
A Framework for Policies over Provenance

Tyrone Cadenhead, Murat Kantarcioglu and Bhavani Thuraisingham
The University of Texas at Dallas

800 W. Campbell Road, Richardson, TX 75080
{thc071000, muratk, bxt043000}@utdallas.edu

Abstract

Provenance captures the history of a data item. This en-
sures the quality, the trustworthiness and the correctness
of shared information, but the provenance may contain
sensitive information so we may need to hide it. Some-
times we need access control policies to protect sensitive
components and allow access based on certain proper-
ties. In other cases, we may need to share provenance
but use redaction policies to circumvent the release of
sensitive information. In this paper, we formulate an au-
tomatic procedure over provenance by combining these
policies in an unified framework.

1 Introduction

Provenance is the lineage of a resource (or data item) and
is essential for various domains including intelligence,
healthcare, legal and industry. A provenance document
contains both data items and their relationships [13, 4]
formulated as a directed graph. An intermediate node
on a path in this graph may contain sensitive information
such as the identity of an agent who filed an intelligence
report.

Traditionally, we protect documents with access con-
trol policies. These policies are used to determine who
can access a document and under what conditions access
is to be granted. In intelligence, it may be necessary to
guard one’s methods and sources; hence, an access con-
trol policy could limit access to the source of a report to
sister agencies. We can also use these policies to per-
mit access to a document if the document has certain
properties, and thus we can specify integrity policies. An
integrity policy could specify that the data in an intelli-
gence report is valid if it was derived from field agents of
a desired agency in a particular country. In other scenar-
ios, however, the shared information may contain iden-
tifying or exclusive information; and therefore we need
to apply redaction policies that transform the document

in order to circumvent any identifying or sensitive infor-
mation. The traditional access control policies mainly
focused on single data items and not the relationships
among the data items [4, 5], while the traditional redac-
tion policies focused mainly on files and images [1, 8].

We have already addressed how to effectively apply
access control policies over a provenance graph [5] and
how to transform a provenance graph to satisfy a set of
redaction polices [6]. We can use these approaches sepa-
rately to apply access control and redaction policies over
a provenance graph, but we cannot compare these two
policy sets simultaneously or identify redundancies or
the superiority of one policy over the other. Our contri-
bution is to provide a unified framework, which extends
the traditional policies over a provenance graph, thereby
allowing domain users a choice of optimal and compact
policies for both, protecting and sharing provenance in-
formation.

Section 2 presents our default languages for express-
ing policies and a corresponding graph framework for
applying these policies. Section 3 reviews previous
work. In closing, in Section 4 we provide our conclu-
sions and future work.

2 Unified Framework

The problem of securing provenance is first complicated
by the fact that provenance contains both data items and
their relationships [4]; and secondly by the number of
policies that ensure the safety of the released provenance
information. Our approach is to provide intermediary
policy languages that specify policies over a provenance
graph. The idea is to translate these policies into graph
operations over a provenance graph by making use of
regular expression queries. Our framework can then be
used for evaluating different policy sets over a prove-
nance graph and their outcomes graphically. We can
also compare the words described by regular expres-
sion queries to determine equivalence and subsumption

of policies. Hence, we can write more compact policies
as well as eliminate redundancies and inefficiencies.

Our unified framework also presents an interface that
accepts a high level policy, which is then translated into
the required format for our graph rewriting system; there-
fore abstracting the details of the framework from a user.
For the rest of this section, we will give a brief overview
of our policy languages that evaluate over a provenance
graph. Then we will describe our graph rewriting system
which manipulate an original graph to one that meets the
requirements of a set of user-defined high-level policies.

2.1 High Level policy Languages
Figure 1 and Figure 2 provide snippets of two high-level
policy languages (see [5, 6] for details), which are suf-
ficient for expressing both access control and redaction
policies.

<policy ID="1" >
<target>
<subject>anyuser</subject>
<record>Report3</record>
<restriction>

Report3 [WasGeneratedBy] process AND
process [WasTriggeredBy]/country

</restriction>
<scope>non-transferable</scope>

</target>
<condition>purpose == research</condition>
<effect>Permit</effect>

</policy>

Figure 1: Access Control Policy Language

The description of each element in Figure 1 is as fol-
lows: The subject element can be the name of a user
or any collection of users, e.g. a journalist, or a special
user collection anyuser which represents all users. The
record element is the name of a resource. The restric-
tion element is an (optional) element which refines the
applicability established by the subject or record. The
scope element is an (optional) element which is used
to indicate whether the target applies only to the record
or its entire ancestry. The condition element is an (op-
tional) element that describes under what conditions ac-
cess is to be given or denied to a user. The effect element
indicates the policy author’s intended consequence for a
true evaluation of a policy.

