laboratory

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba, Canada

Abstract

The current security model for the Windows NT operating system is powerful and offers many valuable features. The
User Manager provided by Windows NT is the primary method for the provision of security maintenance. Unfortu-
nately, this tool does not offer several features that would make the end-user’s task more intuitive. This paper dem-
onstrates a new technique to support the security on a Windows NT platform. Our system supports at least the fol-
lowing features: (1) An object-oriented hierarchy, so roles and groups can be supported in a more automated way. (2)
A more intuitive user interface so the administrative errors are less likely to be problematic. (3) Simplified security
management on a Windows NT platform. (4) Avoids unnecessary creation of objects (users / group) and redundant
granting / revoking of privileges. This paper discusses a new security model that has these features in addition to
those currently available on Windows NT.

1. Introduction

One of the most challenging problems in managing large
networked systems is the complexity of security admini-
stration. Some of the challenges of security administra-
tion are: depth of security, ease of access, sound man-
agement, protection of integrity, cost-effectiveness,
secrecy and confidentiality of key software systems,
databases, and data networks. Most of the security
models currently used require a trade-off between the
depth of security and ease of maintenance. The dilemma
is that the more secure a system becomes, the more of a
barrier that security becomes to the normal operations
for which it is intended. Thus, a security model should
be designed in such a way that it is transparent to the
users. Further it must be easy to maintain and manage
even if a very complex security model is required to en-
sure its proper functions.

The primary goal of our model is to provide a flexible set
of operations that will make security management easier
and more understandable. This research uses an Ob-

jectbase Management System (OBMS) because of its
ability to handle the complex information with complex
relationships often found in non-trivial security models.
These models are often characterized by their dynamics.
In other words, once a security model has been de-
ployed, changing system and application requirements
often demand that the model adapt. Fortunately, sub-
stantial research has been undertaken in recent years
describing how to manage the dynamics exhibited by
object-based systems. Ideally these changes to the
model should occur while the system continues normal
operation, as it is often undesirable or even impossible
to stop the system to deploy new security policies. Our
model proposes the use of dynamic schema evolution,
which plays a vital role in object base management sys-
tems because of its ability to make changes to the data-
base schema while applications are running. Typical
changes that may be required are to the domain struc-
ture, the functionality of a particular application or to
meet new performance requirements. This paper de-
scribes a security management model based on well-
known schema evolution techniques from OBMSs [1].

The paper also contributes by demonstrating how these
theoretical techniques can be applied to Windows NT.
Our system implements the object oriented schema evo-
lution strategy on the NT operating system as a way of
demonstrating its correctness and utility.

2. Fundamentals

Three fundamental aspects need to be considered be-
fore we can turn our attention to the specifics of our
research. The first of these is the work on schema evolu-
tion in object-oriented systems with particular focus on
an axiomatic model. Secondly, work directly related to
non-discretionary access rules that are often captured in
roles. Finally, it is useful to consider other work attempt-
ing to provide a “new” interface to an existing systems
security model. Each of these is briefly discussed below.

A few groups have undertaken schema evolution re-
search but in the interest of space we will focus only on
the one that is directly related to this paper. Peters and
Özsu [5] describe a sound and complete axiomatic model
for dynamic schema evolution in object-based systems
that support the key features of types and inheritance.
The model can infer all schema relationships from two
sets associated with each type. These sets are the
known as the essential supertypes and the essential
properties. Formal definitions for these sets is beyond
the scope of this paper but we will provide an intuitive
definition. Essential supertypes are those supertypes in
the class hierarchy that must be included in the defini-
tion of a type, while the essential properties are those
properties that cannot be dropped as schema changes
are made. We will return to these concepts in more detail
later but the interested reader can find detailed informa-
tion in Peters and Özsu [1]. This work also describes
various dynamic schema policies used by TIGUKAT to
support evolution and how these policies can be de-
fined using axioms.

The second key foundation for this research is that of
role based access control [6,7,8]. Ferrialo and Kuhn [3]
describe a non-discretionary access control mechanism
known as role based access control suitable for the
needs of non-military systems. Ferrialo and Kuhn [4]
argue that access control decisions are often based on
the roles individual users adopt in the organization.
Therefore, a role specifies a set of transactions that a
user (or set of users) can perform within the context of
that role in an organization.

