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Abstract

The (Semantic) Web currently does not have an offi-
cial or de facto standard way exhibit provenance infor-
mation. While some provenance models and annota-
tion techniques originally developed with databases or
workflows in mind transfer readily to RDF, RDFS and
SPARQL, these techniques do not readily adapt to de-
scribing changes in dynamic RDF datasets over time.
Named graphs have been introduced to RDF motivated
as a way of grouping triples in order to facilitate anno-
tation, provenance and other descriptive metadata. Al-
though their semantics is not yet officially part of RDF,
there appears to be a consensus based on their syntax
and semantics in SPARQL queries. Meanwhile, up-
dates are being introduced as part of the next version
of SPARQL. In this paper we explore how to adapt the
dynamic copy-paste provenance model of Buneman et
al. [2] to RDF datasets that change over time in re-
sponse to SPARQL updates, how to represent the result-
ing provenance records themselves as RDF using named
graphs, and how the provenance information can be pro-
vided as a SPARQL end-point.

1 Introduction

It is becoming routine to publish scientific and govern-
mental data on the Web as RDF (the Resource Descrip-
tion Framework, a W3C standard for structured data on
the Web). In doing so, it is crucial not to lose track of
its provenance, including both its derivation process and
changes to it over time. There are many different kinds of
provenance that possibly could be associated with RDF.
There is a difference between static provenance for pro-
cesses that create new artifacts from existing ones, ver-
sus dynamic provenance that describes how artifacts have
evolved over time. Second, there is a difference between
provenance for atomic artifacts that expose no internal
structure as part of the provenance record, versus prove-

nance for collections or other structured artifacts. The
workflow community has largely focused on static prove-
nance for atomic artifacts, whereas much of the work on
provenance in databases has focused on static or dynamic
provenance for collections (e.g. tuples in relations).

The workflow community has largely focused on
declaratively describing causality or derivation steps of
processes to aid repeatability for scientific experiments,
and these requirements have been a key motivation for
the Open Provenance Model (OPM) [12, 11], a vocab-
ulary and data model for describing processes including
(but certainly not limited to) runs of scientific workflows.
While important in its own right, and likely to form the
basis for a W3C standard interchange format for prove-
nance, OPM does not address the semantics of the prove-
nance represented in it — one could in principle use it ei-
ther to represent static provenance for processes that con-
struct new data from existing artifacts, or to represent dy-
namic provenance that represents how data change over
time. Most applications of OPM, however, seem to focus
on static provenance, and so it may require further exten-
sion to handle dynamic provenance. Conversely, many
elements of the OPM vocabulary may not be necessary
for describing changes to RDF data over time.

It is an open question on how to best access prove-
nance data for RDF. Currently provenance techniques are
not easily usable to the vast majority of developers and
other people working in open data. If we want RDF to
become a leading format for open data, having an easy
and straightforward manner to access provenance data
could be crucial. We believe that dynamic provenance
techniques should be as easy to use as version control.
Version control is a classic and well-studied problem for
information systems ranging from source code manage-
ment systems to temporal databases and data archiving.
Version control systems such as CVS, Subversion, and
Git have a solid track record of tracking versions and
(coarse-grained) provenance for text (e.g. source code)
over time.



Recent work on provenance in relational databases
has aimed precisely at “provenance as version control”.
Foundational work on provenance for queries distin-
guishes between where-provenance, which is the “loca-
tions in the source databases from which the data was ex-
tracted,” and why-provenance, which is “the source data
that had some influence on the existence of the data” [3].
There is less work considering provenance for updates;
our previous work focused on simple atomic update oper-
ations: insertion, deletion, and copy [2]. A provenance-
aware database should support queries that permit users
to find the ultimate or proximate ‘sources’ of some data,
explore its change history over time, or apply data prove-
nance techniques to understand why a given part of the
data was inserted or deleted by a given update. A simple
approach that records the full provenance of every part of
the data during every update would likely lead to an ex-
plosion of database size, so current research is studying
ways of optimizing provenance storage and new formal
models for relational data [2].

