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Linköping, Sweden -- January 2010

Workflow provenance

Raw provenance:
A detailed trace of workflow execution
- tasks performed, data transformations

- inputs used, outputs produced

Taverna type system:
- strings + nested lists
- “cat”, [“cat”, “dog”], [ [“cat”, “dog”], [“large”, “small”] ]

Dataflow model:

- data-driven execution
- services activate when input is ready
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Workflow provenance
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Implicit iteration in Taverna

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]
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Implicit iteration in Taverna
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Implicit iteration in Taverna

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

y = [ [y11 ... y1n],
           ...
        [ym1 ... ymn] ]

(0,1) (0,1)(1,1)
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Implicit iteration in Taverna

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

y = [ [y11 ... y1n],
           ...
        [ym1 ... ymn] ]

(0,1) (0,1)(1,1)

How y is computed at P:

let I = a ⊗ b = [ [ <ai, bj> | bj ∈ b ] | ai ∈ a ]   // cross product

I’ = [ [ <ai, c, bj> | bj ∈ b ] | ai ∈ a ] // same product but with c interleaved

y = (map (map P) I’) = [(map P [ <a1,c, b1> ... <a1,c, bm>]), ...,
                                      (map P [ <an,c, b1> ... <an,c, bm>]) ] = 
                                     [ [y11 ... y1n], ... [yn1 ... ynm] ]
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Implicit iteration in Taverna

X1 X2

Y

P

X3a = [a1 ... an] b = [b1 ... bm]

c = [c1 ... ck]

y = [ [y11 ... y1n],
           ...
        [ym1 ... ymn] ]

(0,1) (0,1)(1,1)

How y is computed at P:

let I = a ⊗ b = [ [ <ai, bj> | bj ∈ b ] | ai ∈ a ]   // cross product

I’ = [ [ <ai, c, bj> | bj ∈ b ] | ai ∈ a ] // same product but with c interleaved

y = (map (map P) I’) = [(map P [ <a1,c, b1> ... <a1,c, bm>]), ...,
                                      (map P [ <an,c, b1> ... <an,c, bm>]) ] = 
                                     [ [y11 ... y1n], ... [yn1 ... ynm] ]

bottom line:
yij depends only on values ai, c, bj
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Fine-grained (precise?) provenance
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Which provenance model/language?

5

• Let’s look at the Open Provenance Model as a starting point

Definition 3 (Agent). Contextual entity acting as a cat-
alyst of a process, enabling, facilitating, controlling, or af-
fecting its execution.

The Open Provenance Model is a model of artifacts
in the past , explaining how they were derived. Likewise,
processes also occurred in the past, i.e. they have already
completed their execution; in addition, processes can still
be currently running (i.e., they may have not completed
their execution yet). In no case is OPM intended to de-
scribe the state of future artifacts and the activities of
future processes.

To facilitate understanding and promote a shared vi-
sual representation, we introduce a graphical notation for
provenance graphs. Specifically, artifacts are represented
by ellipses; processes are represented graphically by rect-
angles; finally, agents are represented by octagons.

3.2. Dependencies
The Open Provenance Model aims to capture the causal

dependencies between the artifacts, processes, and agents.
Therefore, a provenance graph is defined as a directed
graph, whose nodes are artifacts, processes and agents,
and whose edges belong to one of the following categories
depicted in Figure 1. An edge represents a causal depen-
dency, between its source, denoting the effect, and its des-
tination, denoting the cause.

Figure 1: Edges in the Open Provenance Model: sources are effects,

and destinations causes

The first two edges express that a process used an arti-
fact and that an artifact was generated by a process. Since
a process may have used several artifacts, it is important
to identify the roles under which these artifacts were used.
(Roles are denoted by letter ‘R’ in Figure 1.) Likewise,
a process may have generated many artifacts, and each
would have a specific role. For instance, the division pro-
cess uses two numbers, with roles dividend and divisor,
and produces two numbers, with roles quotient and rest.

Hence, roles are similar to parameters of a function, ex-
cept that they are used to distinguish inputs and outputs.
Consequently, roles are meaningful only in the context of
the process where they are defined. The meaning of roles
is not defined by OPM but by application domains; OPM
only uses roles syntactically (as “tags”) to distinguish the
involvement of artifacts in processes.

A process is caused by an agent, essentially acting as a
catalyst or controller: this causal dependency is expressed
by the was controlled by edge. Given that a process may
have been controlled by several agents, we also identify
their roles as controllers. We note that the dependency
between an agent and a process represents a control re-
lationship, and not a data derivation relationship. It is
introduced in the model to express easily how a user (or
institution) controlled a process.