Finally, we turn our attention to the problem of retrofit-
ting a security interface on an existing system in the
way similar to that proposed in this paper. Hua and Os-
born [9] provide an interface between the role based
access control and UNIX. A model of how to access
UNIX files using the role based access control is also
described. A role graph is used to visualize the permis-
sions granted to the files in the UNIX system. However,
to completely model the existing permissions in a UNIX
environment, the system file permission and the links
between the files must still be modeled for them to com-
plete their research.

3. The Axiomatic Model

This section briefly reviews the relevant details of the
axiomatic model used in this paper. We define schema
evolution as the timely change of the schema and the
consistent management of these changes. Dynamic
schema evolution (DSE) is the management of schema
changes while a system is in operation. The axiomatic
model has been demonstrated to provide a method to
support dynamic schema evolution in the objectbased
system by serving as a common, formal underlying
foundation for describing evolution in existing systems
[1]. This suggests that we should be able to apply it to
other systems that exhibit similar characteristics but
before demonstrating that this is correct we must first
define some key terms in the axiomatic model.

Type τ: Type in the axiomatic model defines the proper-
ties of objects. Types are used as templates for creating
objects. An element of type τ is denoted as t

Type Lattice: The type lattice can be represented with a
directed acyclic graph where the types are the graph’s
vertices and sub-type relationships are captured as di-
rected edges.

Immediate supertype P(t): The immediate supertype of
type t are those types that cannot be reached from t,
transitively, through some other type.

Essential supertype Pe (t): Essential supertypes of a
type t are those types that are essential in the construc-
tion and existence of type t.

Supertype Lattice Lt : Supertype lattice of type t is a set
that includes t together with all the supertypes (immedi-
ate, essential or otherwise).

Native Properties N(t): of type t are those that are not
defined in any of the t’s supertypes.

Inherited Properties H(t): of type t is the union of the
properties of all its supertypes.

Essential Properties Ne(t): are those properties identi-
fied as being essential to the construction and existence
of type t.

Interface I(t): of a type t is the union of native and inher-
ited properties of type t.

Now we consider the basic operations common to
schema evolution and security maintenance. Details and
examples of each of these operations are available els e-
where [1] so we only provide the formal specifications in
this paper.

Add a type: this operation adds a new type and inte-
grates it with the existing lattice. The result of creating a
new type t as the subtype of types s 1,s2…. sn with prop-
erties P1 …Pm adds s1,s2…. sn to Pe (t), P1 …Pm to
Ne(t) and the sets P(t), H(t), N(t), and I(t) are derived. If
no supertypes are specified then T_object1 is assumed.

Drop a Type: Removes a type from the schema. When a
type is dropped it is removed from the Pe of all the sub-
types of t.

Add Subtype Relationship: This operation adds a type
as an essential supertype of another type, which effec-
tively adds a subtype relationship between the two
types. To add s as a supertype of t, s is added to Pe (t)
and the sets P(t), H(t), N(t) and I(t) are derived.

Drop a subtype Relationship: Removes a type as an
essential supertype of another type, which effectively
drops a subtype relationship between the two types. To
drop type s as a supertype of t, s is removed from Pe (t)
and the sets P(t), H(t), N(t) and I(t) are derived. T_object
cannot be removed as it is always essential.

Add a Property: Adds a property as an essential com-
ponent of a type. To add a property P to type t, P is
added to Ne (t) and the sets N(t), H(t) and I(t) are de-
rived.

Drop a Property: This operation drops a property as an
essential comp onent of a type. To drop a property P
from type t, P is removed from Ne (t) and the sets N(t),
H(t) and I(t) are derived. Note that P is not removed
from the interface of t because P may be inherited from

1 T_object is the root class in the object hierarchy of the
TIGUKAT model upon which we base this work.

one or more supertypes of t. However, if eventually the
links to all supertypes that have P are removed, then P
is no longer be part of t.

