
WindowBox: A Simple Security Model for the Connected Desktop

Dirk Balfanz
�

Daniel R. Simon
�

balfanz@cs.princeton.edu dansimon@microsoft.com

Princeton University Microsoft Research

Abstract

Breaches in computer security do not just exploit bugs
in applications; they are often also the result of misman-
aged protection mechanisms. The tools available to pro-
tect sensitive resources and networks are tedious to use,
non-intuitive, and often require expert knowledge. As a
result, many PC and workstation users end up adminis-
tering their system security poorly, creating serious se-
curity vulnerabilities. This paper presents a new secu-
rity model, WindowBox, which presents the user with
a model in which the workstation is divided into multi-
ple desktops. Each desktop is sealed off from the others,
giving users a means to confine the possibly dangerous
results of their actions. We have implemented our se-
curity model on Windows 2000, leveraging the existing
desktop metaphor, the ability to switch between multiple
desktops, and specific kernel security mechanisms.

1 Introduction

Today’s typical computing environment no longer con-
sists of a centrally managed mainframe accessed through
terminals; more often it consists of networked, Internet-
aware PCs and workstations. The security threat model
has thus changed in several ways:

� Because individual users have greater control over
the PCs or workstations they typically use, they
also have greater responsibility for the administra-
tion of these machines and their security. Where
knowledgeable administrators once made profes-
sional decisions about security risks, those deci-
sions (such as permission and denial of access to
system and data resources) are increasingly in the
hands of relatively uninformed users.

�
Department of Computer Science, Princeton, NJ 08544�
Microsoft Research, One Microsoft Way, Redmond, WA 98052

� The more open, distributed architecture of PCs and
workstations makes it possible for users to intro-
duce new applications and even operating system
modifications to their machines – opening up an-
other avenue of attack, through viruses, Trojan
horses and other malicious applications.

� Internet connectivity has greatly expanded the
range of possible attackers with access to a user’s
machine.

Various tools are already available to combat each of
these threats. For example, existing discretionary access
control mechanisms are usually available to limit access
by (potentially hostile) applications to files. Firewalls
and proxies can thwart certain kinds of network attacks.
Finally, sandboxing has become a popular method for
restricting a process’ privileges to a subset of its owner’s
privileges, usually in the case where that process is ex-
ecuting some untrusted code. However, in practice we
often see these techniques fail, not necessarily because
they were poorly implemented, but because they are be-
ing poorly applied. The reason for this is that the cur-
rently used techniques, taken on their own, tend to be
too complex for ordinary users to administer effectively.
Taken together, they can be completely overwhelming
even to fairly experienced users. As a result, confused
users, faced with the responsibility of using and manag-
ing these techniques, often make ill-informed decisions
with misunderstood implications – including, perhaps,
serious security vulnerabilities.

It is thus imperative that user-administered security tools
present the user with an easily comprehensible, intuitive
model that allows users to understand the implications
of their security policy decisions. For example, one idea
they can understand is that of absolute physical sepa-
ration. Given a set of unconnected machines, between
which all information must be explicitly carried (say, on
a floppy disk), a user can understand that sensitive in-
formation or privileges on one machine are safe from
potential threats on other machines.



In this paper, we describe a model, WindowBox, which
is based on this idea of complete separation, and thus al-
lows users to make reasonable security decisions with a
clear understanding of their implications. We have im-
plemented the model on a Windows 2000 workstation
complete with a simple user interface that permits the
user to manage the workstation’s security in a natural,
intuitive way.

In the next section, we will analyze existing security
mechanisms and explain why they fail to deliver, es-
pecially in the hands of “average” users. In Section 3
we introduce the WindowBox model in more detail, be-
fore we explain our implementation on Windows 2000
in Section 4.

2 Existing Security Mechanisms

2.1 Access Control Lists

In the traditional, mainframe-based model, users wish
to restrict access to their resources (which are almost
always data files) to some limited set of users. Con-
ceptually, an access matrix [3] describes what each user
can do to each file. We often find that in a given im-
plementation, the access matrix is replaced by a slightly
less general, but more efficient mechanism. In Windows
2000, and other operating systems, Access Control Lists
(ACLs) are used to restrict access of users to files. In
practice, the vast majority of such restrictions limit ac-
cess to a resource to a single owner (or not at all). In
this manner files, for instance, can be fairly easily made
“private” (accessible only to the file’s owner) or “public”
(accessible to all the system’s users).

In the PC/workstation setting, however, a user may own
many other objects – systems resources, communica-
tions resources, and so on. These are often more difficult
to control by ACL, for various reasons: the object may
perhaps be created and used by applications without the
owner’s knowledge in the first place; its ACL may not be
accessible to the owner, for lack of an appropriate user
interface; or it may be (as in the case of remotely acces-
sible resources) difficult for the owner to tell who should
or should not have access to the object – or even who is
capable of attempting to access it.

Moreover, deciding on the appropriate ACL for every in-
dividual object (even whether it is “public” or “private”)
is a complicated, tedious and distracting task. Hence

systems typically apply defaults to construct an ACL
without consulting the user (such as when a new file is
created). Since these default ACLs are assigned in the
absence of information about the context in which they
are created, they often conflict with the user’s intentions.