How can we track provenance for dynamic RDF
data using current components of the Semantic Web?
Static provenance techniques have now been investigated
for RDF, including provenance-tracking for SPARQL
queries (see [15, 10]) and for RDFS inferences (see [4,
8]) over RDF datasets. Some of this work considers up-
dates, particularly Flouris et al. [8], who consider the
problem of how to maintain provenance information for
RDFS inferences when tuples are inserted or deleted, us-
ing the coherence semantics. In this paper we consider
a provenance model for SPARQL queries and updates
to data stores involving named graphs, whose purpose
is to provide a record of how the raw data in a dataset
has changed over time, and then tackle the problem of
recording and providing (queryable) access to the de-
tailed change history of an RDF graph that is updated
over time via SPARQL updates.

Our hypothesis is that a simple vocabulary, composed
of insert, delete, and copy operations as introduced by
Buneman et al. [2], along with explicit identifiers for up-
date steps, versioning relationships, and metadata about
updates provides a flexible format for data provenance
on the Semantic Web. The harder problem of devis-
ing a combined vocabulary for describing both static and
dynamic provenance remains; nevertheless our proposal
sheds some light on the issues. A primary advantage of
our methodology is it keeps the changes to raw data sepa-
rate from the changes in metadata, so legacy applications
will continue to work and the cost of storing and provid-
ing access to provenance can be isolated from that of the
raw data.

We will briefly review named graphs and their rela-
tionship to versioning and provenance, then introduce
SPARQL queries and updates, and finally describe our

proposals for versioning and provenance-tracking for
RDF graphs and SPARQL updates.

2 Named graphs for dynamic provenance

From an early stage it was recognized that provenance
management in RDF requires the ability to refer to triples
or graphs. Hence, there is unofficial yet widely imple-
mented support for named graphs, where each graph G
is identified with a name URI [5]. The idea of using
named graphs for provenance is not new, but previously
has been restricted to making and propagating trust mea-
sures [9] or authorship assertions/signatures [5] through
inferences or queries. We believe that the named graph
approach is also well-suited to recording detailed prove-
nance traces for dynamic data.

Our proposal is that the provenance information
should be accessible from the name URI of a named
graph by asking for the provenance content associated
with the graph. Obviously, the provenance store for
each graph should be accessible, ideally using Linked
Data principles, from the name URI of the named graph.
Moreover, named graphs can be used to represent both
past versions of a graph and changes to the graph in or-
der to support both versioning and dynamic provenance.
In practice on the Web of Data, the graph name is usually
the URI used to access the the RDF graph or the domain
name of the server. For example, a group of RDF triples
from DBPedia about Paris may be named by http://
www.dbpedia.org/data/Paris. One could imagine
that past versions of this graph might be named http:
//www.dbpedia.org/data/Paris v1, etc., with addi-
tional URIs representing the updates that have been ap-
plied in a machine-readable format, along with conven-
tional provenance metadata about the updates such as au-
thor, time, and the text of the update.

However, one problem with minting a new name
URI for each past version of the graph would be that
there would soon be an overwhelming number of name
URIs, with one for each change to the graph. While they
could still be connected to each other via the provenance
data, a higher-level alternative would be to use query
parameters to qualify the base URI. So one could have
http://www.dbpedia.org/data/Paris?version=1
to retrieve the first version, http://www.dbpedia.
org/data/Paris?version=2 to retrieve the second,
and so on. A “date” parameter to retrieve by date would
also be useful, such as http://www.dbpedia.org/
data/Paris?date=2010-08-30T21%3A33%2A50.
To get the provenance metadata, one could then add
a special “provenance” parameter like http://www.
dbpedia.org/data/Paris?provenance&version=2
and http://www.dbpedia.org/data/Paris?
provenance&date=2010-08-30T21%3A33%2A50.
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PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?book ?who