4. Windows NT Security Model

Windows NT’s security model is flat and does not sup-
port any hierarchical structure, let alone an object-
oriented one. NT supports their security model with the
User Manager [10]. The NT models security features
supported by the User Manager include:

• Add / Remove a Group
• Add / Remove a User
• Add /Remove a member of a group
• Add / Remove privileges of a group
• Add / Remove privileges of a User

4.1 Add / Remove a group

NT’s User Manager is used to add new groups to the
system. Newly created groups do not have any privi-
leges or user rights. A list of members can then be
added to the group who then inherit the corresponding
rights and privileges. This means that each user must be
added to each group in which it should have privileges.
It would be preferable to add groups of users to the
newly created group thereby easing the process of cre-
ating new classes of users. In effect a hierarchy of user
groups would be extremely helpful in security manage-
ment.

Conversely, when a group is removed all members lose
their membership. If the group has privileges, its mem-
bers will all lose them unless they are explicitly given to
the member through the granting of direct privilege.
Ideally privileges could be grouped and formed into a
hierarchy so that by dropping a subgroup the users
would lose only a subset of privileges while maintaining
those granted by the “super” group.

4.2 Add / Remove a User

New users initially belong to the “Users” group but the
User Manager can insert them into additional groups.
Users are atomic in that NT does not support the con-
cept of a “user hierarchy” so users are inserted into
groups only. When users are removed, they are physi-
cally removed from the system. The removed user is
extracted from any groups to which they belonged. Fi-
nally, it should be noted that when a user is deleted it is
completely removed from the system so even adding an
identically named “new” user does not restore the old
one.

4.3 Add / Remove Member to the group

Group membership can be specified while creating the
group or user2, or at any time after the group is created.
Once a user is added to a group, all group privileges are
inherited. Groups are composed of an arbitrary number
of users but cannot contain other groups. In short, a
group is only composed of existing users.

When a member is removed from a group it loses all
privileges it inherited from the group except those that
were granted directly. For example, if a user is given a
privilege ‘P’ explicitly (direct privilege) which is also
inherited from ones of its groups, the removal of the
group does not remove ‘P’ because of the direct privi-
lege.

4.4 Add / Remove privilege from a User

Users can have privileges granted to them from the User
Manager. These are known as direct privileges. If this
privilege is revoked the user will lose the direct privilege
only. In other words, if the user is a member of a group
that holds the privilege, the user will not lose it com-
pletely. This case is very difficult to handle with NT’s
User Manager as we discuss in the next section.

4.5 Add / Remove Privilege of a group

Whenever a privilege is added to a group it is propa-
gated automatically to all members. Unfortunately Win-
dows NT does not provide a mechanism to view privi-
leges inherited as a result of group membership. The
User Manager only provides a list of direct user privi-
leges. Therefore, changes to group privileges are not
reflected when viewing the users in the User Manager.
A list of users/groups with a particular privilege can be
created but it is impossible to find a complete list of
privileges held by a particular user.

Consider a scenario where we would like to remove one
of a user’s privileges. To accomplish this we would like
to remove the direct privilege and the privilege from all
groups to which the user belongs that have the privi-
lege. Deleting the direct privilege is trivial and once
completed the User Manager will correctly display the

2 Users can only be inserted at the time they are created if the
group has already been created.

absence of the privilege. But what about the privileges
inherited from the groups? NT is very robust in that
deleting a privilege from a group will remove it from both
the group and its members. Although this is correct, it is
impossible to tell by simply looking at the user privi-
leges if the privilege has been completely removed. If we
identify all groups but one containing the privilege, it
will remain and be undetectable.

5. Modeling the Windows NT security with
the Axiomatic model

The difficulties described above can be handled by
treating users and groups as objects in an object-
oriented hierarchy. We can then use the axiomatic model
introduced earlier to manage the changes to these privi-
leges. By treating these in a formal way we are able to
ensure that the correct propagation of privileges occurs
even if they are inherited in unexpected ways. Before
discussing our implementation of this strategy we must
first describe how Windows NT’s security can be de-
scribed with the axiomatic model.

5.1 Architecture Overview

Our security management system has three comp o-
nents, namely: the Windows NT layer, the axiomatic
layer and the Security Manager Interface (see Figure 1).

Figure 1: Security Management System Layers

Axiomatic
Layer

Security
Manager
Interface

Windows
NT OS

The Security Manager Interface connects Windows
NT’s security system with the axiomatic model. Each
component is discussed in the next few sections.

