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What’s the Problem? 

•  What does it mean to collect provenance 
when you don’t control: 
–  The data (types, format, organization, structure) 
–  The operators 
–  The environment in which its processed 
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•  Can you impose/
extract any semantic 
meaning to 
provenance when it’s 
collected by a herd 
of cats? 

http://www.newsrealblog.com/wp-content/uploads/2011/04/Herding-Cats.jpg 
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What do the Cats do? 

•  They use data in arbitrary formats 
–  Flat files 
–  Unstructured, semi-structured, badly-structured 
–  Proprietary formats 
–  The cram twelve different kinds of data into a single container. 

•  Transformations are arbitrary code 
–   Pick your favorite turing-complete language. 
–  Apply said language to data. 
–  Transformations can depend on the environment. 
–  Repeat 

•  They move data around 
–  Download objects from the web 
–  Copy, rename objects 
–  Replace objects 

•  They install new software 
–  New programs 
–  New libraries 
–  New compilers 
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A Simple Example 

•  What is the provenance of LS1.OUT? 
% cd ~margo/talks/tapp-dir!
% ls –l > ~margo/LS1.OUT!

•  Audience Participation 
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•  Given the following: 
% cd ~margo/talks/tapp-dir!
% ls –l > ~margo/LS2.OUT!

•  Is the provenance of LS1.OUT the same as 
that of LS2.OUT? 
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Not so simple? 

•  What happened? 
–  The behavior of ls depends on the environment. 

•  Who knew? 
–  ls knew 
–  The shell knew what its environment was 

•  BUT – did not necessarily know that ls depended on it 

–  The operating system knew 
•  BUT – like ls, did not know that ls depended on it 
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Many other problems 

•  This is just one example of what can go wrong. 
•  Many others exist: 

–  What program runs when a user types ls? 
–  In what directory was ls run from? 
–  What environment variables are set? 

June 2011 



7 

What is the Fundamental 
Problem? 

•  Knowledge about what a program is doing is 
distributed among multiple entities: 
–  The program itself 
–  The environment 
–  The operating system 
–  What OS modules are located 
–  The system libraries 
–  The hardware 
–  The data 
–  …. 
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Provenance in a 
Multi-agent World 

•  Get over it: Accept the fact that multiple 
agents will have something to say about 
provenance. 

•  OK, but agents are cats! They: 
–  Have different names for things. 
–  Are interested in different kinds of objects (e.g., 

tuples versus files). 
–  Have different types of transformations. 

•  Simply using a standard representation for 
multiple accounts doesn’t solve the problem. 
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Reconciling Accounts 

•  Need to express a rich variety of 
relationships: 
–  Identity 
–  Containment 
–  Instantiation 
–  Composition 
–  Versioning 

•  Each of these has a real, semantic meaning 
that queries need to exploit. 
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Reconciliation Example 
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Let me put your 
changes in a new 
version of your 
file orig.txt 

VI 
http://www.aauwmi.org/state/SocialMedia/DiscussionForum/Computer_Woman.jpg 

I think I’ll change all 
instances of 
filesystem to file 
system in orig.txt. 

I see, you created a new 
file /tmp/xxx, then you 
renamed it, removing the 
file orig.txt 
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Implications 

•  Everyone needs to play in a provenance-
aware world! 

•  Everyone needs to coordinate, but requiring 
that everyone use the same system is a 
losing proposition. 

•  Maintaining a provenance-aware commodity 
OS is a lot (a whole lot) of work! 

•  Provenance is grow-only; if everyone is 
collecting it, don’t we have a space problem? 
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Sustainability 

•  Maintaining our Linux-based provenance-aware 
kernel is not sustainable. 
–  Linux kernel moves quickly; porting to new versions is 

hard, labor-intensive, and not research. 
–  Staying on old versions makes the platform 

unattractive. 
–  Solution: Can we develop an easier-to-sustain and 

more broadly accessible platform? 
•  Alternative: 

–  Can we encapsulate everything we’ve learned in user-
level libraries that applications, workflow engines, 
languages, etc can use? 
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A Proposed Architecture 

June 2011 

Hbase MySQL Riak BDB 

Provenance Library 

Python Perl Java R C 

DB adapter DB adapter DB adapter DB adapter 

Applications 
In multiple languages 

Language 
adapters 

Database 
adapters 

Provenance Store 
With multiple implementations 
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About the Provenance Store 

•  Provenance is grow-only. 
•  There may exist some potential for pruning, 

but only for objects with no descendants. 
•  How do we manage provenance explosion? 
•  Compression! 

1.  Apply web-graph compression techniques to 
provenance-graph compression. 

2.  Look for common patterns, motifs, sub-graphs. 
3.  Your good idea goes here. 
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Layers of Provenance 
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The Cloud 

hypervisor hypervisor hypervisor hypervisor 
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OS OS 
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Specific Manifestations of 
these Problems 

1.  In integrating language and OS based systems: 
Provenance Integration Requires Reconciliation, 
Elaine Angelino 

2.  In collecting provenance in the hypervisor: 
Collecting Provenance via the Xen Hypervisor, 
Marc Chiarini 

3.  In the Cloud: Challenges for Provenance in 
Cloud Computing, John Lyle 

4.  In managing the scale of such data: 
Compressing Provenance Graphs, Christina 
Strong 

June 2011 


