
Provenance Map Orbiter:
Interactive Exploration of Large Provenance Graphs

Peter Macko
Harvard University

Margo Seltzer
Harvard University

Abstract

Provenance systems can produce enormous provenance
graphs that can be used for a variety of tasks from deter-
mining the inputs to a particular process to debugging
entire workflow executions or tracking difficult-to-find
dependencies. Visualization can be a useful tool to sup-
port such tasks, but graphs of such scale (thousands to
millions of nodes) are notoriously difficult to visualize.
This paper presents the Provenance Map Orbiter, a tool
for interactively exploring large provenance graphs using
graph summarization and semantic zoom. It presents its
users with a high-level abstracted view of the graph and
the ability to incrementally drill down to the details.

1 Introduction

Many provenance systems are capable of producing such
large amounts of provenance that it is difficult to visu-
alize and analyze. While this is especially true of ap-
proaches that operate at the level of an operating system
such as PASS [14] or Story Book [18], the problem of
scale is more general: For example, the provenance that
comes with the MiMI data set (around 6 GB) [12] is sig-
nificantly larger than the data (270 MB). As systems that
capture provenance age, the depths of the provenance
graphs continue to grow, and it is reasonable to expect
graphs numbering in the millions of nodes. Such graphs
capture information about all objects used by a compu-
tation, often including information less relevant to the
computation itself, e.g., shared libraries. Nonetheless, in
some instances, this is precisely the provenance desired
to debug configuration problems or software incompati-
bilities.

Visualization can be a useful tool in supporting such
tasks, but large graphs are notoriously difficult to visu-
alize. It seems to be a universal experience that the best
graph layouts for provenance are hierarchical, such as
dot [9] (a part of Graphviz), but their computation usu-

ally does not scale beyond a few thousand nodes. The
computation of other kinds of layouts, such as force-
directed layouts, scale to much larger graphs, but the re-
sulting layouts are too difficult to interpret by end users.
Furthermore, it is well-known that node-link diagrams
with many thousands of nodes are too large for users to
navigate comfortably.

This problem has been historically approached by the
provenance community by displaying only the nodes that
are “relevant to the user,” which are specified using a fil-
ter (often expressed as a simple query) [1] or using a view
(described using a high-level language, or hard-coded –
usually a neighborhood of the node of interest) [16, 19].
We discuss this further in Section 4.

There are many tasks for which the ability to interac-
tively explore the entire provenance graph is beneficial;
our goal is to provide that ability without requiring that
the user specify queries or views – an error-prone and dif-
ficult process for most end users. Debugging workflows,
debugging provenance-aware applications, and develop-
ing provenance queries are all examples of tasks that be
eased through a visualization approach that does not re-
quire the user to provide a view or query a priori. We
discuss these examples later in Section 2.

The Provenance Map Orbiter is a tool for interac-
tively exploring large provenance graphs without requir-
ing prior filtering or view specification. It uses graph
summarization to present the user with a high-level view
of the provenance graph and semantic zoom [3] to al-
low her to incrementally explore the details. It combines
this ability with the traditional approaches for displaying
only “relevant nodes.” To date, we have found Orbiter
extremely useful in our own provenance analysis, but we
would like to solicit input from the community on other
ways in which visualization can be generally useful.

In the next section, we make the case for whole-graph
exploration. In Section 3, we describe our approach to
the problem and relate it to other provenance visualiza-
tion projects in Section 4. We conclude in Section 5.



Workflow Execution Time

Legend:

Process

Object

Summary node

Data flow

Control flow

Version edge

UNIX pipe

Workflow Execution Time Workflow Execution Time

Figure 1: Semantic Zoom. Left: a high-level view of Linux’s login process and its dependencies. Middle & Right: the progress
of zooming into the bash summary node (in the lower-right corner), representing the login shell and the corresponding user session.
Larger versions (with slightly different layout settings) of the first and the third panel are in the appendix.