The description of each element in Figure 2 is as fol-
lows:: The lhs element describes the left hand side of a
rule. The rhs element describes the right hand side of
a rule. Each path in the lhs and rhs begins at a starting
entity. The condition element has two optional sub ele-
ments, the application defines the conditions that must
hold for rule application to proceed, and the attribute
element describes the annotations in LHS. Similarly,
the embedding element has two optional sub elements,
pre describes how LHS is connected to the provenance

<policy ID="2" >
<lhs> start=Report3

chain=[WasGeneratedBy] process AND
.....
process [Used] report AND
report [WasGeneratedBy] process. </lhs>

<rhs> start=Report3
chain=[WasGeneratedBy] process AND

process [WasTriggeredBy] _:A1. </rhs>
<condition>
<application>null</application>
<attribute>null</attribute>
</condition>
<embedding>

<pre>null</pre>
<post>(ProcessJ,Used, Report3)</post>
</embedding>

</policy>

Figure 2: Redaction Policy language

graph and the post describes how RHS is connected to
the provenance graph.

The main advantages of these languages can be sum-
marized as follows:

• XML-based and therefore inherit the features of be-
ing extensible and open.

• Support regular expression in the restriction tag (see
Figure 1) and the lhs and rhs tags (see Figure 2).

• Specify the operations over a provenance graph by
using the lhs, rhs and the embedding tags (see Fig-
ure 2).

2.2 Graph rewriting System

A Graph Rewriting System is a three tuple, (Gℓ,P,q)
where, Gℓ is a labeled directed graph. P is a policy set
and q is a request on Gℓ that returns a subgraph Gq. For
every policy p = (r,e) in P, r = (se,re) is a rule, where
se is a starting entity and re is a regular expression string;
and e is an embedding instruction.

Let Gq ⊆ Gℓ be the result of a path query. A produc-
tion rule is r : L → R, where L is a subgraph of Gq and R
is a graph. During a rule manipulation, L is replaced by
R and we embed R into Gq −L. Embedding information,
e, specifies how to connect R to Gq − L and also gives
special pre- and post-processing instructions. These in-
structions can be textual or graphical and are useful for
specifying conditions to be satisfied in the graph rewrit-
ing process. A direct application of these instructions
is to specify how R is glued to Gq − L to ensure the fi-
nal graph is both acyclic and the causal relationships be-
tween any two entities in the final graph existed in the
original graph Gq. This condition is needed so that our
graph rewriting system returns a valid provenance graph.

2

2.2.1 Graph Models

We apply two graph models: The first one is the
Resource Description Framework [11], which is used as
a representation and storage for provenance. The second
is the Open Provenance Model [13], which specifies an
abstract model for provenance.

Resource Description Framework
The Resource Description Framework (RDF) terminol-
ogy T is the union of three pairwise disjoint infinite sets
of terms: the set U of urirefs, the set L of literals (itself
partitioned into two sets, the set Lp of plain literals and
the set Lt of typed literals), and the set B of variables.

Definition 1 (RDF Triple) A RDF triple (s, p, o) is an
element of (U ∪B)×U ×T .

A RDF graph is a finite set of RDF statements, i.e.
subject-predicate-object triples; subjects and objects
of triples are viewed as nodes, linked by predicates
(predicates are usually called properties). A triple
(s, p, o) is depicted as an edge s

p→ o, that is, s and o
are represented as nodes and p is represented as an edge
label.

The Open Provenance Model
The Open Provenance Model (OPM) recognizes prove-
nance as a directed acyclic graph (DAG) and iden-
tifies three entities, namely artifacts, processes and
agents [13]. The OPM model also describes a set of ab-
stract predicates, indicating causal relationships among
the entities.