Even though an artifact A2 may have been generated
by a process that used some artifacts, this does not tell
us which artifact A2 actually depends upon. Hence, to
make this dependency explicit, it is required to assert that
artifact A2 was derived from another artifact A1. This
edge gives us a dataflow oriented view of provenance.

It is also recognized that we may not be aware of the
exact artifact that a process P2 used, but that there was
some artifact generated by another process P1. Process P2

is then said to have been triggered by P1. In contrast to
edge was derived from, a was triggered by edge allows for
a process oriented view of past executions to be adopted.
(Since these edges summarize some activities for which all
details are not being exposed, it was felt that it was not
necessary to associate a role with them.)

As far as conventions are concerned, we note that causal-
ity edges use past tense to indicate that they refer to past
execution. Causal relationships are defined as follows.

Definition 4 (Causal Relationship). A causal relation-
ship is represented by an arc and denotes the presence of a
causal dependency between the source of the arc (the effect)
and the destination of the arc (the cause).

Five causal relationships are recognized: a process used an
artifact, an artifact was generated by a process, a process
was triggered by a process, an artifact was derived from
an artifact, and a process was controlled by an agent. By
means of annotations (see Section 8), we allow edges to be
further subtyped from these five categories.

Multiple notions of causal dependencies were consid-
ered for OPM. A very strong notion of causal dependency
would express that a set of entities was necessary and suffi-
cient to explain the existence of another entity. It was felt
that such a notion was not practical, since, with an open
world assumption, one could always argue that additional
factors may have influenced an outcome (e.g. electricity
was used, temperature range allowed computer to work,
etc). It was felt that weaker notions, only expressing neces-
sary dependencies, were more appropriate. However, even
then, one can distinguish data dependencies (e.g. where

3

Core OPM
• agnostic wrt Artifact, Processor types
• roles: annotations on binary relations
• extensions by subclassing

• node types,
• relation types

Formal (temporal) semantics hopefully available soon
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OPM relations in the workflow context
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Missier, P., Ludascher, B., Bowers, S., Anand, M. K., Altintas, I., Dey, S., et al. (2010). Linking Multiple Workflow Provenance Traces for Interoperable 
Collaborative Science. Proc.s 5th Workshop on Workflows in Support of Large-Scale Science (WORKS).
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Data and invocation dependencies

7

- read, write are natural observables for a workflow run 
- possible additional relations (recorded or inferred):  

•  invocation dependencies:  

•  data dependencies: 

“a2 depends on a1” because a1 has written data d, a2 has read d 

Explicit or via: 

Explicit or via: 

“d2 depends on d1”  
! because some actor invocation a read d1 prior to writing d2 

Monday, June 20, 2011



Provenance queries 

8

•  Closure queries: 
•  operate on the transitive closure ddep* over ddep: 

But also:
- queries on the workflow structure
- queries on the data structures (e.g. collections)

and importantly:
use workflow graphs to justify/explain the provenance graph for one 
workflow run:

TA trace instance of WA:
h: TA ➔ WA homomorphism
h(x1 ➔ a1) = h(x2 ➔ a2) = X➔A,
h(a1 ➔ y1) = h(a2 ➔ y2) = A➔Y
...
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OPM extensions, principled

9

core OPM / PIL(*)
-used

-wasGeneratedBy
-wasDerivedFrom

(*) PIL = Provenance Interchange Language, W3C Provenance Working Group
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OPM extensions, principled
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who
when
where

...

(Additional
context)

Data
types

Processor
types

Nested
Ordered Lists Operators on lists:

- create, insert, 
delete, select...

- map, fold

Relations?
(sets of tuples)

Graph models?

Relational 
queries?

Graph 
matching 
queries?

core OPM / PIL(*)
-used

-wasGeneratedBy
-wasDerivedFrom

(*) PIL = Provenance Interchange Language, W3C Provenance Working Group
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Proposed extensions
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Role used in relation: Context of use
element Contained L Contained(element) x
list Used P Used(list) L
position Used P Used(position) p
term
generator
filter

Used List comprehensions, see Sec. 4.2

function
operand

Used map, see Sec. 4.3

Table 2: New roles for Used and Contained relations

Causal relation Example
Contained(R) ⊆ [τ ]×A× [Int] L� Contained([i1 . . . in]) x

x was inserted into L at position [i1 . . . in]
wasSelectedFrom(R) ⊆ [τ ]× [τ ]× [Int] L� wasSelectedFrom([i1 . . . in]) L

L� at position [i1 . . . in] was selected from L
wasRemovedFrom(R) ⊆ [τ ]× [τ ]× [Int] L� wasRemovedFrom([i1 . . . in]) L

L� at position [i1 . . . in] was deleted from L
wasSameAs ⊆ A×A L wasSameAs x

inferred (various contexts)

Table 3: Specialised OPM dependency relations.

reflect the semantics of the operation. We use the term template to indicate

that the nodes in the graph are placeholders for actual Artifacts and Proces-

sors. As we will see shortly, the graph expansion rules presented here and in

Sec. 3 apply to subgraphs in actual provenance graphs that match the template.