2 The Case for Whole-Graph Exploration

The traditional approach to provenance visualization
shows only the relevant nodes, as specified by a filter,
or as defined by a view. While this is sufficient to answer
the most common questions about provenance of scien-
tific workflows, the ability to easily explore the entire
provenance graph makes it easier for the users to answer
many more interesting questions. Most of the scenarios
below involve discovering data in the provenance trace
that was never supposed to be there. For example:

Debugging Workflows. The user can visually in-
spect the part of the provenance graph that is relevant
to a workflow execution and look for potential problems.
Specifying the appropriate filter or a query for this task is
fairly tricky, and an incorrect filter might easily cause the
user to miss the problem. For example, a typical query
asks for all ancestors of the workflow result, but this is
not good enough if one of the steps of the computation
produced a file that was never supposed to be produced,
such as an error log or a core dump. Such a file would not
appear in the query result. It is further not uncommon for
a workflow result to have tens of thousands of ancestors;
thus depending on the scale, the query needs to be even
more restrictive to produce a result that is easily visu-
alized. Another problem occurs if the operating system
executes a process that does not appear in the lineage,
but still affects the computation. For example, starting
a substantial cron job in the background could influence
the results of a benchmark.

Developing Queries. Whole-graph navigation helps
in developing complex lineage queries. It rapidly pro-
vides the user with a high-level view of what is recorded
in the provenance trace. Such views can reveal impor-
tant details about regions of interest in the graph, such as
which node attributes and edge types are relevant for the
query. The visualization also helps the developer verify
that the query does not omit important details, such as
error log files.

Debugging Provenance-Aware Applications. Visu-
alization is useful when integrating provenance from

multiple systems (e.g., PASS and StarFlow [2]), as it re-
veals whether the connections between the two systems
are present, correct, etc. We also found visualization to
be useful in debugging our various object versioning al-
gorithms in PASS.

Finding Hidden Gems. Finally, while exploring
traces collected by the PASS research kernel [14], we
found small subgraphs devoted to system-level tasks
such as DHCP configuration, setting up SSH connec-
tions, or starting a Gnome session. It was interesting to
learn, for example, which processes are invoked by if-up
(the program that brings up a network interface).

3 Description

Orbiter accepts RDF/N3 [4] and OPM [13] data and dis-
plays a provenance graph as a node-link diagram, where
some nodes correspond to actual objects in the graph, and
other nodes correspond to summarizations of collections
of nodes from the graph.

3.1 Zoom – Fundamental to Navigation

Semantic zoom [3] is a fundamental part of graph explo-
ration in Orbiter, by which users drill down into sum-
mary nodes simply by zooming into them. We built Or-
biter around a geographical map metaphor (hence the
word “map” in the project’s name): The user starts with
a coarse-level view of the world and incrementally ex-
plores the details by going through different zoom levels,
from a view that displays the entire “country” all the way
to the “street-level” view.

The process of zoom is illustrated in Figure 1 on an
example of a trace in which the user logs into a Linux
system and runs a script. The image on the left shows
the provenance of Linux’s login process together with its
dependencies and direct descendants. At this level, there
are two summary nodes (rectangles in the diagram): a
node containing all shared libraries used by login (up-
per left) and a bash node containing the interactive login

2



P

A B

F

P

A B

F

P

A B

F

Workflow Execution Time Workflow Execution TimeWorkflow Execution Time

(a) (b) (c)

Figure 2: Graph Summarization. In this example, process P executed processes A and B. Process A produced file F, which
was then read by process B. (a) Each process (primary node) becomes its own summary node (rectangles in the diagram). (b) The
summary nodes are placed into a hierarchy using the control flow information. (c) Each secondary node is placed into the summary
node that contains all of its ancestors and descendants.

shell and the user’s session (lower right).
The following two screenshots show the process of

zooming into the bash node to reveal more details about
the login shell. As the user zooms into the summary
node, it expands into multiple nodes showing the ad-
ditional details, as illustrated by the rightmost screen-
shot. The nodes show extra information about the de-
pendencies and the child of the actual bash process –
some of which are again represented as summary nodes.
Summary nodes can be nested, so the user can drill into
the graph to learn the details in an incremental fashion.
We learn that the user executed auto-pilot.pl (3rd panel,
bottom-right), which is again represented as a summary
node. By zooming into this node (figure (c) in the ap-
pendix), we learn that the script executed a Blast work-
load, consisting of formatdb and blastall processes, and
that the results were further processed using a Perl script.

