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Abstract

Repeated executions of resource-intensive workflows
over a large number of runs are commonly observed in
e-science practice. We explore the hypothesis that, in
some cases, provenance traces recorded for past runs of a
workflow can be used to make future runs more efficient.
This investigation is an initial step into the systematic
study of the role that provenance analysis can play in the
broader context of self-managing software systems. We
have tested our hypothesis on a concrete case study in-
volving a Chemical Engineering workflow deployed on
a cloud infrastructure, where we can measure the cost of
its repeated execution. Our approach involves augment-
ing the workflow with a feedback loop in which incre-
mental analysis of the provenance of past runs is used to
control some of the workflow steps in subsequent execu-
tions. We present initial experimental results and hint at
future improvements as part of ongoing work.

1 Introduction

Computing infrastructures for e-science are increasingly
capable of tracing their data products through the com-
plex processes, sometimes encoded as workflows, by
means of which those products are created. Exam-
ples of such provenance-aware systems include the
Taverna [11], Kepler [3], Pegasus [5], VisTrails [4],
eScience Central [14], and Galaxy [13] workflow sys-
tems, amongst others. Despite growing interest in prove-
nance management components, however, only a few
case studies of “provenance in use” in concrete settings
can be found in the literature (one such case is the use
of provenance in Galaxy to enable reproducible science
[10]). We are interested in exploring the potential for
exploitation of large provenance corpora, accumulated
by any of these systems during multiple workflow exe-
cutions, to deliver added value to users (the scientists)
as well as to infrastructure providers. More specifically,

in this paper we focus on the common e-science sce-
nario where the same resource-intensive workflow is re-
peateadly executed a large number of times on different
inputs. In this setting, we begin to explore the hypoth-
esis that analysis of the traces accumulated during past
runs of a workflow may lead to more efficient runs of the
same workflow in the future.

Our approch involves adding some form of adaptive
control to an existing workflow, with provenance analy-
sis at its core. In a sense, the idea of adding adaptivity to
processes situates our work within the broader scope of
self-adaptive systems, a term originally coined by IBM
in 2001 [8] to denote software systems that can dynami-
cally adapt their behaviour in response to changing con-
ditions in the inputs or in their environment (changes in
capacity of the infrastructure, for example). Since then,
a number of adaptive systems have been built [7]. These
systems are characterised by a common architectural pat-
tern, namely the MAPE-K loop (Monitor, Analyse, Plan,
Execute, Knowledge), depicted for instance in [9]. In
this pattern, an element of the system is coupled with
an autonomic manager which can monitor the element’s
behaviour and react to certain events by acting upon the
element itself or its environment. For example, such a
manager could monitor a web server’s response time and
decide to increase the pool of active servers to prevent
the performance from degrading.

Our scenario differs slightly from the standard self-
adaptive system setting, in that it involves repetitions of
the same process over time, rather than a long-lived sys-
tem. Despite this difference, however, our approach can
still be described in terms of the MAPE-K loop, where
the autonomic manager consists of a provenance collec-
tor (the Monitor) and analysis component (the Analyser),
as well as a new recommender task that is added to the
workflow (the Executor). In turn, the recommender is in-
formed by a Knowledge component that encapsulates an
encoding of all past provenance traces.

This is where the similarity with traditional self-



adaptive systems ends, however, because adaptive ap-
proaches generally assume that changes that require re-
action occur in some predictable way over time. In con-
trast, in our setting future inputs to the same workflow
may be completely unrelated to past recent inputs, whilst
they may instead be similar to input datasets observed at
any time in the remote past. For the same reason, past
research in the area of self-adjusting computation [2] is
only superficially attractive here, as it is based on the as-
sumption that some portion of past computations can be
salvaged when its corresponding inputs change slightly.
Instead, the hope to encounter again inputs that have
been observed at some arbitrary point in the past suggests
that our problem can be cast in terms of the Case Based
Reasoning (CBR) framework. CBR [1] is based on the
principle that a collection of previously solved problems,
which are stored in the case base, can be leveraged to
tackle a new, but similar problem.

Following this idea, in this paper we describe a case
study where a Chemical Engineering workflow (Sec. 2),
deployed on the eScience Central infrastructure, is exe-
cuted a large number of times (over 10,000 in our initial
experiments, with more input datasets becoming avail-
able) and provenance traces are generated for each run.
We present our CBR-based approach in Sec. 3. Our case
base at any point in time consists of an encoding of the
entire collection of traces up to that point. As a new exe-
cution progresses, its intermediate data products at some
critical point in the workflow become available as part of
a new provenance trace.These are matched against exist-
ing cases, in order to predict the effectiveness of some of
the workflow tasks that follow. The recommender uses
the analysis to predict the effectiveness of those tasks,
and to selectively enable or disable some of them. As
part of our initial experiments (Sec. 4), we show how this
adaptive loop can lead to more efficient computations in
the long term. However, our early results indicate that
more work is needed to fine-tune the case base and rea-
soning components of the system, as discussed at the end
of Sec. 4.