WHERE { ?book dc:creator ?who }

Figure 1: SPARQL Query Example.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

DELETE DATA {

GRAPH <http://example.com/bookStore> {

<http://example.com/book3>

dc:creator "Harry Halpin"

}

}

INSERT DATA {

GRAPH <http://example.com/bookStore> {

<http://example.com/book3>

dc:creator "Henry Story"

}

}

Figure 2: SPARQL Update Example

GET /sparql/?query=EncodedQuery \

&provenance-date=2010-08-30 \

&http://www.example/bookstore

Host: www.example

User-agent: sparql-client/0.1

Figure 3: Asking for provenance using HTTP GET

Note that multiple name URIs constructed with different
parameters may result in the same graph.Furthermore,
the same conventions could also be added to SPARQL
Protocol for RDF [6] to allow easy access of RDF as
shown in an example explained below in Section 3.

3 Strawman Example

Our approach is complementary to techniques for pub-
lishing or disseminating versioned Web resources (e.g.
the Memento protocol of Van de Sompel et al. [16]) or
accompanying static provenance or metadata (e.g. Cop-
pens et al. [7]). Our advantage is to give a formal seman-
tics that could be used to optimize this provenance, and a
more simple query-parameter based method for access-
ing provenance that does not require new HTTP headers
and subsequent changes to server and client software.

Suppose we discover that the author of a book is
wrong in an RDF graph, and it needs to be changed.
This is transmitted via this use of SPARQL Update to the
end point of the named graph for the bookstore, http://
example.com/bookStore, as given in Figure 1. Then
another user-agent wishes to query (using the query in

HTTP/1.1 200 OK

Date: Fri, 01 July 2011 20:55:12 GMT

Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3

Connection: close

Content-Type: application/sparql-results+xml

<?xml version="1.0"?>

<sparql xmlns="http://www.w3.org/2005/sparql-results#">

<provenance date="2001-30-26T21:32:52" />

<head>

<variable name="book"/>

<variable name="who"/>

</head>

<results distinct="false" ordered="false">

<result>

<binding name="book">

<uri>http://www.example/book/book5</uri>

</binding>

<binding name="who">Harry Halpin</binding>

</result>

...

</head>

</provenance>

Figure 4: SPARQL Response for Provenance Informa-
tion

Figure 2) for the name of the book before the edits were
made on August 30th 2010. The user transmits this via
HTTP GET, specifying the necessary provenance date of
August 30th 2010 in Figure 3. Then the SPARQL end-
point gives response with a return date using a prove-
nance element in Figure 4.

4 SPARQL Background

Queries Let Lit be a set of literals (e.g. strings), let Id
be a set of resource identifiers, and let Var be a set of
variables usually written ?X . We write Atom = Lit∪ Id
for the set of atomic values, that is literals or ids. The
syntax of core algebra for SPARQL discussed in [1] is as
follows:

A,B,C ::= l ∈ Lit | ι ∈ Id | ?X ∈ Var

t ::= 〈A B C〉
C ::= {t1, . . . , tn} | GRAPH A {t1, . . . , tn} |C C′

R ::= BOUND(?x) | A = B | R∧R′ | R∨R′ | ¬R

P ::= C | P . P′ | P UNION P′ | P OPT P′

| P FILTER R

Q ::= SELECT ?~X WHERE P | CONSTRUCT C WHERE P

Here, C denotes basic graph (or dataset) patterns that
may contain variables; R denotes conditions; P denotes
patterns, and Q denotes queries. We do not distinguish
between subject, predicate and object components of
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triples, so this is a mild generalization of [1], since real
SPARQL does not permit literals to appear in the predi-
cate position or as the name of a graph in the GRAPH A {P}
pattern. We also do not consider blank nodes, which pose
complications especially when updates are concerned.
Another point to note is that we allow named graph pat-
terns only as part of basic patterns. The semantics of core
SPARQL algebra (from [1]) is given in the appendix.