The nomenclature in [13] is used to define the nodes
and edges in our provenance graph; therefore we can re-
fer to a node as being an artifact, a process or an agent.
We also restrict the set of RDF graphs to those that are
acyclic in order to represent provenance as a RDF graph.
We then use RDF to describe and represent the entities
and relationships of a provenance graph. For example,
with the abstract OPM predicate labels, we have the fol-
lowing RDF triples.
<opm:Process> <opm:WasControlledBy> <opm:Agent>
<opm:Process> <opm:Used> <opm:Artifact>
<opm:Artifact> <opm:WasDerivedFrom> <opm:Artifact>
<opm:Artifact> <opm:WasGeneratedBy> <opm:Process>
<opm:Process> <opm:WasTriggeredBy> <opm:Process>

Definition 2 (Provenance Graph) Let H = (V,E) be a
RDF graph where V is a set of nodes with |V | = n, and
E ⊆ (V ×V) is a set of ordered pairs called edges. A
provenance graph G = (VG,EG) with n entities is defined
as G ⊆ H, VG =V and EG ⊆ E such that G is a directed
graph with no directed cycles.

We speak of a valid OPM graph as one that is a prove-
nance graph that conforms to the OPM nomenclature
convention.

Evaluating a policy and locating a resource in a prove-
nance graph are done by graph pattern matching. For
example, the notion of integrity could be specified with a
query for a constraint on a path in the provenance graph.
These patterns depend on the notion of reachability, and
therefore the norm is to locate a provenance subgraph
with a path query. A path query is basically a query
extended with regular expressions, where the edges in
the query are used to match paths in a graph. To this end,
we define our policies with a query language for RDF.

SPARQL
SPARQL Protocol and RDF Query Language (SPARQL)
is a RDF query language and a World Wide Web Consor-
tium (W3C) initiative that is based around graph pattern
matching [15].

Definition 3 (Graph pattern) a SPARQL graph pattern
expression is defined recursively as follows:

1. A triple pattern is a graph pattern.

2. If P1 and P2 are graph patterns, then expressions
(P1 AND P2), (P1 OPT P2), and (P1 UNION P2)
are graph patterns.

3. If P is a graph pattern and R is a built-in SPARQL
condition, then the expression (P FILTER R) is a
graph pattern.

4. If P is a graph pattern, V a set of variables and
X ∈ U ∪V then (X GRAPH P) is a graph pattern.

Regular Expressions
A subset of U , namely the labels of RDF predicates,
describes the terms of an alphabet Σ. A language over
Σ defines the subgraphs accepted by a SPARQL Query.

Definition 4 (Regular Expressions) Let Σ be an alpha-
bet of labels on RDF predicates, then the set RE(Σ) of
regular expressions is inductively defined by:

• ∀x ∈ Σ,x ∈ RE(Σ);

• Σ ∈ RE(Σ);

• ε ∈ RE(Σ);

• If A ∈ RE(Σ) and B ∈ RE(Σ) then:
A|B,A/B,A∗,A+,A? ∈ RE(Σ).

The symbols | and / are interpreted as logical OR and
composition respectively.

The path queries we consider are navigational and
are evaluated relative to some designated source vertex.
Given a symbol x in Σ, the answer to a path query q is the
set of all nodes x′ reachable from x by some path whose
labels spell a word in q.

3

�

��������	
���	����

��������	
���	����

��������	��

�����������	������

�����������	������

�����������	������

�����������	�������

�����������	�������

��������

��������

��������	

�������	�

���������	����	����

����������

�������������

�������	�

�����������

������������	

�������	�

�������	�

�

�	�������	�
�����
� � �

���	
�����

�����

������

�����������	�������

������������

���
��

Figure 3: Provenance Graph

2.2.2 Use Case: Intelligence Example

Figure 3 shows an intelligence example as a provenance
graph using a RDF representation that outlines a flow of a
document through a server located in some country. This
document was given to a journalist. The contents of this
provenance graph could serve to evaluate the trustworthi-
ness of the server from which the document originated.
This provenance graph also shows the base skeleton of
the actual provenance, which is usually annotated with
RDF triples indicating contextual information, e.g. time
and location. Note that the predicates are labeled with
the OPM abstract predicate labels and that the final re-
port can be traced back to a CIA agent.

We now use one of the new features that extends
SPARQL with regular expressions [10] and an optimiza-
tion technique from [3] to define a resource (or sub-
graph) of the provenance graph in Figure 3 as follows:

Example 1 (Integrity Query)

Select ?x
{ ex:Report3 arq:OnPath("([opm:WasGeneratedBy]/

[opm:WasTriggeredBy]/[ex:Country])" ?x). }

This query would return the country as a binding to
the variable x and could be used to verify if ex:Report3
is in fact a high integrity report. A similar query could be
used to identify a resource in the provenance graph that
is protected by an access control policy.

