Combining Dependent Annotations for Relational Algebra

Egor V. Kostylev, Peter Buneman

University of Edinburgh

Theory and Practice of Provenance, 2011

Semiring Model

- Domain of annotations for positive relational algebra (SPJU) is expected to be a semiring [Green, et al.]
- What to do if we need to annotate a database with 2 domains R₁ and R₂?
- Simple answer: the set of pairs $R_1 \times R_2$.
- Does it always work?

Semiring Model

- Domain of annotations for positive relational algebra (SPJU) is expected to be a semiring [Green, et al.]
- What to do if we need to annotate a database with 2 domains R₁ and R₂?
- Simple answer: the set of pairs $R_1 \times R_2$.
- Does it always work?

Semiring Model

- Domain of annotations for positive relational algebra (SPJU) is expected to be a semiring [Green, et al.]
- What to do if we need to annotate a database with 2 domains R₁ and R₂?
- Simple answer: the set of pairs $R_1 \times R_2$.
- Does it always work?

Example

Exports:

CName	Goods	Time	Customers
Greece	Food	2004-2008	UK, Germany
Greece	Textile	2007-2010	Germany, Italy, Cyprus

Time – sets of **years** with \cup and \cap as operations Customers – sets of **countries** with \cup and \cap as operations

$$\mathbf{Q} = \pi_{\text{CName}}(\text{Exports})$$
:

CName	Time	Customers
Greece	2004-2010	UK, Germany, Italy, Cyprus

Is it the answer we expect?

Example

Exports:

CName	Goods	Time	Customers
Greece	Food	2004-2008	UK, Germany
Greece	Textile	2007-2010	Germany, Italy, Cyprus

Time – sets of **years** with \cup and \cap as operations Customers – sets of **countries** with \cup and \cap as operations

$$\mathbf{Q} = \pi_{\text{CName}}(\text{Exports})$$
:

CName	Time	Customers
Greece	2004-2010	UK, Germany, Italy, Cyprus

Is it the answer we expect?

Graphical representation

```
([2004-2008], {UK, Germany})
([2007-2010], {Germany, Italy, Cyprus}):
```


Graphical representation

([2004-2010], {UK, Germany, Italy, Cyprus})

Combined domain of dependent annotations

It is impossible to represent the desired set of dots by a single pair of elements from the combining domains.

Combined annotation – a set of pairs from $R_1 \times R_2$.

Combined domain of dependent annotations

It is impossible to represent the desired set of dots by a single pair of elements from the combining domains.

Combined annotation – a set of pairs from $R_1 \times R_2$.

Example: Combined annotation

```
\lambda_1 = \{([2004-2008], \{UK, Germany\}) \\ ([2007-2010], \{Germany, Italy, Cyprus\})\}:
```


Example: Combined annotation

```
\lambda_2 = \{([2004-2006], \{UK, Germany\}) \\ ([2007-2008], \{UK, Ger, Italy, Cyprus\})\}: \\ ([2009-2010], \{Germany, Italy, Cyprus\})\}:
```


Semiring of Combined Annotations

- define an equivalence in combined annotations
- define a semiring of equivalence classes of combined annotations
- define a normal form for equivalence classes
- design an algorithm to compute normal forms

Do it carefully to make it work for (almost) all semirings (no difference, idempotence, etc.)