The case study represents one instance of a general
workflow pattern that lends itself well to our adaptive op-
timisation, making our early results interesting beyond
the narrow scope of the example. Optimisation of this
class of workflows is especially important when the tasks
are deployed on cloud nodes, where their execution in-
curs a monetary cost. Ultimately, our goal is to offer
users well-defined trade-offs between cost of execution
and the accuracy / completeness of the results.

2 QSAR and the DiscoveryBus workflow

One of the computational problems at the forefront of
current Chemical Engineering research involves estab-

lishing correlations between the structure of molecu-
lar compounds and some of their associated activities,
including toxicity, solubility, etc. The approach fol-
lowed in the OpenQSAR project1 involves training mul-
tiple machine learning schemes, using a dataset con-
sisting of compounds that are representative of a fam-
ily of structurally homogeneous molecules, for instance
Wombat SID2353 AID1 human thrombin. This
learning activity produces one or more models that are
trained to predict molecular activity of new compounds
that belong to the same family, based on a selection of
their structural features. The experts’ experience sug-
gests that different learning schemes, including linear re-
gression, neural nets, and decision trees amongst oth-
ers, perform differently on different compound fami-
lies, in terms of their resulting predictive power. Thus,
the chemical engineer’s strategy is to apply multiple
schemes to an input dataset, and then select those mod-
els that perform best on that particular dataset. In Open-
QSAR, this strategy is encoded as a workflow, called
DiscoveryBus, which scientists can apply systematically
to a large number of compound families [6]. This makes
DiscoveryBus an examplar of a class of highly repetitive
workflows that include a number of resource-intensive
tasks, i.e., the learning schemes. An abstract rendering
of one run of the workflow (denoted by the superscript
i), is shown in Fig. 1.

Feature Selection

Model Discovery

MB1 MBh

M(i)11 M(i)1h M(i)k1 M(i)kh

FS(i)1 FS(i)k

DS(i)

Figure 1: Sketch of Discovery Bus workflow. DS(i) de-
notes one about 10,000 data series. The number k of
selected ferature sets varies with i. In the current imple-
mentation, there are only h = 4 model builders, leading
to kh models for each input data series.

1http://www.openqsar.com/. QSAR stands for “ Quantita-
tive structure-activity relationship”.
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The i-th run of DiscoveryBus takes as input a target
activity type a, such as toxicity, with associated do-
main values, e.g. low, mid, high and a data series
DS (i), consisting of specific molecules. The workflow
generates a potentially large number of models. Two
sources of uncertainty contribute to this proliferation.
Firstly, as mentioned, the workflows computes a set of
H predictive models, M1,M2 . . .MH , such that each
Mi is capable of predicting the activity value for prop-
erty a of a new compound d that belongs to the same
family DS (i). Each of the H models is generated us-
ing a different learning scheme, each implemented by a
different Model Builder task, MB1 . . .MBH (H = 4
in the current implementation, while additional builders
may added at a later time).

The second factor is the choice of features vectors used
as input to each of the builders. Each builder operates
on a set of features extracted from the raw input DS (i).
A large number of features can potentially be extracted
from the molecular structure (over 4,000 features are
documented in the literature). To reduce this space, task
Feature Selection first generates the features, and then se-
lects subsets of independent features by correlation anal-
ysis. This task, however, generates a set of k(i) > 1 can-
didate combinations of features, FS (i)

1 . . .FS (i)
k , rather

than a single set of features, with each combination po-
tentially leading to useful models. Each FS (i)

j includes
the actual vectors for each d ∈ DS (i), and for a spe-
cific subset of features. This results in the generation of
k(i)H models for each run. Associated to each model is a
collection of performance metrics, which ultimately are
summarized into a simple accept/reject value q for the
model, referred to as the quality of the model (this can
be generalised in the future to a more complex quality
domain).