3.1.1 Creating Summary Nodes

Orbiter creates summary nodes as follows: It treats pro-
cesses as primary nodes by default and constructs a sum-
mary node for each primary node (process). This is il-
lustrated in Figure 2, part (a), in which the process nodes
A, B, and P were placed into their own summary nodes
(drawn as rectangles). The designation of primary nodes
is configurable, so for example, a user could designate
important files as primary nodes.

Orbiter then arranges the summary nodes into a hier-
archy. For example, if the primary nodes are processes,
they are organized using the process tree reconstructed
from the control flow information contained in the prove-
nance trace. For example, in Figure 2, there are control
dependency edges denoting that processes A and B were
executed by process P, so we move the summary nodes
corresponding to A and B inside the summary node for
process P. This step is illustrated as part (b) of the figure.

We found that organizing process summary nodes us-
ing a process tree produces an easy-to-understand visual-
ization, since processes often correspond to tasks mean-

ingful to the user. They also nest naturally: For example,
a make process is meaningful to the user, and if she needs
more detail, she can zoom into it to see the gcc and ld
processes that constitute the build.

In the next step, illustrated in part (c) of the figure,
Orbiter moves all secondary nodes to their appropriate
summary nodes. For each secondary node n, it obtains
a list of its immediate ancestors and descendants, and
finds a summary node that contains all of them. It then
moves n inside that summary node. In our example, the
neighbors of file F are processes A and B, which are both
contained in P’s summary node. Orbiter thus moves F
inside this summary node. This step is repeated until no
more changes can be done.

The summarization algorithm finishes by combining
objects of similar type into the appropriate summary
nodes. For example, Orbiter merges all “*.so” files
within each summary node generated in the previous
steps into a “Shared Libraries” node.

In summary, to create a process summarization, Or-
biter creates a summary node for each process (primary
node), and then arranges these summary nodes in a way
that reflects the process tree reconstructed from the con-
trol flow information found in the provenance trace. It
then moves all non-processes (secondary nodes) in the
appropriate summary nodes. The algorithm is not spe-
cific to processes and process trees; it can be applied to
any kind of primary node, as long as those nodes can
be meaningfully organized into a tree. If the provenance
graph contains a collection of objects, they can also be
grouped into a summary node.

3.1.2 Advantages and Limitations

Semantic zoom enables Observer to scale to large graphs,
since the graph layout can be computed incrementally
only for the expanded summary nodes – so that we do
not need to compute the layout for the entire graph at
once. Using this approach alone, we were able to load a
provenance graph with several tens of thousands of nodes

3



Figure 3: Filters & Queries. The user specifies the filters and
simple lineage queries (in the form of special filters) in a filter
editor displayed above. The filters are combined with “and.”

into Orbiter and explore it comfortably.
On the other hand, there are cases when the prove-

nance graph does not contain enough semantic informa-
tion that allows it to be summarized well, or it is a degen-
erate case – such as when the graph contains nodes with
high fanout. Our algorithm might produce several large
summary nodes, each of which might be too large to rea-
sonably visualize. In this case, the user can still continue
to explore the graph with the aid of filters, queries, and
domain-specific views.

Investigating better ways of handling such degenerate
cases, as well as finding different methods for graph sum-
marization, is an important part of our future work.

3.2 Filters and Queries
The user can hide unnecessary nodes by specifying filters
on the node attributes, such as name, type, or timestamp.
The displayed provenance graph updates interactively as
the user edits the filters. The filters are applied to the
underlying provenance graph, not to the summary nodes.

The user can further combine the filters with simple
lineage queries, e.g., find all nodes that are descendants
of “auto-pilot.pl” and ancestors of “AB.out”. The queries
are specified in the form of filters; the query above would
be expressed for node N as: N ∈ Descendants(“auto-
pilot.pl”) ∧ N ∈ Ancestors(“AB.out”).

The user specifies both the filters and the queries in a
filter editor (Figure 3). Orbiter automatically chooses the
appropriate editor components based on guidelines in-
spired by Eisenstein and Puerta [7]. Currently, we spec-
ify the nodes in a query by their numerical IDs, but this
restriction will be removed in a near future.