5.2 The Axiomatic Layer

Windows NT’s security model is a flat structure. Users
cannot be subtypes of others nor can a group be a sub-
type of another group. However, the same flat structure
can be expressed with an axiomatic model thereby ena-
bling both groups and users to be classified as types.
The axiomatic model defines every type (users or
groups) using subtypes and supertypes. Our system
implements this object-oriented model with a file (exter-
nal to NT’s security system) that holds metadata about
each of the types (users and groups). Therefore, the
axiomatic layer is composed of two important compo-
nents:

• The Axiomatic model
• The Metadata Axiom File (MAF)

NT user and group properties and their relationships are
captured and expressed in terms of axiomatic properties.
Any change to the subtype/supertype relationships or
their properties result in corresponding change to the
axiomatic model’s properties. This means that all fea-
tures supported by the axiomatic model such as: adding
and dropping types, subtypes, supertypes and proper-
ties of a type are automatically supported by our secu-
rity management system. Recall that Windows NT does
not support these features because its security mecha-
nism is not object-oriented.

The Metadata Axiom File is required because state in-
formation required by the axiomatic component is com-
pletely different from the structure of the traditional
Windows NT security model. Thus the Metadata Axiom
File holds all data required to build the axiomatic model
of the NT defined users and groups.

Metadata stored in the MAF includes:

• All the types
• The subtypes of each type
• The supertype of each type
• Essential properties of all types
• Native properties contained in each type
• Inherited properties of all types

This metadata provides the information required to effi-
ciently manage security on a NT machine. The Security

Manager stores these properties in the MAF so all in-
formation about user and group state is saved. The
axiomatic model for the user is dynamic so each time our
Security Manager is loaded, the axiomatic model is built
from the metadata in the MAF, thereby restoring the
exact state of each of the objects.

Although Windows NT does not support the features
provided by the axiomatic model, the Security Manager
provides the various object-oriented features that en-
hances the security model.

5.3 The Security Manger Interface

The Security Manager Interface (Figure 1) ensures that
all changes made by our tool are propagated to NT. It
provides a translation from/ to Windows NT’s security
model and the axiomatic model. Since our model sees
security privilege changes as schema evolution, up-
dates to NT privileges are propagated as axioms to the
axiomatic model. Conversely changes within the Secu-
rity Manager are propagated to NT as privilege
changes.

5.4 System Operation

Our security model is installed above the native security
model of Windows NT. The axiomatic model is repre-
sented by a directed graph where a node represents
each user or group and the subtype/supertype relation-
ship is an edge. An edge from node A to node B indi-
cates that the type A (user/group) is the supertype of
type B. Type B inherits all properties of A as expected.

For any two nodes Ni, Nj , if Ni is contained in the inter-
face of Nj, then there must be a path between Ni and Nj.
The interface of a particular node A is a set that contains
all the nodes that are supertypes of A.

Figure 2: The Interface composed of groups and users

Figure 2 provides a snapshot of the object–oriented
view of our security model for Windows NT. Type
T_object is the root of all other types (both users and
groups). This means type T_object has the minimum
privilege and that all others inherit the privileges it pos-
sesses. The groups Administrators, Power Users,
Guests, Replicator and Users are the immediate sub-
types of T_Object. Since NT does not allow a group to
be a member of another group, all groups are attached to
T_object when the native security model is converted to
the axiomatic model. The users db2admin and Guest are
the members of the Administrators and Guests groups,
respectively, so there is an edge from the type Adminis-
trators to the user db2admin and from Guests and
Guest. For example, user db2admin and groups
G_Group1 and Administrator inherit all the properties
of Administrators. Similarly the users Guest and
U_User1 inherit all the properties of the Guests group.
To achieve greater clarity, different colors are given to
System defined groups (Red), System defined users
(Magenta), User defined groups (Green) and User de-
fined Users (Yellow)3.

We now summarize some of the axiomatic components
defined for NT objects:

Type: NT objects are commonly referred to as types.
This includes both users and groups.

Properties: The privileges associated with each group
or user are termed properties.