2.2 Application-Level Security

When the resource in question is an application, it is typ-
ically the application itself that is made responsible for
its own security. The operating system provides appli-
cations with various security services (such as authenti-
cation for remote connections); using these services, an
application can limit access to itself as specified by the
user running it, thus (hopefully) preventing its own ex-
ploitation by an external attacker.

This application-oriented approach has two major disad-
vantages:

� The user making the access decisions must deal
with a different configuration procedure for each
application – hopefully involving the same system-
provided infrastructure, but sometimes even de-
pending on application-specific authentication and
access control mechanisms.

� Each application’s security is implemented sepa-
rately – and therefore has its own independently
buggy security. A user would need to know all the
security holes in each application, and how to de-
fend against attacks on each one, in order to secure
his or her system against attack.

A preferable alternative would be for the user to be
able to set access control rights for any application
from “above”, requiring any inter-process communica-
tion reaching the application to be authenticated as com-
ing from a permitted user or user/application pair. A
natural analogy is the file system: just as access (of any
sort) to a file can be limited to a particular set of users,
so too should access to an application. (Indeed, as the
distinction between applications and data blurs, so does
the distinction between the two types of access.)

2.3 Firewalls and Proxies

The problem of controlling access to an application be-
comes even more difficult when the application is in-
tended to be “network-aware”. A well-connected PC or



workstation, for example, runs a number of applications
of various types; these may include both traditionally
server-based applications (HTTP servers, FTP servers
and the like) and traditionally user-oriented (but increas-
ingly network-aware) applications. All of these may at
various times send data onto the network or monitor and
read arriving network data, using network services pro-
vided by the operating system. We might assume that the
careful user avoids installing deliberately malicious ap-
plications; however, even established commercial appli-
cations can have security holes which may be exploited
by hackers sending them unexpected data.

To protect against the possible existence of such
holes, many administrators of large networks of
PCs/workstations install firewalls or proxies, which fil-
ter out network traffic that does not conform to the for-
mats that the applications are expected to handle cor-
rectly. But applications may still have bugs which allow
an attacker to subvert them by sending them data that is
allowed through by the firewall or proxy, but has unan-
ticipated effects due to bugs or design oversights in the
application.

Therefore, the problem would be much more effectively
addressed by enforcement of the following two restric-
tions:

� Limiting applications’ access to the network to au-
thenticated connections, with access control ap-
plied to these connections “from the outside,” as
discussed above.

� User-imposed blocking of applications involved
in network communications (especially unauthen-
ticated connections) from accessing sensitive re-
sources on the same machine.

For example, a personal HTTP server might be allowed
to accept unauthenticated connections with the outside
world, but be forbidden to write to files or communicate
with other applications beyond an “internal firewall.”
The other side of this firewall might contain “private”
applications permitted to communicate with each other,
but not with the HTTP server, and not with the network
at all except over authenticated connections to members
of a particular group of trusted users (say, an Intranet).

2.4 Sandboxing

Meanwhile, the recent proliferation of mobile code via
the Internet has spurred demand for mechanisms by

which such mobile applications can be “sandboxed”
(granted only restricted access to system resources, pos-
sibly including files, communication channels, miscel-
laneous system services and other applications). Orig-
inally, mobile code consisted in practice only of small
“applets” with very limited functionality (and thus easy
to sandbox tightly). Increasingly, however, the crisp
lines between simple, casually distributed applets and
“store-bought” applications, and between entire appli-
cations and individual components, have begun to blur.
Sophisticated software is now being distributed over the
Internet in the form of applets or even entire applica-
tions, and components distributed in this fashion are be-
ing used together in complicated ways. Even operating
system updates, for instance, are being distributed over
the Internet. The distinction between “trusted” and “un-
trusted” software is thus increasingly a continuum, with
no software enjoying the confidence once (possibly too
naively) accorded store-bought, “shrink-wrapped” soft-
ware. It follows that some degree of sandboxing will
become desirable for a wide range of applications and
components.

A prominent example of the necessity of ubiquitous
sandboxing is the use of cryptographic keys for sensi-
tive functions such as electronic commerce or Intranet
authentication. The susceptibility of such keys to com-
promise by viruses or security holes, and the dire con-
sequences of such compromises, make it imperative that
keys be accessed only by applications that can be trusted
to use them properly (requesting direct user approval, for
instance). A broadly enforced sandboxing policy could
make such protection possible.

The major existing sandboxing framework is the Java
virtual machine (VM), which can be used to allow “ap-
plets” (typically embedded in Web pages) restricted ac-
cess to resources. This VM is only available for ap-
plications distributed in the form of a particular Java
byte code, and then translated (with some performance
overhead) into native machine code. The Java security
model allows applications to be accompanied by dig-
itally signed requests for various system access privi-
leges; the user or administrator can decide whether to
grant applets their requested privileges based on the
identities of the digital signers.