3.3 Views
The visualization has limited support for browsing the
provenance through views that are not node-link dia-
grams. For example, we found it useful to implement
a view that superimposes the process tree on a timeline
(Figure 4). The green segments on the figure correspond

Figure 4: Process Tree View. A view that displays the pro-
cess tree on the workflow timeline. The green segments corre-
spond to the times the process was running.

to the times the given process was executing, which we
found useful for checking whether there was any other
process running at the same time as our benchmark. Se-
lecting a process creates an additional filter on the prove-
nance graph, in which only the nodes relevant to the pro-
cess are displayed.

The view is currently hard-coded in the visualization
application. Enabling the users to specify their own
views of the data through a high level language (akin to
Adenine [19]) is a part of our future work.

3.4 Other Features

Finally, Orbiter supports other, more standard features,
such as: clicking on a node to expose details about the
node, search by node attributes, process and file summa-
rization, and version collapsing.

3.5 Implementation

We implemented Orbiter as a Java application. It
uses OPM Toolbox [15] and Sesame [17] to parse the
OPM [13] and RDF/N3 [4] input formats, respectively.
Once the data is loaded, the program uses a custom
graph library specifically build for Orbiter, in which sum-
mary nodes are first-class citizens. Finally, Orbiter uses
Graphviz [10] to compute the layout of nodes within
each expanded summary node.

4 Related Work

Several provenance visualization systems provide func-
tionality similar to many of Orbiter’s features. Prove-
nance Browser [1] provides filtering, where filters
are expressed as QLP queries. As in Orbiter, the
filtered view can be easily incrementally refined.
Zoom*UserViews [5] allows the user to select relevant
nodes, and it then groups irrelevant nodes into sum-
mary nodes. But unlike Orbiter, summary nodes can-
not nest. Provenance Explorer [11] hides irrelevant
nodes behind edges rather than summary nodes. Click-
ing on an edge shows the hidden nodes, but just like in
Zoom*UserViews, this is limited to only a single level
of expansion. PLUS [6] allows the users to specify a

4



function that determines an arbitrary representation of a
subgraph, but to our knowledge, not recursively.

Nesting of summary nodes is a novel feature in Or-
biter, enabling users to incrementally drill down to de-
tails. To the best of our knowledge, Orbiter’s ability to
ingest and explore graphs on the order of 105 nodes is
also unique. Provenance Browser can also ingest large
graphs, but the user has to to write a query that returns a
small subset to visualize; this might be difficult for some
users, and it detracts from the interactive experience.

Finally, there are features we have not yet incorporated
into Orbiter. In Haystack [19], users can specify views
using a high-level programming language. Probe-It! [16]
presents the data in three predefined views, each suitable
for a different task. Provenance Browser also supports
multiple views, and it has a more general way of query-
ing provenance. We plan to incorporate some of these
features, but our emphasis to date has been on supporting
interactive viewing of large graphs. We are particularly
intrigued by the idea of adapting VisTrails [8] workflow
provenance to accelerate the exploration of different fil-
ter and visualization settings by tracking the provenance
of Orbiter’s visualization component.

5 Conclusion

In this paper, we present a technique for interactively
exploring large provenance graphs, using graph summa-
rization and semantic zoom to solve the problem of scale.
This work is by no means complete: besides the tasks
mentioned throughout the paper that need to be tackled,
we would like to solicit feedback from the broader prove-
nance community in order to further improve the tool.

6 Acknowledgments

We are grateful to Krzysztof Gajos for suggesting the
idea of semantic zoom, and to Uri Braun for ensuring
that our implementation of summary nodes follows a
sound theoretical model. We thank Hanspeter Pfister for
a valuable feedback on an early prototype of Orbiter, and
the anonymous TaPP reviewers for their thoughtful com-
ments on this paper.

7 Availability

The copy of the tool can be requested by emailing
pass@eecs.harvard.edu.

References
[1] ANAND, M. K., BOWERS, S., ALTINTAS, I., AND LUDSCHER,

B. Approaches for exploring and querying scientific workflow

provenance graphs. In IPAW (2010), vol. 6378 of LNCS, Springer,
pp. 17–26.

[2] ANGELINO, E., YAMINS, D., AND SELTZER, M. I. StarFlow:
A script-centric data analysis environment. In IPAW (2010),
vol. 6378 of LNCS, Springer, pp. 236–250.

