
Challenges in managing implicit and abstract provenance data:

experiences with ProvManager

Anderson Marinho, Marta Mattoso, Claudia Werner,

COPPE – Federal University of Rio de Janeiro, Brazil

Vanessa Braganholo and Leonardo Murta

Computing Institute – Fluminense Federal University, Brazil

Abstract

Running scientific workflows in distributed and heterogeneous environments has been motivating the definition of

provenance gathering approaches that are loosely coupled to workflow management systems. We have developed a

provenance management system named ProvManager to manage provenance data in distributed and heterogeneous

environments independent of a specific Scientific Workflow Management System. The experience of using

ProvManager in real workflow applications has shown many provenance management issues that are not addressed

in current related work. We have faced challenges such as the necessity of dealing with implicit provenance data and

the lack of higher provenance abstraction levels. This paper discusses and points to directions towards these

challenges, contextualizing them according to our experience in developing ProvManager.

1. Introduction

Provenance provides historical information about data

manipulated by a workflow [1]. This historical infor-

mation expresses how data products were generated,

showing their transformation processes from primary

input and intermediary data. Managing this kind of

information is extremely important since it provides

scientists with a variety of data analysis applications.

For instance, from provenance information it is possible

to verify data quality of generated products, because

one can look at the ancestral data to check reliability.

Other examples are [2]: possibility to audit trails to

verify what resources are being used; data derivation

capability; experiment documentation; responsibility

attribution; among other applications.

To improve the experiment analysis using provenance

information, it has to be modeled, gathered, and stored

for further queries. Provenance management is an open

issue that is being addressed by several forums world-

wide. One of the open problems relates to which prove-

nance data should be gathered and how they can be

collected. Provenance gathering becomes more com-

plex when the experiment is executed at distributed and

heterogeneous environments, such as clusters, P2P,

grids, clouds, and on several different Scientific Work-

flow Management Systems (SWfMS).

One can foresee several scenarios of experiment execu-

tion in a distributed and heterogeneous environment.

Often, a single experiment is executed by more than

one workflow. The need for breaking a conceptual

experiment in two or more separate workflow execu-

tions can occur due to several reasons. One important

reason is the presence of long manual activities along

the experiment. To avoid a long break point in the

workflow, it is often broken into two separate workflow

executions. Also, part of the experiment may need to be

executed in a SWfMS that provides parallelism, while

another part of the experiment may need to be executed

in a system that supports results visualization. In this

case, each SWfMS may manage provenance

information in a decentralized and isolated way, mean-

ing that each system considers provenance in a specific

granularity, stores the information using a specific

model, or even worse, some SWfMS may not provide

any support for provenance management at all. In situ-

ations like that, experiments would benefit from a ho-

mogeneous management of provenance [1].

We developed a provenance management system

named ProvManager [3] to address the problem of

integrating provenance from different workflows that

are a part of a single scientific experiment. For instance,

suppose that an experiment workflow is broken into

two workflows (workflows#1 and workflow#2) that

execute in different machines. When workflow#1 and

workflow#2 are executed, ProvManager can relate

artifacts from these two executions as if they were one

single workflow execution. Even though ProvManager

has contributed to managing provenance in distributed

and heterogeneous environments, it has also exposed

more challenges that still need to be addressed. In fact,

these challenges are generic provenance management

issues, and not necessarily connected to distributed

environment scenarios as the one previously

exemplified. The two main challenges we address in

this paper are: the necessity of registering implicit data

manipulated by the workflow activities and the lack of

higher abstraction levels to help scientists to better

understand the experiment’s provenance data. This

paper details these challenges, which are considered as

research opportunities to provide better homogeneous

provenance management approaches. It is important to

note that some queries of the fourth IPAW Provenance

Challenge go in the same direction of the two

challenges discussed in this paper. This provides

additional insights of the relevance of these two

challenges.

2. Background

The Open Provenance Model (OPM) [4] defines a ge-

neric representation for provenance data. It is an initia-

tive towards a homogeneous model to provide interop-

erability between workflows from different SWfMS.