This model ultimately requires the user to make diffi-
cult qualitative trust judgments, such as which permis-
sions are too sensitive to trust to which applications. The
model can thus lead to a proliferation of too many iden-
tities and permissions for the user to keep track of. At
its worst, it simply adds an extra layer of complication
to the ACL model: resources must be access-controlled



based not only on user identity, but also application ori-
gin. While it may be a useful tool for implementing a
higher-level model, it is still far too complex for direct
manipulation by ordinary users when applied to a great
many applications.

3 A Model For Sandboxing-Based Secu-
rity

The above issues suggest the following goals for a secu-
rity model:

� It should unify the per-user access control func-
tions of the ACL model with the security properties
of firewall- and sandboxing-based models, so that
users only have to deal with a single model;

� It should allow basic application-level security (re-
stricting both access to the application and its range
of permitted behavior) to be applied independent of
the application;

� It should be simple enough to be managed via a
natural, intuitive user interface.

The last goal is perhaps the most crucial, as well as the
most difficult. Creating an understandable user inter-
face for a security model is generally a daunting task,
given the complexity and criticality of security adminis-
tration. The only hope is to design a simple and natural
model that users can grasp and manipulate intuitively,
then present a UI which reflects this model. Otherwise,
confused users will inevitably make dangerously mis-
taken security decisions – such as disabling all security
features entirely, to avoid the inconvenience of dealing
with them.

3.1 The Multi-Desktop Premise

We propose here a model based on an extremely simple
idea: while users cannot really intuit the complex rules
associated with zones or ACLs, one idea they can un-
derstand is that of absolute physical separation. Given a
set of group or zone permission rules, a user will have a
difficult time determining if it expresses his or her idea
of security. But given a set of unconnected machines,
between which all information must be explicitly car-
ried (say, on a floppy disk), a user can understand that

sensitive information or privileges on one machine are
safe from potential threats on other machines. It may be
that many users (particularly small businesses) are using
multiple machines in this manner today to secure their
sensitive data and applications from the Internet. And
of course, large enterprises use proxies all the time to
protect their internal machines from the world outside.

Moreover, users’ business (both information and – to
a lesser extent – applications) tends to divide up fairly
cleanly into categories, such as “personal finance,”
“business/office/intranet,” “Internet gaming,” and so on.
The amount of information flowing between these cate-
gories is typically relatively small, and therefore should
be manageable through direct user intervention (carry-
ing floppy disks between machines, or its drag-and-drop
analog in the virtual context) without excessive strain on
the user.

3.2 The WindowBox Security Model

In the WindowBox security model, the user can con-
struct multiple desktops, which are kept completely iso-
lated, except by explicit user action (such as a direct
point-and-click command or response to a dialog or
warning box). To a first approximation, the desktops
start off completely identical, and are provided just so
that the user can use different desktops for different
tasks. As the user uses the different desktops, each one
accumulates its own files, and applications in one desk-
top cannot access files in other desktops except by the
aforementioned user action. To aid the user in con-
sistently using the desktops for their specific purpose,
each desktop has its own network access restrictions and
code-verifying criteria (although the user would manip-
ulate these only indirectly, by defining and configuring
desktops). Many special-purpose applications would be
confined to a single desktop; other, more general appli-
cations would be “installed” in multiple desktops, but
would have different access rights, and possibly even
different behaviors, in each desktop (for example, a
word processor might have different defaults depending
on whether it is being run in an enterprise/Intranet desk-
top or a personal one).

In some ways, the multiple desktops can be considered
as representing different users logged on simultaneously.
A key difference, however, is that simple user-mediated
actions would always be able to transfer data between
one desktop and another, and (if necessary) create new
desktops or change the properties of existing ones. From
the network’s perspective, on the other hand, these desk-



tops would have very different security properties. For
example, access to the private key necessary for authen-
ticating as the user in a secure connection to a particular
server may be restricted to applications in a particular
desktop. Hence a server that only accepts secure con-
nections would implicitly require that the user access it
from only that desktop.

3.3 Examples

Most of the work of defining and configuring desktops
should be a matter of choosing among standard desktop
types with preset, mildly customizable attributes. We
suggest a few natural ones here.

3.3.1 The Personal Desktop

A simple example of a useful separate desktop is a “per-
sonal” desktop to isolate sensitive personal (e.g., finan-
cial) applications and data from the rest of the user’s
machine. Applications in such a desktop would be lim-
ited to those handling such personal matters, plus a few
trusted standard ones such as basic word processing.
These applications would also be isolated from all inter-
process communication with applications on other desk-
tops, and files created by them would be inaccessible
from any other desktop. Network access in this desk-
top would be limited to secure, authenticated connec-
tions with a small number of trusted parties, such as the
user’s bank(s) and broker(s); no general browsing or In-
ternet connections would be permitted. Similarly, the
authentication credentials required to establish authenti-
cated connections to these trusted parties would be iso-
lated in this desktop. A user with such a separate desk-
top should feel comfortable using the same machine for
other purposes without fear of exposing sensitive per-
sonal data or functionality to attackers.