Subtype and Supertype: Subtyping permits an object to
be built based on another. For example, when a user is
added as a member of a group, then we say that the user
is a subtype of group or the group is the supertype of
the user. Both users and groups are viewed as types so
a user can be a subtype of another user (this prevents
the unnecessary creation of groups in some cases),
group can be a subtype of another group or a group can
be a subtype of another user. By subtyping, an object
(user or groups) inherits all the properties of the super-
type. An object can have multiple supertypes and in
that case it inherits the properties of all the supertypes 4.

3 These appear as different shades of gray in this paper but we
appeal to the readers imagination and intuition for the purpose
of this submission. Demos of the system can be acquired by con-
tacting the authors.
4 This ability to subtype from both groups and users is extremely
flexible. This expressive power is extremely useful but not all

Essential Supertype: The essential supertype of an ob-
ject (user or group) contains all the users or groups that
are essential to construct the object. All immediate su-
pertypes are essential so every group is an essential
supertype to its members.

Supertype Lattice: An object’s type lattice contains the
object and all its super-types.

We now turn our attention to the security management
features supported by our security manager:

• Add / Remove a Group
• Add / Remove a User
• Add /Remove a sub-type (both users and groups)
• Add / Remove privileges of a group
• Add / Remove privileges of a User

Each of these is discussed in detail in the following sec-
tions.

5.4.1 Add / Remove Group

When a group is added, axiomatic metadata should be
specified. This data might include the essential super-
types, immediate subtypes and the privileges the group
possesses . Unlike NT’s security model, ours allows the
users or groups to be essential supertypes or immediate
subtypes. In other words, both the users and groups
can contain others. The group and its privileges are sent
to the axiomatic component, which adds this group as a
new type. Once the axiomatic model is updated, the af-
fected NT objects (users/groups/privileges) are modi-
fied.

The insertion process requires that the group is created
and all supertype privileges are given to this group.
Thus, the group has inherited all the properties of its
supertype. In cases where the properties of the super-
types overlap, only one copy of the properties are inher-
ited thereby avoiding conflicts. These privileges must
now be propagated to all its immediate subtypes. Two
cases must be considered:

Case 1: If the immediate subtype is a user then the user
is added to the group’s membership roster. Once added
to the group, NT propagates the group’s privileges so
there is no need to do this explicitly.

Case 2: If the immediate subtype is a group, then all of
the group’s privileges must be explicitly propagated to

combinations of group/user subtyping will be required for NT. In
fact, some may be irrelevant.

the subtype groups. This explicit propagation must be
handled recursively to ensure that all children, grand-
children, etc. receive the necessary privileges.

Figure 3 (a) depicts groups A, B, C, D, E and F with a
graphical depiction of the axiomatic model. Addition of
group X as a supertype of A results in the propagation
of X’s privileges (P1, P2, P3, P4) to the immediate sub-
type A and to groups C, D, E and F which is the behav-
ior expected in an object-oriented inheritance hierarchy
(see Figure 3 (b)).

Deleting a group removes the corresponding type from
the axiomatic model. These changes are reflected to all
its subtypes but the effect differs depending on the

subtype’s type (i.e. user or group). If the subtype is a
user, it is removed from membership in this group. If it a
group, the privilege is removed unless it is held as a
direct privilege or inherited through another path. These
changes are subsequently propagated recursively to all
the affected types (groups and users) below this point
in the hierarchy.

5.4.2 Add / Remove a User

Adding a user to our system results in the creation of
the new user on NT. The user can be created with no

supertypes (except T_object) or as a subtype of a group
or user. Once again several cases need to be consid-
ered:

Case 1: Users without supertypes are subtypes of
T_object. This is consistent with the axiomatic model
because every type must be a subtype of T_Object.

Case 2: Users added as a subtype of a group (or many
groups) are made members of each supertype group. In
this way the user inherits all the privileges of the super-
type, which is consistent with the object-oriented
model.

Case 3: Users added as a subtype of another user is not

available under the native Windows NT security model.
This feature would prevent the unnecessary creation of
groups in cases, where a user needs to possess all the
properties of a different user. This operation would per-
mit a user to inherit all privileges of a particular user.
Additional research would need to be undertaken to
define the semantics of removing a supertype of a user,
but the issue is beyond the scope of this paper.

Our Privilege Propagation algorithm carries out this
propagation for all cases.

