Time-aware Provenance

for Distributed Systems

Wenchao Zhou, Ling Ding, Andreas Haeberlen,
Zachary Ives, Boon Thau Loo

University of Pennsylvania

Provenance for Distributed Systems

Goal: Develop capability to answer diagnostic questions

Attacker changes policy
to redirect traffic, so she
can intercept it

Route to foo.com
not exported to Alice

. foo.com

Route r,

We need to tackle additional challenges...
e Provenance in transient and inconsistent state
e Explanation for state changes
e Security without trusted nodes

* Nodes may be compromised by the attacker
2

Provenance in Dynamic Environments

Why did node
C’'s route to node
a change?

at time t1 at time t2 > t1
m Reason - insertion of link(a,b,1) mincosy@c,a.)
sp3@c
m Provenance for system state pathCo{(@c,aA)
Not track dependency between changes QTJ?
. L : sp2@
Possible solutllon. dlffer_encmg th_e current k(@523 i Cst(@b,a.1)
provenance with a previous version. oo
But, what about a deletion? No current A
_ pathCost(@b,a,1)
version to compare... A
sp1+@b

minCost(@b,a,1)

Provenance in Dynamic Environments

c: minCost(@c,a,4)
b: minCost(@b,a,3)
Who is right?

attimet2 >tl attimet3>t2

m Explicitly capture time
Handle question asked when the system is in transient state
Consistent view of the provenance graph

Time-aware Provenance

m Explicitly capture causalities between state changes
Explain the INSERT / DELETE of tuples
Event-based execution triggered by state changes

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1), minCost(@S,D,C2).
sp2a: ApathCost(@Z,D,C1+C2) :- link(@S,Z,C1), AminCost(@S,D,C2).
sp2b: ApathCost(@Z,D,C1+C2) :- Alink(@S,Z,C1), minCost(@S,D,C2).

Time-aware Provenance

m Explicitly capture causalities between state changes
Explain the INSERT / DELETE of tuples
Event-based execution triggered by state changes
Update due to constraints (primary keys, aggregation)

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).
insertion of minCost(@c,a,4) caused deletion of minCost(@c,a,5)

TAP Provenance Model

Why did node
C’'s route to
node a change?

attime t1 at time t2 > t1

DELETE(c, minCAost(@c,a,S), t3)

i update Update due to constraints
INSERT(c, minCost(@c,a,4), t3)

DERIVE(c, minCost(@c,a,4), sp3, t3)

INSERT(c, pathCost(@c,a,4), t3)
—
DERIVE(b, pathCost('@c,a,4), sp2@b, t2)

Eessssmsssssmsssssmssnns /._...-/’ . \ . .
: INSERT(b, link(@b,c,3), t1) | INSERT(b, minCost(@b,a,1), t2) Rule triggering

/ _ o DERIVE(b, minCost(@b,a,1), sp3, t2)
link(@b,c,3) exists in time [t1, {2]

Provenance Maintenance

m Provenance with temporal dimension
Versions of provenance
Expensive — provenance explosion

m Active maintenance
Provenance deltas — deltas between adjacent versions
Incrementally applied in querying

o)
3}
c
®
S
S

‘T
)
Q
o)
=
-
o)
=)

c
%
>
o)

m Reactive maintenance
Input logs — communications and update of base tuples
Reconstruct provenance by deterministic replay
Long-running systems? Periodic snapshots

Secure Provenance Querying

m Byzantine adversaries
May have compromised an arbitrary subset of the nodes
May have complete control over the nodes — arbitrary behavior

m Guarantees
|ldealism: Always get correct forensics results (not possible!)
Practicality: The conservative model requires compromises
s May be incomplete, but, it will identify at least one faulty node

Thank You ...