3.3.2 The Enterprise Desktop

Like personal data, a user’s work-related data and appli-
cations are best kept isolated from the rest of the user’s
machine. In an “enterprise” desktop, only enterprise-
approved work-related applications would be allowed
to run, and network access would be limited to secure
authenticated connections to the organizational network
or intranet (and hence to the rest of the Internet only
through the enterprise proxy/firewall). Again, all appli-
cations on this desktop would be “sandboxed” together,

and denied inter- process communication with applica-
tions outside the desktop. The capability to authenticate
to the enterprise network would also be isolated in this
desktop. Such isolation would allow a user to access an
enterprise Intranet safely from the same machine used
for other, less safe activities.

Note that enterprise-based client-server applications ac-
tually benefit enormously from such isolation, because
they typically allow the user’s client machine to act in
the user’s name for server access. Thus if an insuffi-
ciently isolated client application opens a security hole
in the client machine, it may implicitly open a hole in
the server’s security, by allowing unauthorized attackers
access to the server as if they were at the same authoriza-
tion level as the attacked client. On the other hand, if the
client application and all associated access rights are iso-
lated in an “enterprise desktop,” then malicious or vul-
nerable applications introduced onto the client machine
for purposes unrelated to the enterprise are no threat to
the enterprise server’s security.

3.3.3 The “Play” Desktop

For games, testing of untrusted applications, and other
risky activities, a separate desktop should be available
with full Internet access but absolutely no contact with
the rest of the machine. There may be multiple play
desktops; for example, a Java-like sandbox for untrusted
network-based applets would look a lot like an instance
of a play desktop.

3.3.4 The Personal Communication Desktop

Since users are accustomed to dealing with email, Web
browsing, telephony/conferencing and other forms of
personal communication in an integrated way (as op-
posed to, for instance, receiving email in different desk-
tops), these functions are best protected by collecting
them in a single separate desktop. This desktop should
run only trusted communications applications; those
communications (email, Web pages, and so on) which
contain executable code (or data associated with non-
communications applications) would have to be explic-
itly moved into some other desktop to be run or used.
For example, a financial data file contained in an email
message from the user’s bank would have to be moved
into the personal desktop before being opened by the
appropriate financial application. Note that some com-
munications functions could also be performed in other



desktops; for example, a Web browser in the enterprise
desktop might be used to browse the enterprise Intranet
(to which applications – including browsers – in other
desktops would have no access).

3.4 How WindowBox Protects the User

Before we look at our implementation of the Window-
Box model, let us recap how WindowBox can prevent
common security disasters. Consider, for example, users
who like to download games from questionable Web
sites. Every now and then, one of the downloaded games
may contain a virus, which can destroy valuable data
on people’s machines. If the game is a Trojan Horse,
it might also inconspicuously try to access confidential
files on the PC and send them out to the Internet. If the
users were employing WindowBox, they would down-
load the games into a special desktop, from which po-
tential viruses could not spread to other desktops. Like-
wise, a downloaded Trojan Horse would not be able to
access data in another desktop.

As a second example, let us now consider the recent
spread of worms contained in email attachments. For
example, the Melissa worm (often called the “Melissa
virus”), resends itself to email addresses found in the
user’s address book. On a WindowBox-equipped sys-
tem, users would open email attachments in a desktop
that is different from the desktop in which the email ap-
plication is installed. This might be because the attach-
ments logically belong in a different desktop, or simply
because the user judges them not trustworthy enough for
the email desktop. From that other desktop, the worm
cannot access the email application, or the network, to
spread itself to other hosts.

4 Implementation

We implemented the WindowBox security architecture
on a beta version of Windows 2000 (formerly known
as Windows NT 5.0 Workstation). In our implementa-
tion, the various desktops are presented to the user very
much in the manner of standard “virtual desktop” tools:
at any given time, the user interacts with exactly one
desktop (although applications running on other desk-
tops keep running in the background). There are GUI
elements that allow the user to switch between desktops.
When the user decides to switch to a different desktop,
all application windows belonging to the current desk-

Alice

Administrators

Local Users

Everyone

Backup/Restore

Shut Down

Install Drivers

…

P
ri

vi
le

ge
s

S
ID

s

Figure 1: A sample access token

top are removed from the screen, and the windows of
applications running in the new desktop are displayed.
Windows 2000 already has built-in support for multiple
desktops. For example, if a user currently works in desk-
top A, and an application in desktop B pops up a dialog
box, that dialog box will not be shown to the user until
he or she switches to desktop B. Windows 2000 provides
an API to launch processes in different desktops and to
switch between them. We simply had to provide GUI
elements to make that functionality available to the user.

However, the desktops provided by Windows 2000 do
not, in any way, provide security mechanisms in the
sense of the WindowBox security architecture. Our im-
plementation therefore had to extend beyond what is of-
fered in Windows 2000. In this section we describe these
extensions.

Before explaining how we represent desktops as user
groups, and what changes we made to the NT kernel to
implement WindowBox security, we will briefly recap
the Windows NT security architecture.