[3] BEDERSON, B. B., AND HOLLAN, J. D. Pad++: A zoom-
ing graphical interface for exploring alternate interface physics.
In ACM Symposium on User Interface Software and Technology
(1994), pp. 17–26.

[4] BERNERS-LEE, T., AND CONNOLLY, D. Notation3 (N3): A
readable RDF syntax. Tech. rep., W3C, 1 2008.

[5] BITON, O., BOULAKIA, S. C., DAVIDSON, S. B., AND HARA,
C. S. Querying and managing provenance through user views in
scientific workflows. In ICDE (2008), IEEE, pp. 1072–1081.

[6] CHAPMAN, A., ALLEN, M. D., BLAUSTEIN, B., SELIGMAN,
L., WOLF, C., MORSE, M., AND ROSENTHAL, A. PLUS:
Provenance for life, the universe and stuff. Tech. rep., MITRE
Corporation, 2010.

[7] EISENSTEIN, J., AND PUERTA, A. R. Adaptation in automated
user-interface design. In International Conference on Intelligent
User Interfaces (2000), pp. 74–81.

[8] FREIRE, J., SILVA, C. T., CALLAHAN, S. P., SANTOS, E.,
SCHEIDEGGER, C. E., AND VO, H. T. Managing rapidly-
evolving scientific workflows. In IPAW (2006), vol. 4145 of
LNCS, Springer, pp. 10–18.

[9] GANSNER, E. R., KOUTSOFIOS, E., NORTH, S. C., AND VO,
K.-P. A technique for drawing directed graphs. IEEE Trans.
Software Eng. 19, 3 (1993), 214–230.

[10] Graphviz: graph visualization software. http://www.

graphviz.org/.

[11] HUNTER, J., AND CHEUNG, K. Provenance explorer – a graphi-
cal interface for constructing scientific publication packages from
provenance trails. Int. J. on Digital Libraries 7, 1-2 (2007), 99–
107.

[12] JAYAPANDIAN, M., ET AL. Michigan molecular interactions
(MiMI): putting the jigsaw puzzle together. Nucleic Acids Re-
search 35, Database-Issue (2007), 566–571.

[13] MOREAU, L., CLIFFORD, B., FREIRE, J., FUTRELLE, J., GIL,
Y., GROTH, P. T., KWASNIKOWSKA, N., MILES, S., MISSIER,
P., MYERS, J., PLALE, B., SIMMHAN, Y., STEPHAN, E. G.,
AND DEN BUSSCHE, J. V. The open provenance model core
specification (v1.1). Future Generation Comp. Syst. 27, 6 (2011),
743–756.

[14] MUNISWAMY-REDDY, K.-K., BRAUN, U., HOLLAND, D. A.,
MACKO, P., MACLEAN, D., MARGO, D., SELTZER, M., AND
SMOGOR, R. Layering in provenance systems. In Proceedings
of the 2009 USENIX Annual Technical Conference (June 2009).

[15] OPM toolbox. http://www.openprovenance.org/

toolbox.html.

[16] RIO, N. D., AND DA SILVA, P. P. Probe-It! visualization support
for provenance. In Advances in Visual Computing, ISVC (2007),
vol. 4842 of LNCS, Springer, pp. 732–741.

[17] Sesame: RDF schema querying and storage. http://www.

openrdf.org/.

[18] SPILLANE, R. P., SEARS, R., YALAMANCHILI, C., GAIKWAD,
S., CHINNI, M., AND ZADOK, E. Story book: An efficient ex-
tensible provenance framework. In TaPP (2009).

[19] ZHAO, J., WROE, C., GOBLE, C. A., STEVENS, R., QUAN,
D., AND GREENWOOD, R. M. Using semantic web technologies
for representing e-science provenance. In International Semantic
Web Conference (2004), pp. 92–106.

5



A Screenshots

(a) Larger version of the first panel from Figure 1: Provenance of the login process in Linux.

(b) Larger version of the third panel from Figure 1: Provenance of the bash login shell in the trace.

(c) A high-level view of the Blast workload contained inside the auto-pilot.pl node in the previous picture.

6


