

ORACLE®

Fine Grain Provenance Using Temporal Databases

Outline of the talk

- Use case: Classic management of patient data
 - Data types, queries
 - History
 - Security and context information
- Fine grain provenance I
- Smart management of patient data
 - Facts, knowledge, and information
 - The model
 - Classification and customization
- Fine grain provenance II
- Implementation details
- Conclusion

Use Case

Classic Management of Patient Data

Data Types

- Structured Data SQL
- Semi structured data XML
 - **HL7** Health Level-7
- DICOM Digital Imaging and Communications in Medicine
- Text
- Any mix

Data Manipulation and (continuous) queries

- SQL 92 and 99
- XQuery
 - HL/7 verbs
- DICOM verbs

- Text processing verbs
- Mixed use of languages

History

- Data management for patient history
 - No extended data model
 - Simplifies programming significantly
 - Standard update, insert, delete
- Queries
 - The current values
 - The values/images at a specific time
 - The values/images <u>as seen</u> at a specific time
 - The evolution of values/images

Security and Context Information

- All queries and temporal queries support (fine grain) security
 - A doctor/nurse can only access data from patients s/he is currently treating
- Additional information recorded by the data base
 - The transactional context of any change or query
 - The transactional context includes host, database/OS user, program

Fine Grain Provenance - I

- The database is able to answer the following questions
 - What was a single or set of values at a given time from the current perspective?
 - What was a single or set of values at a given time from an earlier perspective – imported to deal with corrections
 - What is the history of a single or a set of values
 - Was a value ever corrected?
 - What is the history of correction?
 - Who was responsible for providing/deleting a value?
 - Which program created the value?
 - Who looked at specific values?

Smart Management of Patient Data

• The issue:

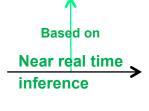
- Rapidly increasing amount and complexity of data
- Rapidly increasing amount and complexity domain knowledge
- Data and knowledge have grown way beyond the capacity of a human cognitive system

A solution

- Capture knowledge and personal preferences
 - Vocabularies, rules/models, classifications, customizations
- Capture facts as done in classic support
- Transform data (facts) into information using captured knowledge
 - Alert medical personnel about time critical adverse conditions

ORACLE

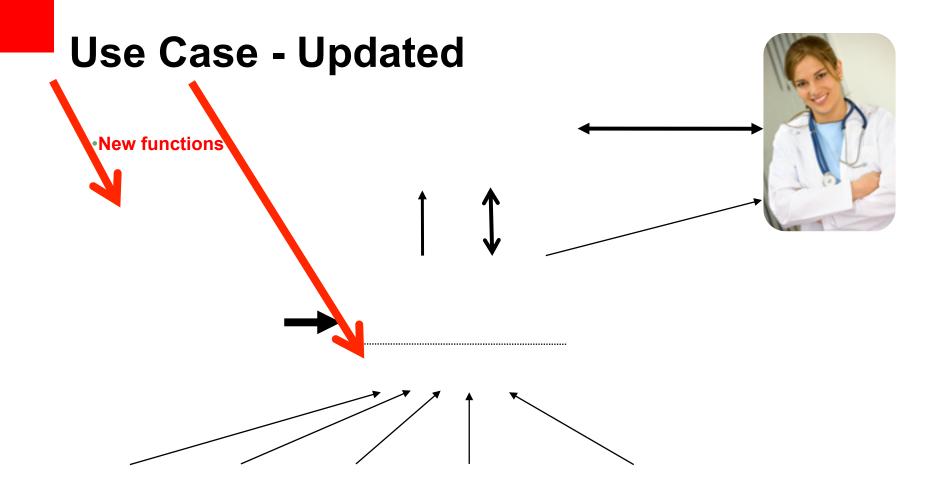
The Model


Facts

Knowledge

Information

Patient Care
Applications**


Information - selective Qualitative*

* Qualitative information is preferred by the human cognitive system

** The application is as declarative as possible

ORACLE

Information and Incidents

- Information is created as soon as new data/facts or new knowledge become available
 - The information is a compact and qualitative representation of important facts
 - The temperature is critical
 - The blood chemistry indicates a high probability of a cardiac arrest
 - The information has a high uncertainty, additional tests are recommended
 - Information is bundled as incidents
 - Alert is issued for time critical information
 - Doctors can review the status of the patient on a qualitative level
 - What is important; i.e., show incidents with certain characteristics
 - Show the history of selected incidents
 - Is the patient improving as expected?
 - If needed the doctor can also look at the quantitative data