4.1 The Windows NT Security Architecture

In Windows NT, every process has a so-called access to-
ken. An access token contains security information for
a process. It includes identifiers of the person who owns
the process, and of all user groups that person is a mem-
ber of. It further includes a list of all privileges that the
process has. Let’s assume that Alice is logged on to her
Windows NT workstation and has just launched a pro-
cess. Figure 1 shows what the access token of such a
process might look like: It includes an identifier (also
called Security Identifier, or SID) of Alice as well as of
all the groups she is a member of. These include groups



1. Allow Write Administrators

2. Deny Read Alice

3. Allow Read Everyone

Figure 2: A sample DACL

that she has explicitly made herself a member of, such as
“Administrators,” as well as groups that she implicitly is
a member of (like “Everyone”). Since she is an adminis-
trator on her workstation, her processes get a set of pow-
erful privileges (these privileges are associated with the
user group “Administrators”). The figure shows a few
examples: The “Backup/Restore” privilege allows this
process to read any file in the file system, regardless of
the file’s access permissions. The “shut down” privilege
allows this process to power down the computer, etc.

Access tokens are tagged onto processes by the NT ker-
nel and cannot be modified by user-level processes1.
When a user logs on to the system, an access token de-
scribing that user’s security information is created and
tagged onto a shell process (usually Windows Explorer).
From then on, access tokens are inherited from parent to
child process.

The second fundamental data structure in the Windows
NT security architecture is the so-called security de-
scriptor. A security descriptor is tagged onto every se-
curable object, i.e. to every object that would like to
restrict access to itself. Examples of securable objects
include files or communication endpoints. A security
descriptor contains, among other things, the SID of the
object’s owner and an access control list. The access
control list (also called Discretionary Access Control
List, or DACL) specifies which individual (or group) has
what access rights to the object at hand. It is matched
against the access token of every process that tries to ac-
cess the object. For example, consider a file with the
access control list shown in Figure 2. What happens
when Alice tries to access this file? Since her access
token includes the Administrators group, she will have
write access granted. However, the DACL of this file
explicitly denies read access for Alice (let’s forget for a
moment that Alice’s access token also contains the Re-
store/Backup privilege, which enables her processes to

1This is an oversimplification. In reality, there are some limited
operations that a user-level process can do to an access token: It can
switch privileges on and off and even (temporarily) change the access
token of a process (for example, when a server would like to imper-
sonate the client calling it). However, a process can never, of its own
volition, gain more access rights than were originally assigned to it by
the kernel.

Alice

Administrators

Local Users

Everyone

S
ID

s

Alice.Personal

Alice.Enterprise

Alice.Play

Backup/Restore

Shut Down

Install Drivers

…

P
ri

vi
le

ge
s

Figure 3: A sample access token with desktop SIDs

override this decision). Because the order of the DACL
entries matters, it is not enough that the group “Every-
one” (of which Alice is a member, as her access token
specifies) has read access. The entry that denies Alice
read access comes first, effectively allowing everyone
but Alice read access. We can see that the combination
of access tokens and security descriptors provides for an
expressive and powerful mechanism to specify a variety
of access policies.

Only the kernel can modify the security descriptor of an
object, and it will only do so if the process that is re-
questing modifications belongs to the owner of that ob-
ject. Also, the access check described above happens
inside the kernel. No user process can, for example, go
ahead and read a file if the file’s DACL forbids this.

4.2 Desktops as User Groups

Apart from the graphical representation to the user, we
internally represent each desktop as a user group. For
example, if Alice wanted three desktops for her home,
work, and leisure activities, she could create three user
groups called Alice.Personal, Alice.Enterprise, and
Alice.Play. She would make herself a member of all
three groups2. Now, whenever she logs on to her com-
puter, her access token would look like the one shown in
Figure 3. Note that the SIDs that represent her desktops
are added to the access token. This happens automat-
ically since Alice is a member of all these groups. We
call these SID’s desktop SIDs. They are marked as desk-

2In our prototype, this process is automated and happens when a
new desktop is created.



Alice

Local Users

EveryoneS
ID

s

Alice.Enterprise

Privileges
are

disabledP
ri

vi
eg

es

Figure 4: A sample access token of a desktop process

top SIDs in the access token (denoted by bold typeface
in the picture), but are otherwise just normal group SIDs.

In our implementation, we create a desktop for every
desktop SID in the access token when the user logs on.
Continuing our example, when Alice logs on, we create
three desktops. In every desktop, we start a shell (Win-
dows Explorer)3. However, we limit what each shell can
do by giving it a restricted token (the restricted token
API has been introduced in Windows 2000 and allows
processes to limit their own, or their children’s, privi-
leges): First, we remove all privileges from the access
token. Then we remove all desktop SIDs except the one
representing the desktop for which we are preparing the
access token4. Lastly, we remove the “Administrators”
SID from the token in a move to restrict access to system
files, which usually allow write access to the Adminis-
trators group. Each shell is launched with this restricted
token. Figure 4 shows the access token of the shell run-
ning in Alice’s enterprise desktop.