T_object

A (P1) B (P2)

C (P1) D (P1)

F (P1) E (P1,P2)

T_object

A(P4)(P1)

B (P2)

C (P4,P1) D (P4,P1)

F (P4,P1) E (P4,P1,P2)

X (P4)

Figure 3: Addition of Groups (a) Before (b) After

If a user is deleted from the system, the axiomatic model
is first updated and the corresponding effects are
propagated to the NT objects. The Privilege Propaga-
tion algorithm (modified to revoke privilege) removes
privilege from the object’s subtypes. Finally, the user
looses membership in the supertype’s groups.

The algorithm used to add and remove groups and us-
ers is described in the Algorithm 1.

5.4.3 Modify Subtype Relationship
Addition (removal) of an object (user or group) as a
supertype of another object results in the addition (re-
moval) of the set of essential supertype for the object
too. Our model permits the supertype to be either a user
or group. As in previous cases, once the axiomatic
model is updated the process of privilege propagation
and addition/deletion of users as members is performed
on the NT machine itself.

5.4.4 Add/Remove Privilege of a group

We now turn out attention to the specific issue of privi-
lege management used in our system. Before presenting
the details of our implementation we provide a few defi-
nitions5. Privileges in our model are broadly classified
into two three types:

• Native Privilege: are directly given to the types
• Inherited Privilege: are acquired by the types from

the parent (user or group)
• Privilege Interface: the union of the inherited and

the native privileges
Our system clearly presents a list of each
privilege held by an object as illustrated
in Figure 4.

Figure 4 depicts user U_User1 member-
ship in Guests and that he holds the
‘Shutdown the System’ privilege. The
inherited privilege ‘Log on to local ma-
chine’ would not appear as an NT privi-
lege (privileges as seen using the User
Manager) because these are not dis-
played.

The addition and removal of privileges is
the final aspect of our system to consider.
The key issues here are related to how
privileges are propagated throughout the
object hierarchy and how these are
passed onto the flat structure found in
NT. A brief discussion of the addition
and removal of privileges is provided
followed immediately by a sketch of the
algorithm that implements this aspect of
our system.

Add a Privilege: When a privilege is
added to a type, it is added to the set of
native privileges. The privilege must be
propagated to its sub-types. The process
of privilege propagation is similar for both
users and groups. These privileges only

need to be granted to the groups because NT propa-
gates them to the group’s members on our systems be-
half.

Remove a Privilege: Removing a privilege from a user or
group requires it first be removed from the set of direct
privileges. In our system, if the privilege is found in the
set of inherited privileges it has been acquired from at

5 We have used these terms intuitively early in the paper but we
need a more precise definition to describe this aspect of our
implmentation.

Algorithm 1: Addition or Removal of a group or user
1. Update the axiomatic components including

Essential Super-type
Immediate sub-type
Type Lattice

2. If X is a User Then
Delete / Create X as User

If the operation is addition Then
Add X as the member of all its super-type
Endif

 Else
 Delete / Create X as a new group

Revoke / Grant all the privileges of its super-types to X
 Endif
3. Initialize the groupList with all the sub-types of X
4. For each element in the groupList do

If the element I is a user Then
Remove / Add this user I as a member tothe group X

 Else
revoke / grant the privilege of group X to this group I

 Endif
 For each sub-type of the group I do

Add this sub-type to the groupList
 Endfor
 Remove the element I from the list
 If the groupList is empty Then
 Return
 Endif
 Endfor
End Algorithm 1

least one of its parents. This means the privilege is not
revoked from the Windows NT system and to do so
would require that the corresponding privilege be re-
moved from the parent. Even in the native NT model it is
not possible to remove the inherited privilege. Only di-
rect privileges can be deleted and this property is not
changed in our model too. Alternatively, the object
could be removed from the parent carrying the privilege
(see Section 5.4.3). Once removed the privilege must be
recursively applied to its subtypes.

The system has been implemented and proven to pro-
vide an excellent intuitive interface that meets the pri-
mary goals of our project. The system is sufficiently
flexible that a system administrator can use our system
to deploy new roles, groups and users but if they
choose to use the User Manager to complete a task, our
system will resynchronize with those changes once it is
restarted. In this way, both our system and the one pro-
vided by NT can be used for complementary tasks. We
believe however that our model is much more intuitive
and it should be further investigated with the ultimately
goal of deploying it as native to NT.