However, this is only part of the solution. Even if all

SWfMS are OPM compliant, there is still the need to

gather compatible provenance data and to provide an

integrated control of the distributed provenance data

with query support. Additionally, OPM only supports

retrospective provenance information.

A solution to this heterogeneity and distribution prob-

lems is to transfer the responsibility of provenance

management to a provenance system that does not de-

pend on the SWfMS. This system would be responsible

for allowing the modeling, capturing, storing, and que-

rying of provenance data for the whole experiment.

This idea is shared by several works [5-7], but the main

difficulty of being SWfMS agnostic is that the SWfMS

and the provenance management system need to com-

municate to exchange information. In order to make

this communication possible, some initiatives [5], [8],

[9] propose a series of manual activity adaptations over

the workflow specification. However this solution in-

troduces overhead to scientists.

In previous work [10], we have claimed that scientists

should not have this computational burden. Further-

more, some workflow activities used by scientists are

from third parties, which make their adaptation even

more complex. In fact, in many cases these activities

cannot be altered, at least not in a direct manner. For

this reason, we have proposed ProvManager [3], an

approach for dealing with integrated provenance man-

agement in distributed and heterogeneous environ-

ments. ProvManager gathers provenance data inde-

pendently and allows scientists to focus on the essence

of their experiments and make use of the best technolo-

gies to enact their workflows. ProvManager is able to

transparently gather and store provenance data collected

from different SWfMS, translating it to an integrated

provenance model that represents the experiment as a

whole. As a result, scientists are able to perform prove-

nance queries over the experiment even if it is com-

posed of multiple workflows and enacted on different

SWfMS.

ProvManager gathers both prospective and retrospec-

tive provenance information. It uses the workflow

specification created by the SWfMS as the source of

information to extract prospective provenance. The

retrospective provenance, based on OPM, is gathered

by the workflow activities during the workflow execu-

tion. However, the workflow activities need to be

adapted to support the provenance gathering mecha-

nism.

ProvManager provides a mechanism to automatically

adapt the workflow activities to support provenance

gathering. Once a workflow activity is adapted, it is

capable of collecting its own provenance information

that is generated during the workflow execution. The

adaptation is done indirectly by modifying the work-

flow specification and inserting new workflow activi-

ties to collect the provenance information. According to

the workflow activity specification (e.g., output and

input ports and how they are connected with other ac-

tivities), Provenance Gathering Activities (PGA) are

created to intercept data consumed or produced by each

activity port. Additionally, information about the activ-

ity execution time is collected by other specific PGA.

Finally, the workflow region containing the original

workflow activity and the related PGA are “wrapped”

into a composite activity in order to maintain the origi-

nal workflow visual aspect.

Figure 1.a illustrates an experiment example being

published in ProvManager. This experiment is

segmented in two workflows: one workflow is

instantiated in Kepler [11] that invokes parallel

execution through Hadoop [12], while the other is

instantiated in VisTrails [13], which focuses on

visualization of the generated results. Figure 1.b shows

the workflow in VisTrails with more details. The

fragment is composed of three activities: GetData,

Validate, and Simulate, running on a remote host with

IP address 192.168.0.5.

Figure 1. Conceptual and concrete activities

To capture provenance data from this experiment, the

scientist has to publish it in ProvManager by uploading

the workflow specifications (in the case of VisTrails, a

.VT file). At this moment, ProvManager instruments

the workflow by automatically adding PGA activities

that are responsible for capturing and publishing

retrospective provenance data in ProvManager during

the workflow execution. During the instrumentation,

ProvManager captures prospective provenance data

from the workflow specification and publishes them in

the repository. This repository is a Prolog database, so

provenance data are mapped into Prolog predicates.

Figure 1.b shows the .VT file mapped into Prolog

predicates. Finally, at the end of the instrumentation, a

new .VT file is returned to the scientist to be reloaded

in VisTrails. This workflow specification is the one that

should be executed. Currently, ProvManager can only

instrument workflows executed in Kepler and

VisTrails. However, the ProvManager architecture was

conceived to easily accommodate additional SWfMS.