When Alice now starts applications or processes in one
of her desktops, they will inherit the restricted token of
the desktop’s shell. Note that this also holds for Ac-
tiveX components and other executable content down-
loaded from the network, which runs inside descendants
of the desktop’s shell.

With the system described so far, we could already im-

3For the record we should mention that there will also be a fourth
desktop that serves as a “root” desktop in which all applications have
full privileges and access to the system. Alice should stay away from
that desktop for her day-to-day work, but can use it for administrative
tasks.

4The diligent reader will object that removing a group SID from an
access token doesn’t necessarily restrict the process’ rights. Windows
2000 does the right thing: The SID is not completely removed, it is
“disabled for positive DACL entries”: If you disable the SID “Group
A” in an access token, and then try to open a file that allows only
access to Group A, this access will not be allowed. However, if you
try to access a file that explicitly denies access to Group A, access will
be denied.

plement some kind of WindowBox security. If Alice
judiciously restricted access to some files to the user
group Alice.Enterprise (and only to that group), these
files could only be accessed by applications running in
the enterprise desktop. However, one of the major goals
of the WindowBox security architecture is to relieve the
user from the burden of making difficult access control
decisions, and to “automate” this process. Furthermore,
while the user can modify the DACLs of files, this is
not true for all objects. For example, processes in one
desktop can still communicate with processes in another
desktop, and there is nothing that the user can do about
this. For this reason, we introduced the concept of “con-
fined” objects.

4.3 Confined Objects

A confined object is an object that belongs to a certain
desktop. The idea is that an object confined in desktop
A should not be accessible by any process from desktop
B. We confine objects by tagging their security descrip-
tor with the SID of the desktop they should be confined
to. For example, to confine a file to Alice’s enterprise
desktop, we would add the SID Alice.Enterprise to the
file’s security descriptor. This extension of the security
descriptor is our first modification to the NT kernel.

Our second modification makes sure that objects auto-
matically become confined: Whenever the kernel creates
a securable object (i.e., an object with a security descrip-
tor) such as a file or a communications endpoint on be-
half of a process, we confine that object to the desktop
that the creating process runs in. Note that not all objects
have to be confined. There are processes on the system
(for example system services) that do not belong to any
desktop because they are not descendants of any of the
desktops’ shells. The kernel can also create objects on
its own behalf.

Our third modification concerns the access check per-
formed in the kernel. The original access check imple-
ments the semantics of the access control list of an object
with respect to the accessing process’ access token as ex-
plained above. We changed the access check as follows:

1. Is the object confined? If so, go to 2; otherwise go
to 3.

2. Check whether the process’ access token contains
a SID that is equal to the desktop SID the object is
confined to. If so, go to 3; otherwise deny access.

3. Perform a normal access check.



Our modifications implement the WindowBox security
architecture: The desktops are completely sealed off
from each other. For example, a file saved by a word
processor in one desktop will be confined to that desk-
top and cannot be accessed by any process from an-
other desktop, including potentially malicious applica-
tions downloaded from the outside world. This goes be-
yond what default ACLs in Windows 2000 or the umask
feature in UNIX offer: First, the confinement cannot be
undone by an ordinarily privileged process (see below).
Second, there is no customizable setting that the user has
to decide on (i.e., what should the default ACL or umask
be?). Object confinement is mandatory, and cannot be
customized, or mismanaged, by the user. Also note that
confined files are usually visible to other desktops, they
are merely inaccessible. An access to a file confined to
another desktop would fail in the same way that access
to file belonging to another user would. However, by the
same token, this also implies that files within a directory
in another desktop will not be visible.

Notice that processes also become confined as they are
created (they, too, are securable objects).

Once an object is confined, it takes a special privilege to
“un-confine” it (by removing the confining SID from its
security descriptor) or to confine it to another desktop.
Since we strip all privileges from the shells (and their
children) in each desktop, no application in any desktop
can move objects from one desktop to another. However,
in each desktop we provide one process that is not re-
stricted in the same way as the shell and its children are.
This process provides the GUI to switch to other desk-
tops (the restricted processes in the desktops would not
even have enough privileges to make that switch). That
privileged process also serves as a COM server export-
ing the service to move objects between desktops. Every
process can connect to that server and ask it to move an
object from one desktop to another. The server can then
decide whether or not to do so. In our implementation,
it asks the user for confirmation before any object (such
as a file) is moved between desktops.

4.4 Restricting Network Access

The system, as described so far, can already safeguard
against a number of attacks if used consistently. Our user
Alice should never do her finances in her play desktop,
for example. Nor should she visit untrusted Web sites
while she is in her enterprise desktop. To encourage her
to abide by the latter rule, we have restricted network
access for processes running in desktops.

We modified the kernel to deny any network access to a
process running in a desktop (i.e., a process with a desk-
top SID in its access token). However, we also added
a layer in the network stack that relays network calls
of a desktop process (which would fail in the kernel)
to the privileged COM server mentioned above. This
privileged process can connect to the network, but will
only do so if the requested network address satisfies the
desktop’s policy (e.g., it is explicitly included in a list of
permitted addresses). If so, it connects to the requested
network address and returns the handle representing the
network connection back into the unprivileged process.