Updates We will employ a simplified core language
for atomic updates, based upon [14]:

U ::= INSERT {C} WHERE P | DELETE {C} WHERE P

| LOAD g INTO g′ | CLEAR g | CREATE g | DROP g

The SPARQL Update working draft specifies that trans-
actions consisting of multiple updates should be applied
atomically, but leaves some semantic questions unre-
solved, such as whether aborted transactions have to roll-
back partial changes. It also does not specify whether up-
dates in a transaction are applied sequentially (as in most
imperative languages), or using a snapshot semantics (as
in most database update languages). Both alternatives
pose complications, so in this paper we focus on trans-
actions consisting of single atomic updates, leaving the
general case for future work.

5 Provenance model

A single SPARQL update can read from and write to sev-
eral named graphs (and possibly also the default graph).
For simplicity, we restrict attention to the problem of
tracking the provenance of updates to a single (possi-
bly named) RDF graph. All operations may still use
the default graph or other named graphs in the dataset
as sources. The general case can be handled using the
same ideas as for a single anonymous graph, only with
more bureaucracy to account for versioning of all of the
named graphs managed in a given dataset.

We model the provenance of a single RDF graph G
that is updated over time as a set of history records,
including a special graph named prov_G and addi-
tional auxiliary named graphs such as G_v0,. . . ,G_vn
and G_u1. . . ,G_um. Intuitively, G_vi is the named graph
showing G’s state in version i and G_ui is another named
graph showing the triples inserted into or deleted from G
by update i.

The provenance graph prov_G includes several kinds
of nodes and edges:
• G_vi upd:nextVersion G_vi+1 edges that

show the sequence of versions;
• nodes u1,. . . ,un representing the updates that have

been applied to G, along with a upd:type edge
linking to one of upd:insert, upd:delete,

upd:load, upd:clear, upd:create, or
upd:drop.

• For all updates except create, an upd:input edge
linking ui to G_vi.

• For all updates except drop, an upd:output edge
linking ui to G_vi+1.

• For insert and delete updates, an edge
ui upd:data G_ui where G_ui is a named
graph containing the triples that were inserted or
deleted by ui.

• Edges ui upd:source n linking each update to
each named graph n that was consulted by ui. For
an insert or delete, this includes all graphs that were
consulted while evaluating P (note that this may
only be known at run time); for a load update, this is
the name of the graph whose contents were loaded;
create, drop and clear updates have no sources.

• Additional edges from ui providing metadata (such
as author, commit time, log message, or the source
text of the update) for the update; possibly using
a standard vocabulary such as Dublin Core, or us-
ing OPM-style agent nodes and wasControlledBy
edges. We omit the details of this metadata.

Note that this representation does not directly link
triples in a given version to places from which they were
“copied”. However, it does provide enough information
to recover this on request. Moreover, if we retain the
source text of the update statements performed by each
update, as well as all intermediate versions of the graph,
we can trace backwards through the update sequence to
identify places where triples were inserted or copied into
or deleted from the graph.

This is a high-level, logical model of the provenance of
a graph as it evolves over time, along with all of its inter-
mediate versions. It is not a concrete proposal for how to
store or query this graph information efficiently. We ex-
pect that sharing techniques similar to those used by ver-
sion control systems or temporal databases can be used
to store the sequence of versions efficiently; once this is
done, the contents of the named graphs G_ui that store
inserted or deleted triples can be represented efficiently
by just storing the insert or delete statements themselves
and recovering the graphs lazily on demand. However,
we have not implemented this model and developing a
practical implementation is future work.

6 Provenance semantics

For queries, we consider a simple form of provenance
which calculates a set of named graphs “consulted” by
the query. (For the purposes of this paper, this is an ad
hoc, syntactic notion.) This could be viewed as a simple
form of why-provenance, analogous to determining the
names of the relations mentioned in a database query.
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Figure 5: Example provenance record

Note, however, that unlike in a relational language, the
names of the graphs consulted by a query are dependent
on the data, since a pattern such as GRAPH ?X {〈a b c〉}
can consult any graph that happens to contain 〈a b c〉.