ORACLE

Fine Grain Provenance - II

- Full auditing and tracking of facts
 - Implies full auditing and tracking of information
- Full Description and versioning of
 - Knowledge rules, queries, model, programs, ...
 - Who developed/tested/deployed/changed the knowledge elements and when
 - Classifications
 - Who developed/tested/deployed/changed the classification and when
 - Customizations
 - Who deployed/changed the customization
- The evolution of the information is now visible
 - What are the facts and knowledge behind information and incidents?
 - Do I accept the information?
 - Why did a colleague come to a (different) conclusion?
 - Why was the information (diagnosis) changed?

Conclusions

- Databases support management of and access to a wide variety of data
- Temporal databases provide full support for auditing and tracking – no user programming required
- Adding knowledge management to data management provides full support for provenance - no user programming is required

Questions Comments Suggestions

Read Consistency - Oracle's Flashback

- One of the main features of Oracle is consistent read
 - No read locks are taken
 - Instead data is read as of a point in time in the past before all uncommitted changes (using undo)
- Flashback extends CR to be able to read data as of a point in time in the recent past (using undo)
- Total Recall extends flashback to go back far in the past
- Using flashback, it is possible to see data/information/ knowledge as it was at any point in time, providing the main building block for provenance

Temporal Database Support – Oracle's Total Recall

- Total recall provides a way to enable transaction time history on a table for a specified retention
- Using total recall it is possible to do flashback queries
- "As of" queries enable the user to read a row/table as of a point in time
- "Versions" enable the user to get all committed versions of a row/table between a range of time
 - Provides the transaction start/end time of version, transaction context of creator of version
- Audit used for tracking queries
- Valid time support can also be added in future

A Classification Model

Uniform classification of data

• Value: Normal, guarded, serious, critical

· Urgency: Stat, ASAP, none

Uniform classification of change

Type: deteriorating, improving

· Rate: rapid, slow

Statistical temporal change model

 Patient is not improving as expected by model M₁

Uniform classification simplifies queries

- Find all patients with critical condition lasting more than 2 hrs in the last 5 years
- Identify important incidences/adverse conditions

Classification - Design Principles

Uniform classification

- Simplifies aggregating elementary quantitative information into highly compact representation
- Reduces the number of queries, rules, and models significantly
 A vital is deteriorating
 - A vital is deteriorating fast
 - The patient does not improve as expected

Personalized classification rules

- Adjust to the preferences of a group, a doctor, or specific condition of a patient
- Adjusts to the specific situation of a patient

Classification Methods

• Decision tables, rules, models, manual

Classification With a Decision Table

		Lower Range				Upper Range			
	Critical	Serious	Guarded	Normal	Normal	Guarded	Serious	Critical	
TEMPERATURE	34.5	36	37	37.0	38.4	38.4	40	42	
HEART_RATE	40	50	60	60	100	100	125	150	
SYSTOLIC_BP	70	80	90	90	140	140	160	190	
DIASTOLIC_BP	40	50	60	60	90	90	100	110	
MEAN_ARTERIAL_PRESSURE	60	65	70	70	105	105	110	115	
RESPIRATORY_RATE	8	10	14	14	26	26	30	35	
OXYGEN_SATURATION	80	85	90	90	100				
WEIGHT									
EKG									
со	3		4	4.0	6.0	6		8	
CI	2.2		2.6	2.6	4.2	4.2		6	
SVR	600	700	800	800	1200	1200	1400	1600	
CWP				4	12				
INTRA_ABD_PRESSURE				5	15	15	20	30	

Note: Columns **Guarded** and **Normal** contain intentionally the same information

ORACLE