Figure 1.c illustrates some operational details on how

the workflow activity GetData is adapted using PGA.

Notice that some PGA is placed before the activity

execution (PGA1), and others are placed after it (PGA2

and PGA3). This decision depends on the type of

provenance that needs to be gathered. For instance, the

PGA agents that use the API operation

notifyActivityExecutionStart have to be executed before

the original activity in the sub-workflow. The opposite

happens to PGA that uses the API operation

notifyActivityExecutionEnd.

As discussed before, from the experience of construct-

ing ProvManager, we have faced two main challenges:

the necessity of dealing with implicit provenance data

and the lack of higher provenance abstraction levels. In

the next sections we detail these challenges.

3. Implicit provenance data

The strategy of indirectly adapting workflow activities

by inserting PGA is interesting because it allows any

workflow activity to support the provenance gathering

mechanism. Additionally, it does not affect the

workflow’s basic structure. Nevertheless, when we

tested ProvManager with some real experiments, we

realized that this strategy had some limitations. Users

claimed that important provenance information was not

being collected by ProvManager.

By analyzing this problem, we noticed that ProvMan-

ager fails in gathering provenance data when these are

not explicitly declared in the workflow specification.

This is a problem because there are some types of ex-

periments where the workflow activities are not com-

pletely specified in terms of consumed and produced

data. In such cases, the activities input and output ports

are not declared in the specification, but they do exist in

the workflow execution. For example, workflow

activities may generate files in a specific directory, and

these files may serve as input data to other workflow

activities. In many cases, these files (and the directory

where they are generated) are not listed as output or

input of those activities. In some other cases, they are

only partially listed. For example, the directory where

the workflow activity is going to read or create files

may be specified in the workflow specification, but not

the file names. Another common situation is when files

do not have specific names, varying according to each

workflow execution (e.g., file names contain the work-

flow execution number id, execution date, etc.).

Figure 2. Conceptual and concrete activities

Figure 2 summarizes the scenarios that can occur when

data are not explicitly declared in the workflow

specification. When this happens, two different data

flows occurs in parallel: the first one occurs in the

SWfMS domain, representing the data that the

workflow system can collect and the other one occurs

in the operating system (OS) domain, representing the

data that are not collected by the SWfMS. For example,

in Figure 2 the workflow activity A transmits data to

activity B by means of a shared specific file (img.jpg).

The workflow specification, however, does not register

this information. Instead, it is only aware that activity A

sends an array of numbers to activity B ({1, 3, 5}).

Similarly, activities B and C exchange information

through files. However, in this case, the workflow

specification defines the directory where the files are

created (c:\data). This is better than the previous case

but the SWfMS still does not know precisely what files

are going to be created or used by these activities.

Finally, workflow activities C and D illustrate the ideal

scenario for provenance management, since the file

they use is explicitly defined in the workflow

specification (c:\res.zip). However, even in this last

case some problems still arise. If the file name does not

change at each workflow execution, all the data

generated in previous executions will be lost or altered.

This is a typical scenario that happens frequently in the

experiment design. However, provenance gathering

approaches are currently not prepared to deal with it,

including ProvManager. Exceptional cases are

provenance gathering approaches that work at OS level

[1]. For instance, [14] has defined, inside VisTrails, an

infrastructure to collect provenance information that is

created in specific directories in the OS. However, this

has to be explicitly configured by the scientist by

defining the directory or the file path where the

information is going to be created. Currently,

ProvManager totally depends on the information

defined in the workflow specification to create the PGA

to intercept all the data consumed and generated by the

workflow activities. If there are implicit dataflow in the

workflow specification, the provenance gathering

mechanism of ProvManager will only register partial

provenance information.

4. Lack of higher provenance abstraction
levels

In a broad sense, a provenance gathering mechanism

can work at three semantic levels [1]: operating system

(OS), workflow, and activity.

