
Provenance in the Wild

Elaine Angelino, Marc Chiarini, John Lyle,
Margo Seltzer, Christina Strong

June 20, 2011

2

What’s the Problem?

•  What does it mean to collect provenance
when you don’t control:
–  The data (types, format, organization, structure)
–  The operators
–  The environment in which its processed

June 2011

•  Can you impose/
extract any semantic
meaning to
provenance when it’s
collected by a herd
of cats?

http://www.newsrealblog.com/wp-content/uploads/2011/04/Herding-Cats.jpg

3

What do the Cats do?

•  They use data in arbitrary formats
–  Flat files
–  Unstructured, semi-structured, badly-structured
–  Proprietary formats
–  The cram twelve different kinds of data into a single container.

•  Transformations are arbitrary code
–  Pick your favorite turing-complete language.
–  Apply said language to data.
–  Transformations can depend on the environment.
–  Repeat

•  They move data around
–  Download objects from the web
–  Copy, rename objects
–  Replace objects

•  They install new software
–  New programs
–  New libraries
–  New compilers

June 2011

4

A Simple Example

•  What is the provenance of LS1.OUT?
% cd ~margo/talks/tapp-dir!
% ls –l > ~margo/LS1.OUT!

•  Audience Participation

June 2011

•  Given the following:
% cd ~margo/talks/tapp-dir!
% ls –l > ~margo/LS2.OUT!

•  Is the provenance of LS1.OUT the same as
that of LS2.OUT?

5

Not so simple?

•  What happened?
–  The behavior of ls depends on the environment.

•  Who knew?
–  ls knew
–  The shell knew what its environment was

•  BUT – did not necessarily know that ls depended on it

–  The operating system knew
•  BUT – like ls, did not know that ls depended on it

June 2011

6

Many other problems

•  This is just one example of what can go wrong.
•  Many others exist:

–  What program runs when a user types ls?
–  In what directory was ls run from?
–  What environment variables are set?

June 2011

7

What is the Fundamental
Problem?

•  Knowledge about what a program is doing is
distributed among multiple entities:
–  The program itself
–  The environment
–  The operating system
–  What OS modules are located
–  The system libraries
–  The hardware
–  The data
–  ….

June 2011

8

Provenance in a
Multi-agent World

•  Get over it: Accept the fact that multiple
agents will have something to say about
provenance.

•  OK, but agents are cats! They:
–  Have different names for things.
–  Are interested in different kinds of objects (e.g.,

tuples versus files).
–  Have different types of transformations.

•  Simply using a standard representation for
multiple accounts doesn’t solve the problem.

June 2011

9

Reconciling Accounts

•  Need to express a rich variety of
relationships:
–  Identity
–  Containment
–  Instantiation
–  Composition
–  Versioning

•  Each of these has a real, semantic meaning
that queries need to exploit.

June 2011

10

Reconciliation Example

June 2011

Let me put your
changes in a new
version of your
file orig.txt

VI
http://www.aauwmi.org/state/SocialMedia/DiscussionForum/Computer_Woman.jpg

I think I’ll change all
instances of
filesystem to file
system in orig.txt.

I see, you created a new
file /tmp/xxx, then you
renamed it, removing the
file orig.txt

11

Implications

•  Everyone needs to play in a provenance-
aware world!

•  Everyone needs to coordinate, but requiring
that everyone use the same system is a
losing proposition.

•  Maintaining a provenance-aware commodity
OS is a lot (a whole lot) of work!

•  Provenance is grow-only; if everyone is
collecting it, don’t we have a space problem?

June 2011

12

Sustainability

•  Maintaining our Linux-based provenance-aware
kernel is not sustainable.
–  Linux kernel moves quickly; porting to new versions is

hard, labor-intensive, and not research.
–  Staying on old versions makes the platform

unattractive.
–  Solution: Can we develop an easier-to-sustain and

more broadly accessible platform?
•  Alternative:

–  Can we encapsulate everything we’ve learned in user-
level libraries that applications, workflow engines,
languages, etc can use?

June 2011

13

A Proposed Architecture

June 2011

Hbase MySQL Riak BDB

Provenance Library

Python Perl Java R C

DB adapter DB adapter DB adapter DB adapter

Applications
In multiple languages

Language
adapters

Database
adapters

Provenance Store
With multiple implementations

14

About the Provenance Store

•  Provenance is grow-only.
•  There may exist some potential for pruning,

but only for objects with no descendants.
•  How do we manage provenance explosion?
•  Compression!

1.  Apply web-graph compression techniques to
provenance-graph compression.

2.  Look for common patterns, motifs, sub-graphs.
3.  Your good idea goes here.

June 2011

15

Layers of Provenance

June 2011

The Cloud

hypervisor hypervisor hypervisor hypervisor

OS
OS OS

OS
OS

OS OS
OS

OS

Apps

Apps
Apps

16

Specific Manifestations of
these Problems

1.  In integrating language and OS based systems:
Provenance Integration Requires Reconciliation,
Elaine Angelino

2.  In collecting provenance in the hypervisor:
Collecting Provenance via the Xen Hypervisor,
Marc Chiarini

3.  In the Cloud: Challenges for Provenance in
Cloud Computing, John Lyle

4.  In managing the scale of such data:
Compressing Provenance Graphs, Christina
Strong

June 2011