3 Provenance-driven incremental process
improvement

The history of about 10,000 actual runs performed in the
context of OpenQSAR, each including H = 4 builders
and k(i) = 25 feature sets on average, has been cap-
tured into a provenance database. This translates into
a total of about 1 million generated models over time.
What makes DiscoveryBus interesting as a testbed for
our adaptive process improvement experiment is that less
than 10% of these models turns out to be acceptable, i.e.,
exhibits sufficient predictive power to be used reliably.
Our objective is therefore to reduce the number of gen-
erated models, while still generating the majority of the
good models that exist in the models space. Each run i
has a set of provenance graphs associated to it, one for
each builder h : 1 . . .H and for each set of k(i) feature

sets. Using OPM notation [12], each graph fragment is
of the form:

M (i)
jh

WasGeneratedBy→ MBh
used→ FS (i)

j (1)

FS (i)
j

WasDerivedFrom→ DS (i) (2)

Crucially, rather than performing a post hoc analysis of
the entire provenance corpus, we have used this collec-
tion to simulate an incremental learning process in which
only the provenance graphs accumulated up to run i are
used to steer run i+1 of the DB computation, in an adap-
tive fashion. Furthermore, note that we are going to need
a complete provenance trace (as opposed to the simpler
input/output dependencies), as our predictors of model
builder quality are the FS , which are intermediate results
observed half-way through the computation.

Our approach is designed to be applicable to the
generic workflow pattern shown in Fig.2, in which n ex-
perts are simultaneously consulted using the same input
dataset, and their response is then combined (task results
merge). In the DiscoveryBus case study the steps up-
stream from the pattern generate the feature sets, the se-
lection step simply distributes them to the experts, which
represent model builders, and the merge task filters out
the unacceptable models. We add a new recommender
step to the workflow, a task designed to improve the effi-
ciency of the process, measured as the ratio of the num-
ber of good models to the total number of generated mod-
els. The recommender takes as input a feature set FS and
returns a list of builders, sorted in priority order accord-
ing to the decision logic described in detail below. Such
logic is based upon a representation of the provenance
graph fragments that accumulate at the end of each run,
which are captured and stored by the new online prove-
nance analysis task.

3.1 Time-accuracy trade-offs
In this enhanced version of the workflow, the expert se-
lection task invokes the experts in the order suggested by
the recommender. Furthermore, the number 1 ≤ n ≤ H
of builders that are invoked is a configurable parameter
that provides a way to tune the efficiency/accuracy trade-
off offered by the recommender: a greedy selector will
only try the first builder (n = 1) and is prepared to miss
out on good models that can potentially be produced by
the builders that follow. This selector is optimistic, as it
assumes good recommendations, in the sense that for any
input FS it expects to find the good models, if any, by us-
ing the first builders in the list. A prudent selector, on the
other hand, is prepared to try more of the H builders, in
turn, thus ensuring that no good models will be missed
(high accuracy), but possibly at the cost of exploring the
entire space of models.
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Figure 2: Sketch of a provenance-enhanced workflow in-
cluding a recommender task for steering a “expert con-
sult and results merge” pattern

3.2 Recommender algorithm

The recommender follows the general Case Base Rea-
soning paradigm [1], based on the principle that a col-
lection of previously solved problems, which are stored
in the case base, can be leveraged to tackle a new but
similar problem. The new problem may not find an exact
match in the case base, but rather, a similarity function
is defined to compute the best possible match. Normally
the existing solution(s) are likely to require an adaptation
step rather than being directly applicable. In our setting,
one case consists of one provenance graph fragment as
defined in (1). A case base consists of a set of mappings
of the form FS → QM , where FS is a feature set that
has been observed in at least one run, and QM is a qual-
ity matrix that encodes the success history of each model
builder MB1 . . .MBH in the workflow when it is applied
to FS :

QM FS [MBh] = 〈G, B〉

where G (resp. B) is the number of times MBh has been
observed to produce a good (resp. bad, i.e., q = 0) model
when applied to input FS . The builders’ success rate

G
G+B in the context of QM FS induces the desired par-
tial order. The matrices are updated by the provenance
analysis task whenever a new model is generated, and
consulted by the recommender whenever a new feature
set is generated, as follows.

Thus, in this setting each case is encoded as a quality
matrix, and the case base is indexed by the set of FS . In
the initial version of our algorithm, we match each FS
representing a new case exactly to one entry in the case
base, i.e., lookup into the case base is by set equality. In
the next section we discuss improvements to this baseline
algorithm, in which set equality is replaced by a more
general set similarity function. Each quality matrix is
updated and retrieved as follows.