Mechanisms that work at the OS level gather

provenance information by using OS tools (e.g., file-

system and system call tracer). They are SWfMS

independent, but the collected provenance is usually at

a fine grain. At the workflow level, a SWfMS is

responsible for gathering all the provenance

information. One of the advantages is the ease of

implementation, but the gathering mechanism is bound

to a specific SWfMS and it is difficult to use the same

mechanism in other SWfMS. Finally, at the activity

level, as previously discussed, each workflow activity is

responsible for gathering its own provenance

information. One of the advantages is the SWfMS

independency, just like in the OS level. However,

mechanisms working at this level demand extra effort

from scientists to adapt workflow activities.

The key difference of provenance gathering mecha-

nisms that work at OS level when compared to the other

approaches is the provenance information granularity.

At the workflow and activity level, the collected prove-

nance information is partially or totally mapped to the

information which scientists are used to dealing with

(i.e., the information defined in the workflow

specification). For example, from these mechanisms, it

is possible to know the execution time of the workflow

activity “calculate average” or the value generated by it

in the output port “average”. This is not the case for

mechanisms that gather provenance at OS level. The

information collected by these mechanisms is fine

grained, and as such, it is not represented in the same

abstraction level that has been defined in the workflow

specification.

For example, using the system call tracer to track the

processes being executed in the OS, the gathering

mechanism can register that a process running

“matlab.exe” has been executed at a specific time.

Furthermore, using the file system, the provenance

gathering mechanism detects that a file (containing the

average result) has been created by the same process.

However, in a typical scenario, scientists may not know

exactly which programs are used in the workflows and

how they behave in the execution environment. In the

aforementioned example, scientists would need to know

that MatLab is the program used by the workflow

activity “calculate average”. The same happens to the

file created by MatLab. Scientists would need to know

that this file is the generated data from the output port

“average” of the workflow activity “calculate average”.

Without additional info, the provenance data collected

at this abstraction level are not really helpful to

scientists in the experiment analysis.

Similarly, the same problem happens with higher-level

provenance data abstractions. A workflow specification

can be represented at least in two different abstraction

levels: conceptual and concrete. The first one represents

the experiment workflow in a high abstraction level,

without concerning about aspects such as methodology,

technology, and so forth. The concrete workflow is a

specialization of the conceptual workflow which is

instantiated in a specific SWfMS. At this level, the

aforementioned aspects are defined resulting in a varia-

tion of the workflow structure, insertion of new work-

flow activities and adaptation of existing ones in order

to comply with new constraints. Figure 3 presents a

fragment of a deep-water oil exploitation workflow in a

conceptual and concrete representation [15]. In the left

hand side we have a conceptual activity named “Analy-

sis of Platform Movements”, which is related to a

sequence of concrete activities shown in the right hand

side of the Figure. These concrete activities clearly

establish one possible way for a particular SWfMS to

implement an analysis of platform movements.

Currently, most provenance systems are only concerned

with managing provenance data at the abstraction level

defined in concrete workflow specifications. However,

in the analysis process of their experiments, many sci-

entists need to analyze provenance in higher abstraction

levels, and this requires the management of provenance

at such level. For example, we can have a conceptual

workflow with an activity named “characterize air-

plane”. This activity is implemented in a concrete

workflow by four activities: “identify distance”, “iden-

tify speed”, “identify model”, and “identify direction”.

Each concrete workflow activity creates a specific piece

of data about the airplane. However, the provenance

analysis would benefit from information about the air-

plane as a whole, related to the conceptual workflow.

Some works [16] manage conceptual provenance data

but they do not deal with concrete provenance data and

not even map these two provenance data abstractions.

Figure 3. Conceptual and concrete activities

5. Conclusions

In this paper, we have discussed two challenges in the

scientific workflow provenance management research

area. These challenges were evidenced while using

ProvManager in the provenance data management of

real scientific experiments. The first one regards to the

provenance management systems inability of collecting

provenance data that has not been explicitly defined in

the workflow specification. The second challenge is

related to the lack of higher level (abstract) provenance

data to help scientists to have a macro experiment

perception.