We now show how to carry out redaction on a prove-
nance graph as follows: Assume an agent provides the
provenance of ex:Report3 to a journalist, but the in-
formation related to the CIA agent (cia:agent) must be
redacted before the provenance is released. We illustrate
this redaction in Figure 4, which also illustrates a rule

manipulation over a provenance graph. The cloud in Fig-
ure 4 signals that some part of the provenance graph from
Figure 3 is omitted.

opm:wasTriggeredBy

opm:wasGeneratedBy

opm:wasGeneratedBy

opm:wasControlledBy

cia:Agent

mil:CovertOperation1

ex:WikiLeakP1

ex:Report3

ex:WikiLeakP1

ex:Report3

_:A1

Figure 4: Redaction Policy

2.2.3 Embeddings and Valid Provenance Graphs

A graph rewriting system should be capable of specify-
ing under what conditions a graph manipulation opera-
tion is valid. The embedding instructions normally con-
tain a fair amount of information and are usually very
flexible. Therefore, allowing the policy designer to spec-
ify the embeddings may become error-proned. The OPM
nomenclature places a restriction on the set of admissible
RDF graphs, which we call valid OPM graphs. These re-
strictions serve to control a graph transformation process
(also a graph rewriting process) by ruling out transfor-
mations leading to non-admissible graphs.

Let there be a rule in Figure 5(a) that replaces a one
subgraph with a null (or empty) graph. Figures 5(b)-(d)
show the effects of carrying out a graph transformation
step using an embedding instruction. Figures 5(b) is the
result of performing a transformation using the rule in

4

�

��������	
�

�������	����	���
�

��������

���������	

���������	

�����������	

�������	�

�

(a) Redaction Policy

�

��������	
	���	���

��������	
	���	���

���������
�����	���

������	�

���������	

��������

�������������������
 ���������
�����	���

�����������

���
��

(b) Redacted Graph 1

�

���������	
��������

��������

���������	

��������

�������������������

���������	
��������

�����������

���
��

(c) Redacted Graph 2

�

��������	
	���	���

��������	
	���	���

���������
�����	���

������	�
���������	

��������

�������������������

���������
�����	���

�����������

���
��

(d) Redacted Graph 3

Figure 5: Graph Transformations

Figure 5(a) and the following embedding instruction:
<ex:Report3> <opm:WasGeneratedBy> <mil:CovertOperation1>
<ex:Report3> <opm:WasGeneratedBy> <ex:P1>

Figures 5(c) is the result of performing a transforma-
tion using the rule in Figure 5(a) but with an empty em-
bedding instruction.

Figure 5(d) is the result of performing a transforma-
tion using the rule in Figure 5(a) and the following em-
bedding instruction:
<ex:P1> <opm:WasGeneratedBy> <mil:CovertOperation1>

The only provenance graph of interest to us is the one
in Figure 5(b). This is a valid OPM graph under the trans-
formation of the rule in Figure 5(a). Figure 5(b) con-
forms to the OPM nomenclature convention, and each
causal dependency in Figure 5(b) existed in Figure 3.
Figure 5(c) is a valid OPM graph, but the causal rela-
tionships are not preserved, for example there is a causal
relationship between ex:Report3 and cia:Agent in Fig-
ure 3, which is absent in Figure 5(c). Figure 5(d) is not a
valid OPM graph since the RDF triple
<ex:P1> <opm:WasGeneratedBy> <mil:CovertOperation1>

does not conform to the OPM nomenclature convention.
In addition there is no causal relationship between ex:P1
and mil:CovertOperation1 in Figure 3.

2.2.4 Discussion

Our solution is not limited to any particular represen-
tation of provenance, since we do not restrict the input
provenance to be in any specific format. Instead the in-
put provenance could be in any other format, for exam-
ple XML, Relational or RDF. The causal relationships
among the provenance entities and the graph operations
over a provenance database are easily visualized using a
data model, which supports the directed graph structure
of provenance. In addition, existing tools can be used to
convert other data format to RDF [2], thus making our
unified framework flexible enough to support other data
models for provenance. The architecture of our frame-
work can be extended to take any high level description
of provenance, while internally working with the RDF
graph representation of provenance.

We are currently improving or unified framework with
new functionalities to address some of the open issues
with our graph rewriting system. One of the new func-
tions takes as input a valid OPM graph, a production rule
and a set of embedding instructions and return a valid
OPM graph.