Update. When a new provenance fragment is recorded
during run i, i.e., for each FS (i)

j computed by Feature
Selection and for each new model generated by one of the
builders MBh, the corresponding QM

FS
(i)
j

is updated

(or created, if this is the first occurrence of FS (i)
j ):

QM
FS

(i)
j

[MBh] =

{
〈G + 1, B〉 if 〈M (i)

jh , 1〉 WGBy→ MBh,

〈G, B + 1〉 if 〈M (i)
jh , 0〉 WGBy→ MBh.

Lookup. The set of all QM is indexed by feature set.
Every time a new FS is generated, the recommender
simply looks up QM FS and returns all the builders, par-
tially ordered by their success rate. It is then up to the
expert selector to decide how many of those builders
will be invoked, depending on its time/accuracy setting.
Note that we allow the recommender to provide a null
response when the FS is used for the first time. This is
important in practice, as the space of FS that are found in
the provenance database is rather sparse, so that the ma-
jority of FS is only used once (making its QM useless).
We will return to this point in the next section.

4 Experimental setup and early results

We now present early experimental results obtained by
using this baseline recommender algorithm. To test its
effectiveness, we have used the historical provenance
database produced by OpenQSAR to “play back” the
history of the runs and thus simulate the incremen-
tal refinement of the quality matrices associated with
each FS over the entire runs history, as described in
the previous section. For this, the entire provenance
database is scanned in the natural order of its runs. Each
run i is broken down into provenance records of the
form 〈FS (i)

j ,MBh,M (i)
jh , q〉 for some j, h as in (1) For

each such record:

1. the recommender provides a list of builders, based
on the current content of the case base prior to
adding this record to the case base (because in re-
ality the outcome of this builder is not known to the
recommender at this stage);

4



2. if q = 1, then a hit for the recommender is recorded
if any of the first (in the partial order sense) n
builders is MBh, and a miss is recorded otherwise.
Here n is the trade-off parameter from Sec.3.1. If
q = 0, no hit or miss are recorded and the recom-
mender’s success rate is unchanged.

3. QM
FS

(i)
j

[MBh] is updated in the case base and this
outcome becomes available to the recommender.

In practice, the simulator records the success rate of
an expert selector that follows the recommendations. We
generally expect to observe an increase in recommenda-
tion accuracy as the sequence of runs progresses. Impor-
tantly, however, we must distinguish the net success rate,
i.e., the number of number of hits as a fraction of the
number of recommendations given, from the gross suc-
cess rate, as a the number of hits over the total number
of recommendations requests received. The latter in-
clude the requests for which the recommender abstained,
not having sufficient information in the quality matrix to
provide a meaningful list of builders. Net accuracy is re-
ported in Fig. 4, for the four possible values of the trade-
off parameter n (max-attempts). As we can see, the
net success rate stabilises between 40% and 80% quite
early on in the runs sequence, depending on the value of
n, and it is predictably higher when we allow for more
of the builders down the list to be used. Gross success
rate, on the other hand, is disappointingly low (Fig.4).
The main reason for this low rate is that the vast major-
ity of the FS generated by the workflow are only used
once, as the histogram in Fig. 5 illustrates, making the
corresponding quality matrices uninformative.

Our ongoing work is currently focused on improving
the gross success rate, by increasing the density of the
FS space. We hope to achieve this by incrementally
clustering over the space of FS (clustering is incremen-
tal because new FS are added with each new run). We
can then replace naı̈ve set equality with a similarity met-
ric, such as the Jaccard set similarity J(A,B) = |A∩B|

|A∪B| .
In this improved setting, one quality matrix is associated
to each cluster, rather than to each individual FS . We
are specifically experimenting with hierarchical cluster-
ing, which provides control over the density of the FS
space and is therefore ideal for exploring the trade-offs
between cluster density and effectiveness of the corre-
sponding quality matrices.

5 Summary and Extensions

In this paper we have described our initial explo-
ration into the hypothesis that provenance of workflow-
generated data can play an important role in the context
of self-managing systems. We are focusing specifically
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Figure 5: The vast majority of each FS are only used
once, making for a poor case base when exact FS match
is used for case lookup.

on the application of data mining and automated learn-
ing from a large but structurally very simple corpus of
provenance traces, observed through a large number of
runs of the same workflow. We have presented one ini-
tial application of this idea, by showing that provenance
traces can be encoded into a case base that can be used
for the incremental improvement of a repetive process.
Our case study is focused on a resource-intensive Chem-
ical Engineering workflow. A provenance-driven recom-
mendation step is added to the workflow in order to prune
the space of potential solutions that the workflow needs
to explore during any given run. Our initial experimen-
tal results suggest that intermediate data products found
in the provenance traces make for potentially interest-
ing predictors of output quality, however more work is
needed to exploit them effectively.
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