In our implementation, users can specify a different net-
work access policy for each desktop. The mechanism
used is powerful enough to express policies like: “only
allow connections to the corporate intranet,” “only allow
connections to www.mybank.com,” “deny any network
access,” etc.

4.5 Security Analysis

How secure is WindowBox? This question does not have
a generic answer. Rather, we need to ask how secure
a specific implementation of the WindowBox security
model is. A “secure” WindowBox implementation does
not allow malicious code to affect another desktop. For
example, a virus should not be able to infect files in a
different desktop, a data-gathering Trojan Horse should
not be able to read files in other desktops, etc. In other
words, there should be no channels between desktops,
which malicious code could exploit. The work on covert
channels has shown that it is not possible to close every
covert channel. For the purposes of this paper, a covert
channel can be defined as a means by which information
could leak from one desktop to another. Note that this
is considerably less powerful a channel than one which
a virus could actually exploit to propagate itself to a dif-
ferent desktop. For that purpose, a virus would have to
be able to write a file in one desktop, and then cause that
file to be executed in a different desktop. While our situ-
ation is not as hopeless as with covert channels, we still
believe that it is impossible to get formal assurance that
no dangerous channels exist. Windows 2000 is too com-
plex a system for us to hope to model it in a way that
would yield relevant statements about a given Window-
Box implementation.

What, then, can we say about the security of our Win-
dowBox implementation? We tried to make our imple-
mentation as secure as possible by implementing it at as
“low” a level as possible inside the kernel. The rationale



is that every malicious program has to go through certain
parts of the kernel - most notably, the access control ref-
erence monitor - in order to do anything useful, includ-
ing any attempt to access another desktop. Therefore,
we placed the WindowBox enforcement code inside that
reference monitor.

There are, however, covert channels left between desk-
tops in our current implementation. For example, files
that are not confined to a desktop could potentially be
writable by one desktop and then readable by another
desktop. To prevent this covert channel from turning
into a channel that a virus could exploit, we made sure
that none of the executable system files are writable from
any desktop. Ultimately, we believe that a lot of scrutiny
will be necessary to find and deal with other potential
channels, and that for this reason a production version
of WindowBox would need extensive testing and pro-
longed exposure to the security community.

The last part of the answer is that a WindowBox imple-
mentation would be most secure on top of an operating
system that was designed in anticipation of this kind of
security model. For example, we mentioned above that
certain applications should be installed in only one desk-
top, or that applications should be installed separately in
multiple desktops. Windows 2000 does not really allow
us to do that. For example, applications written for Win-
dows 2000 like to keep configuration data in the (system-
wide) registry or use well-known (system-global) files to
store information. Ideally, the operating system should
be designed from the ground up with the WindowBox
model in mind, thus eliminating potential cross-desktop
channels that malicious programs could exploit. How-
ever, a few key modifications to Windows 2000 would
go a long way towards supporting WindowBox more se-
curely; for example, some parts of the registry could be
replicated, with separate copies for each desktop, to al-
low applications to install transparently on some desk-
tops but not others.

Finally, we would like to remind the reader that no sys-
tem is more secure than the decisions of its user or ad-
ministrator, and that defining a security model in which
the protection of sensitive data is relatively convenient
(as is the case in WindowBox) creates the possibility
of implementations converging towards security that is
not only free of serious intrinsic holes, but also usable
enough to avoid many of the types of holes introduced by
the unsafe practices of users battling cumbersome sys-
tems.

5 Related Work

We are not the first to recognize the specific security
requirements of a ubiquitously networked world, espe-
cially in the light of mobile code. A standard goal is to
prevent mobile code, or compromised network applica-
tions, from penetrating the system. The generic term for
ways of achieving this goal is “sandboxing.” The term
was first used in [5] to describe a system that used soft-
ware fault isolation to protect system (trusted) software
components from potentially faulty (untrusted) software
components. Perhaps the best-known example of sand-
boxing is the Java Virtual Machine. It interprets pro-
grams written in a special language (Java bytecode). It
can limit what each program can do based on who has
digitally signed the program and a policy specified by
the local user. The biggest drawback of the Java ap-
proach is that it can only sandbox programs written in
Java.

Our system sandboxes processes regardless of which
language they have been written in. That, too, is not
new. In [2], Goldberg et al. show how any Web browser
helper application can be sandboxed. Their work, how-
ever, only targets processes that are directly exposed to
downloaded content, and requires expertise in writing
and/or configuring security modules.

Our system has certain resemblance to role-based access
control in that one could think of our desktop SIDs as
a user’s different roles. In fact, in [4], Sandhu et al.
imagine a system in which “a user might have multiple
sessions open simultaneously, each in a different win-
dow on a workstation screen.” In their terminology, each
“session” comprises a certain subset of the user’s roles.
Hence, in each window the user would have a different
set of permissions.