A new direction we are investigating is the optimiza-
tion of our framework, which uses regular expressions
for the queries that enforces our policies. Our goal is to

5

use the notion that if two automata accept the same lan-
guage, then one of the languages may be redundant in our
framework. This is based on an algorithmic translation
of a finite regular expression over the RDF representation
of a provenance graph to a finite state machine. There-
fore, this direction will allow us to derive an optimized
and compact set of policies. We can also compare poli-
cies for overlaps as well as identify conflicts and suitable
resolutions.

3 Related Work

Graph transformation is already applied to access con-
trol [12, 7]; provenance and access control are also well
studied [4, 14]. Our work combines these approaches.
Our work is motivated by [4, 5, 13, 16] where the focus
is on representing provenance as a directed graph struc-
ture. This contrasts some approaches, where the flow of
information between the various sources and the causal
relationships between entities are not immediately obvi-
ous. There are also previous works on the efficiency of a
graph rewriting system [9, 3]. We utilize some of these
techniques in our unified framework.

4 Conclusion

In this paper we propose a unified framework that allows
a domain user a choice of policies for both protecting
and sharing provenance information. Our work extends
previous policy definitions to support provenance. We
demonstrate the success of our framework by leverag-
ing over a closely knit set of open technologies (RDF,
SPARQL, OPM). We plan to pursue this avenue of re-
search further with the emphasis on optimization and
policy conflict resolution in the presence of large prove-
nance graphs and large policy sets.

References
[1] Redact Privacy Information - Redact-It Software. Online at

http://www.redact-it.com/.

[2] BIZER, C. D2R MAP-A database to RDF mapping language.
WWW (Posters) (2003).

[3] BLOSTEIN, D., FAHMY, H., AND GRBAVEC, A. Issues in the
practical use of graph rewriting. In Graph Grammars and Their
Application to Computer Science (1996), Springer, pp. 38–55.

[4] BRAUN, U., SHINNAR, A., AND SELTZER, M. Securing prove-
nance. In Proceedings of the 3rd conference on Hot topics in
security (2008), USENIX Association, p. 4.

[5] CADENHEAD, T., KHADILKAR, V., KANTARCIOGLU, M., AND
THURAISINGHAM, B. A language for provenance access con-
trol. In Proceedings of the first ACM conference on Data and
application security and privacy (2011), ACM, pp. 133–144.

[6] CADENHEAD, T., KHADILKAR, V., KANTARCIOGLU, M., AND
THURAISINGHAM, B. Transforming Provenance using Redac-
tion. In Proceedings of the Sixteenth ACM Symposium on Access
Control Models and Technologies (SACMAT) (2011), ACM.

[7] CORRADINI, A., HEINDEL, T., HERMANN, F., AND KÖNIG,
B. Sesqui-pushout rewriting. Graph Transformations (2006),
30–45.

[8] COTTRILLE, S. Selective Document Redaction, Dec. 19 2007.
US Patent App. 11/960,522.

[9] DÖRR, H. Efficient graph rewriting and its implementation.
Springer, 1995.

[10] HARRIS, S., AND SEABORNE, A. SPARQL 1.1 Query Lan-
guage. W3C Working Draft (2010).

[11] KLYNE, G., CARROLL, J., AND MCBRIDE, B. Resource
description framework (RDF): Concepts and abstract syntax.
Changes (2004).

[12] KOCH, M., MANCINI, L., AND PARISI-PRESICCE, F. Graph-
based specification of access control policies. Journal of Com-
puter and System Sciences 71, 1 (2005), 1–33.

[13] MOREAU, L., CLIFFORD, B., FREIRE, J., GIL, Y., GROTH, P.,
FUTRELLE, J., KWASNIKOWSKA, N., MILES, S., MISSIER, P.,
MYERS, J., ET AL. The Open Provenance Model—Core Speci-
fication (v1. 1). Future Generation Computer Systems (2009).

[14] NI, Q., XU, S., BERTINO, E., SANDHU, R., AND HAN, W. An
access control language for a general provenance model. Secure
Data Management (2009), 68–88.

[15] PRUD’HOMMEAUX, E., SEABORNE, A., ET AL. SPARQL query
language for RDF. W3C working draft 20 (2006).

[16] ZHAO, J. Open Provenance Model Vocabulary Specification.
Latest version: http://purl.org/net/opmv/ns-20100827 (2010).

6