For each of the operations we provide one example of use, the corresponding

provenance graph template, and where applicable, the extension rule(s). The

resulting extended graphs are depitced in Fig.. 1.

Empty list creation: [] = P with P ∈∼ ().

L WasGeneratedBy ∅

List constructor (unit): L = P x with P ∈ unit .

L WasGeneratedBy P

P Used(element) x

P ∈ unit L WasGeneratedBy P P Used(element) x

L Contained x

Insertion: L� = P L x p, with P ∈ ins.

L� WasGeneratedBy P

P Used(list) L P Used(position) p P Used(element) x

P ∈ ins L� WasGeneratedBy P P Used(element) x

L� Contained x

4
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OPM fragments for elementary operations

11
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Operator composition → graph composition

12

• Equalities on operators may translate into inferences on the graphs

indicated by the value of X2. In this case, a PGA that is aware of this semantics

may produce the graph shown in box (c), where (i) the Contained dependency

is used to denote that A is a list constructed from “foo” and “bar”, and (ii)

B WasDerivedFrom “foo” (but B was not derived from “bar”). In fact, the

stronger wasSameAs dependency might have been used in this case.

(here and throughout this document, we adopt a functional notation to describe

fragments of computation that involve processors and artifacts, i.e., y = P x denotes the

observable execution of processor P on input artifact x, resulting in artifact y).

Our approach to modelling and using extensions is summarised in Fig. 3.

Core Model  - domain indpendent

Data structure + operations

Processor types ! graph templates

Graph expansion rules

Model extensions (lists)

Provenance Generating Applications
(PGA)

direct
dependencies

generator

rule-based
dependencies

generator

Operator composition ! graph composition

Observables ! provenance graph

Equations ! expansion rules

Figure 3: General approach to OPM extensions, and its use by PGAs.

3 From operator composition to provenance graph
composition

here we map typical operator compositions to graph composition and map certain laws

amongst operator compositions to graph extension rules

3.1 Example: insert-select composition

Whenever specific laws hold for the composition of operations applications, these

lawas translate into inference rules for enhancing OPM templates. As an exam-

ple, we now consider the composition sel ◦ ins. Insertion followed by selection

translates into an OPM graph template that is a straightforward composition

of the templates for the two operations. Additionally, however, the following

equality holds whenever insertion is followed by selection, if no other intervening
operation changes the state of the list :

sel(ins x L p) p = x

This law translates into the following OPM inference rule:

7

sameAs(L1,L) :- 
pType(P1, ins), used(P1, X, element), used(P1, Pos, position), wgby(L,P1),
pType(P2, sel), used(P2, L, list), used(P2, Pos, position), wgby(L1,P2).
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equality holds whenever insertion is followed by selection, if no other intervening
operation changes the state of the list :

sel(ins x L p) p = x

This law translates into the following OPM inference rule:

7

sameAs(L1,L) :- 
pType(P1, ins), used(P1, X, element), used(P1, Pos, position), wgby(L,P1),
pType(P2, sel), used(P2, L, list), used(P2, Pos, position), wgby(L1,P2).
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wasGenerated by used(list)
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Approach  applies to map, fold (reduce)...

13

Note that functions are viewed as artifacts. Let f be a function, L an input list

and p a position in the list L� = map f L. The following equality follows from

the definition of map:

sel (map f x) p = f (sel x p) (10)

This equality is captured by the inferred dependency (y wasSameAs y�) in the

enhanced OPM template of Fig. 7 (inference rule omitted for simplicity).

wasGenerated by used(list)

p

L

P:map
wasGenerated by

w
as
Sa
m
eA
s

used(list)
y L'Q2:sel

f

WasSelectedFrom

Q1:sel used(position)
us

ed
(li

st
)

x
wasGenerated by

used(function)

R:applyy'
wasGenerated by

used(function)

used(position)

used(operand)

Figure 7: Enhanced OPM graph template for map, showing the inference due

to equality (10)

Add inference rules for map

5 Provenance of a complex list operator: the
Taverna iteration model

TODO

A URIs for new dependencies

B Serialisation
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Take-home message

14

• OPM (PIL) a candidate starting point for workflow-based 
provenance

• extension mechanisms are provided, but they must be used 
sensibly

– data types
– processor types

• Provenance of nested ordered lists used as a prototypical example

– semantics of provenance graphs and graph composition grounded in the 
semantics of lists

• Can this approach be useful for other interesting data types?

– sets of tuples / relational algebra
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