Another concept with similarities to our desktops is that
of “compartments” in Compartmented Mode Worksta-
tions (CMWs). CMWs are implementations of the Bell-
LaPadula model [1] found in high-security military or
government systems. Like CMW, we introduce “manda-
tory” security to an otherwise “discretionary” security
model. In [8], Zhong explains how vulnerable network
applications – such as a Web server – can be made less
of a threat to the rest of the system if they are run in
special compartments, shielding the rest of the system.
The WindowBox security model is in some sense weaker
than the Bell-LaPadula model. We are merely trying to
assist the user in separating his or her different roles.
For example, covert channels from one desktop to an-
other are much less of a concern to us than they are for



a Compartmented Mode Workstation: In CMWs, an ap-
plication voluntarily surrendering its data is a problem,
in WindowBox it is not (it is simply not part of the threat
model).

Domain and Type Enforcement (DTE) can also be used
to sandbox processes in a way similar to ours. In [6],
Walker et al. explain how they limit what compromised
network applications can do by putting them in “do-
mains” that don’t have write access to certain “types”
of objects, for example system files.

What distinguishes our work from the long list of other
sandboxing approaches is that all of the above use sand-
boxing as a flexible, configurable technique to enforce a
given – usually complicated – security policy. We argue
that figuring out a complex, customized security policy
is too difficult a task for most users to handle. In con-
trast, in our system we do not use a general sandboxing
mechanism to implement specific security policies. In
fact, we don’t have any security policy in the traditional
sense, except for the requirement of strict separation of
desktops. It is this simplicity of the model that we think
shows great promise for personal computer security.

Another area of related research is that of user interfaces
and security. Recently, more and more people have re-
alized that poor user interface design can seriously jeop-
ardize security (see, for example, [7]). We very much
concur with the thrust of that research. Our approach,
though, is more radical. Instead of suggesting better user
interfaces for existing security tools, we propose a com-
pletely redefined security model. One of the features of
WindowBox is that is naturally lends itself to a more
intuitive user interface for security management. Users
have to understand, and learn tools that visualize, only
one concept - the fact that separated desktops can con-
fine the potentially harmful actions of code.

6 Conclusions

In this paper, we argue that existing security mechanisms
– while possibly adequate in theory – fail in practice be-
cause they are too difficult to administer, especially for
a networked personal computer or workstation under the
control of a non-expert user. We present an alternative
to this dilemma, WindowBox, a security model based on
the concept of complete separation. While it has similar-
ities to some existing security mechanisms, it is unique
in that we do not try to provide a general mechanism
to enforce all sorts of security policies. In contrast, we

have only one policy – that of complete separation of
desktops. We believe that this “policy” is easy to under-
stand and has promise for the connected desktop.

We found Windows 2000 to be a good platform to im-
plement WindowBox on: We could leverage the existing
desktop API and were able to restrict changes to the NT
kernel to a minimum.

The WindowBox model and prototype raise several in-
teresting questions: What kinds of hidden security vul-
nerabilities might they contain, and how might they be
eliminated? For instance, instead of using our own user
interface, should we have used Window 2000’s “Se-
cure Attention Sequence”5 to make sure that an appli-
cation cannot trick the users into believing they are in
a different desktop than they really are? How usable
is a multiple-desktop environment for average users?
(We conjecture that users’ typical activities divide them-
selves up naturally in ways that correspond well with
distinct desktops, but we have done no large-scale us-
ability testing.) Should the separation be branched out
into other parts of the system, e.g., would it be useful to
have a separate clipboard for every desktop? Finally, are
there corresponding simple, intuitive models that would
apply to other environments, such as the professionally
administered server? Further research may help us to
answer these questions.

References

[1] D. Elliot Bell and Leonard J. LaPadula. Secure com-
puter system: Unified exposition and Multics inter-
pretation. Technical report, MITRE Corporation,
March 1976.

[2] Ian Goldberg, David Wagner, Randi Thomas, and
Eric A. Brewer. A secure environment for untrusted
helper applications. In Proceedings of the Sixth
USENIX Security Symposium, 1996.

[3] Butler Lampson. Protection. In Proceedings of the
Fifth Princeton Symposium on Information Sciences
and Systems, pages 437–443, Princeton University,
March 1971.

[4] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, 1996.

5This is the Ctrl-Alt-Del feature, which provides a trusted path to
an unforgeable screen.



[5] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient software-based fault
isolation. In Proceedings of the Symposium on Op-
erating System Principles, 1993.

[6] Kenneth M. Walker, Daniel F. Sterne, M. Lee Bad-
ger, Michael J. Petkac, David L. Sherman, and
Karen A. Oostendorp. Confining root programs with
domain and type enforcement. In Proceedings of the
Sixth USENIX Security Symposium, 1996.

[7] Alma Whitten and J. D. Tygar. Why Johnny can’t
encrypt: A usability evaluation of PGP 5.0. In Pro-
ceedings of the 8th USENIX Security Symposium,
Washington, DC, August 1999.

[8] Qun Zhong. Providing secure environments for un-
trusted network applications - with case studies us-
ing virtual vault and trusted sendmail proxy. In Pro-
ceedings of Second IEEE International Workshop on
Enterprise Security, pages 277–283, Los Alamitos,
CA, 1997. IEEE CS Press.