We define the provenance of an atomic update by
translation to a sequence of updates that, in addition
to performing the requested updates to a given named
graph, also constructs some auxiliary named graphs and
triples in a special named graph for provenance informa-
tion called prov.

We consider only special cases of insert and delete
operations that target a single, statically known, named
graph g; full SPARQL Updates (according to the current
graph) can simultaneously update several named graphs
along with the default graph.

A graph creation CREATE g is translated to

CREATE g;
CREATE g v0;
INSERT DATA {GRAPH prov {
〈g version g v0〉,〈g current g v0〉,
〈u1 type create〉,〈u1 output g v0〉,
〈u1 meta mi〉,(metadata)

}}

A drop operation (deleting a graph) DROP g is handled

as follows, symmetrically to creation:

DROP g;
DELETE WHERE {GRAPH prov {〈g currentg vi }〉};
INSERT DATA {GRAPH prov {
〈ui type drop〉,〈ui input g vi〉,
〈ui meta mi〉,(metadata)

}}

where g vi is the current version of g. Note that since this
operation deletes g, after this step the URI g no longer
names a graph in the store; it is possible to create a new
graph named g, which will result in a new sequence of
versions being created for it. The old chain of versions
will still be linked to g via the version edges, but there
will be a gap in the chain.

A clear graph operation CLEAR g is handled as follows:

CLEAR g;
DELETE WHERE {GRAPH prov {〈g currentg vi }〉};
INSERT DATA {GRAPH prov {
〈g version g v0〉,〈g current g v0〉,
〈ui type clear〉,〈ui input g vi〉,
〈ui output g vi+1〉,〈ui meta mi〉,
(metadata)

}}
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A load graph operation LOAD h INTO g is handled as
follows:

LOAD h INTO g;
DELETE WHERE {GRAPH prov {〈g currentg vi }〉};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉,〈g current g vi+1〉,
〈ui type load〉,〈ui input g vi〉,
〈ui output g vi+1〉,〈ui source h j〉,
〈ui meta mi〉,(metadata)

}}

where h j is the current version of h.
An insertion INSERT {GRAPH g {C}} WHERE P is trans-

lated to a sequence of updates that creates a new version
and links it to URIs representing the update, as well as
links to the source graphs identified by the query prove-
nance semantics and a named graph containing the in-
serted triples:

CREATE g ui;
INSERT {GRAPH g ui {C}} WHERE P;
INSERT {GRAPH g {C}} WHERE P;
CREATE g vi+1;
LOAD g INTO g vi+1;
DELETE DATA {GRAPH prov {〈g current g vi〉}};
INSERT DATA {GRAPH prov {
〈g version g vi+1〉,〈g current g vi+1〉,
〈ui input g vi〉,〈ui output g vi+1〉,
〈ui type insert〉,〈ui data g ui〉
〈ui source S1〉, . . . ,〈ui source Sm〉,
〈ui meta mi〉,(metadata)}}

where s1, . . . ,sm are the source graph names of P.
A deletion DELETE {GRAPH g {C}} WHERE P is handled

similarly to an insert, except for the update type annota-
tion.

7 Conclusion

Provenance is a challenging problem for RDF. While
some progress has been made on provenance and anno-
tation for RDFS inferences and SPARQL queries, so far
there has not been work on provenance for SPARQL Up-
dates, partly because the update language itself is work in
progress. In this paper we have outlined an approach to
the problem drawing on similar work in database archiv-
ing and copy-paste provenance, and sketched how this
approach can be incorporated into existing protocols for
accessing RDF datasets. We hope this will contribute to
discussion of how to standardize descriptions of changes
to RDF datasets, and possibly provide a way to translate
changes to underlying (e.g. relational or XML) databases
to RDF representations.
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