6. Conclusion

This paper describes a new security management model
based on well-known schema evolution techniques in
OBMSs. The model is successfully implemented on
Windows NT above the original security model in such
a way that it does not require modification or introduce
conflicts to NT’s current approach. We believe that one
of the nicest features of our approach is that both our
system and the User Manager can operate together.
Any changes made with the User Manager are reflected
in our system and changes done using our tool can be
seen with the User Manager in precisely the way you
would expect.

Several drawbacks associated with Windows NT’s se-
curity model and its maintenance tool (the User Man-
ager) are addressed by this research including:

• Failure to provide a clear link between inherited
privileges arising from participation in groups and
the lack of a technique to extract this information in
an easy clear way.

• Inherited privileges of the members are hidden.
• Lack of easier mechanism to find a complete list of

privileges held by a particular user/group.
• Lack of easier mechanism to find out the various

groups to which each user belongs.
• An improved visual interface to the security model.

We have also demonstrated how our model permits the
user to perform various operations that makes the man-
agement of security easier and more understandable.
Some of the benefits of the new model include:

♦ Avoids unnecessary creation of groups.

♦ Prevents redundant and unnecessary granting and
revoking of privileges.

♦ Provides a better visual interface that clearly illus-
trates the privilege flow.

♦ Features of the object-oriented model that en-
hances the maintenance of the security model are
used.

♦ Grants no more privilege than is necessary to per-
form a task. This property ensures the adherence to
the security principle of least privilege.

References

[1] R. J. Peters and M. T. Özsu, "An Axiomatic
Model of Dynamic Schema Evolution in Objectbase
Management Systems", ACM Transactions on Data-
base Systems, 22(1): 75-114, March 1997.

Figure 4: Interface Showing the Available Privileges

[2] R. J. Peters. TIGUKAT: A Uniform Behavioral
Objectbase Management System. Ph.D thesis. Univer-
sity of Alberta. TR94 – 06. April 1994

[3] D. Ferrialo and R. Kuhn. Role Based Access
Control. 15th National Computer Security Conference.
1992.

[4] D. Ferrialo, A. Cugini, and R. Kuhn. Role Based
Access Control : Features and Motivation . Computer
Security Application Conference. 1995.

[5] R.J.Peters and M.T.Özsu. Axiomatization of
Dynamic Schema Evolution in Objectbases, In 11th In-
ternational Conference on Data Engineering, Taiwan,
March 1995.

[6] J.Barkley. Implementing Role Based Access
Control Using Object Technology. First ACM Work-
shop on Role Based Access Control. November 1995.

[7] J.Barkley. Comparing Simple role Based Access
Control Models and Access Control Lists. Second
ACM Workshop on Role Based Access Control. Au-
gust 1997.

[8] J.Barkley and A.Cincotta. Managing
Role/Permission Relationships Using Object Access
Types. Third ACM Workshop on Role Based Access
Control. July 1998.

[9] L.Hua and S.Osborn. Modeling UNIX access
control with a Role Graph. In the Proceedings of the
Ninth International Conference on Computing and In-
formation. Pages 131 –138. June 1998.

[10] M.Minasi, C.Anderson, E.Creegan. Mastering
Windows NT Server. Fourth Edition. 1997.

 Algorithm 2: Addition / removal of privileges

1. Add / Remove the privilege P from the set Native Privilege of type T
2. If privilege P not found in set Inherited Privilege of type T Then

Add / Remove the privilege P from the type T (can be user or group)
 If T a group Then

Add all the sub groups of the type T to the GroupList
 Else

Add all the sub-types (both users and groups) of T to the GroupList
 Endif
 For each element I in the GroupList do

 Add / Remove the privilege P from the set Inherited Privilege
If privilege P not found in set Direct Privilege Then

Add / Remove the privilege P from the type T (can be user or group)
 If T a group Then

 Add all the sub groups of the type T to the GroupList
 Else

 Add all the sub-types (both users and groups) of T to the GroupList
 Endif
 Endif
 Remove the element I from the list
 If the groupList is empty Then return
 Endfor
 Endif
EndAlgorithm 2