Some solutions can be envisioned to address these

challenges. For example, an initial solution to manage

implicit provenance data is to adopt a provenance gath-

ering mechanism that works at the OS level. This

mechanism would help the provenance system to mon-

itor the creation of provenance data in specific directo-

ries. A first step towards addressing the second

challenge could be to have the provenance system

managing the so-called “conceptual provenance data”

via a specific mapping to the existing “concrete

provenance data”.

Currently, the previously described issues and solutions

are being investigated. Additionally, we continue to

evolve ProvManager by managing provenance data

from real experiments.

Acknowledgements

This work is partially sponsored by CNPq, CAPES and

FAPERJ.

References

[1] J. Freire, D. Koop, E. Santos, e C. T. Silva,

“Provenance for Computational Tasks: A

Survey”, Computing in Science and Engineering,

v.10, n. 3, pp. 11-21, 2008.

[2] Y. L. Simmhan, B. Plale, e D. Gannon, A Survey

of Data Provenance Techniques. Computer

Science Department, Indiana University, 2005.

[3] A. Marinho et al., “Managing Provenance in

Scientific Workflows with ProvManager”, in

International Workshop on Challenges in e-

Science - SBAC, Petrópolis, RJ - Brazil, 2010, pp.

17-24.

[4] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J.

Myers, e P. Paulson, “The Open Provenance

Model: An Overview”, in Provenance and

Annotation of Data and Processes, 2008, pp.

323-326.

[5] Y. L. Simmhan, B. Plale, e D. Gannon, “A

Framework for Collecting Provenance in Data-

Centric Scientific Workflows”, in ICWS, 2006,

pp. 427-436.

[6] P. Groth et al., “An Architecture for Provenance

Systems”, fev-2006. [Online]. Available:

http://eprints.ecs.soton.ac.uk/13216/. [Accessed:

19-jul-2010].

[7] E. Ogasawara et al., “Exploring many task

computing in scientific workflows”, in MTAGS

09, Portland, Oregon, 2009, pp. 1-10.

[8] S. Munroe, S. Miles, L. Moreau, e J. Vázquez-

Salceda, “PrIMe: a software engineering

methodology for developing provenance-aware

applications”, in International Workshop on

Software Engineering and Middleware, Portland,

USA, 2006, pp. 39-46.

[9] C. Lin et al., “Service-Oriented Architecture for

VIEW: A Visual Scientific Workflow

Management System”, in Services, 2008, pp.

335-342.

[10] A. Marinho et al., “Integrating Provenance Data

from Distributed Workflow Systems with

ProvManager”, in International Provenance and

Annotation Workshop - IPAW, Troy, NY, USA,

2010, pp. 0-3.

[11] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B.

Ludascher, e S. Mock, “Kepler: an extensible

system for design and execution of scientific

workflows”, in Scientific and Statistical

Database Management, Greece, 2004, pp. 423-

424.

[12] J. Wang, D. Crawl, e I. Altintas, “Kepler +

Hadoop: a general architecture facilitating data-

intensive applications in scientific workflow

systems”, in Proc. of the 4th Workshop on

Workflows in Support of Large-Scale Science,

Portland, Oregon, 2009, pp. 1-8.

[13] S. P. Callahan, J. Freire, E. Santos, C. E.

Scheidegger, C. T. Silva, e H. T. Vo, “VisTrails:

visualization meets data management”, in Proc.

SIGMOD, Chicago, Illinois, USA, 2006, pp. 745-

747.

[14] D. Koop, E. Santos, B. Bauer, M. Troyer, J.

Freire, e C. T. Silva, “Bridging workflow and

data provenance using strong links”, Scientific

and statistical database management, p. 397–

415, 2010.

[15] W. Martinho et al., “A Conception Process for

Abstract Workflows: An Example on Deep

Water Oil Exploitation Domain”, in 5th IEEE

International Conference on e-Science, Oxford,

UK, 2009.

[16] L. Salayandia e P. da Silva, “On the Use of

Semantic Abstract Workflows Rooted on

Provenance Concepts”, Provenance and

Annotation of Data and Processes, p. 216–220,

2010.

