A Fine-Grained Workflow Model with Provenance-Aware Security Views

Zhuowei Bao
University of Pennsylvania

Abstract

In this paper we propose a fine-grained workflow model,
based on context-free graph grammars, in which the de-
pendency relation between the inputs and outputs of a
module is explicitly specified as a bipartite graph. Using
this model, we develop an access control mechanism that
supports provenance-aware security views. Our security
model not only protects sensitive data and modules from
unauthorized access, but also provides the flexibility to
expose correct or partially correct data dependency rela-
tionships within the provenance information.

1 Introduction

Scientific workflows can be complex, and building them
from scratch may take a large amount of human effort. It
is therefore common to re-use workflows, or portions of
workflows, by creating composite modules that encap-
sulate shareable sub-workflows. As observed in [3, 4],
composite modules can also be used to create views of
the provenance information associated with a workflow,
showing users the subset of provenance information that
is relevant to them and hiding the rest within unexpanded
composite module executions.

Views can also be used to hide private information,
which may include the intermediate data and modules
within a composite module as well as the dependencies
between the inputs and outputs of the composite mod-
ule [4]. In this paper, we focus on the use of views to hide
this type of information, and call them security views.

As an example, consider the workflow shown in Fig-
ure 1(a), where {A, B, ..., H} denote atomic modules,
and {y1,y2,. .., yr denote the data flowing between the
modules. A security view is constructed by contract-
ing {C, D, E, F'} into a composite module M (see Fig-
ure 1(b)). By doing so, {y3,v4,y5} and {C,D, E, F}
are hidden from unauthorized users. Additionally, the
exact dependencies between inputs and output of M are

Susan B. Davidson
University of Pennsylvania

Tova Milo
Tel Aviv University

(a) Full workflow

(b) Security view

Figure 1: A provenance-unaware security view

hidden, since without additional information the only as-
sumption that one can make is that every output depends
on every input. Thus, unauthorized users will assume
that y7 depends on y; which is false.

In previous work [6], composite modules that in-
troduce false dependencies between inputs and outputs
were considered bad (unsound), and were corrected by
splitting them into smaller sound ones, so that the depen-
dencies between accessible data (i.e., provenance infor-
mation) were preserved. In contrast, we argue in this
paper that unsound composite modules may be useful
for security, so that sensitive data and provenance infor-
mation are protected from unauthorized access. On the
other hand, users who are authorized to access an un-
sound composite module should be told correct prove-
nance information, e.g., a user who is authorized to ac-
cess M should be told that y7 does not depend on y; .

If a user is shown the full provenance information that
they are allowed to access (e.g., an authorized user is
shown Figure 1(a)), then clearly they will be able to ana-
lyze the data and module dependencies (as given by their
allowed view). However, since provenance is large we
wish to support efficient techniques for determining such
dependencies. (e.g., using labeling schemes [1, 2]). In
particular such techniques should support the following
features: 1) multiple input and output data for modules;
2) hiding exact dependencies between inputs and outputs
of composite modules; and 3) multiple security views
over the same workflow. The problem of efficient access

control with security views has been studied in the con-
text of XML [7, 5]. However, our problem is more chal-
lenging since workflows have general DAG structure.

The rest of this paper is organized as follows. We
present a fine-grained workflow model based on context-
free graph grammars in Section 2. The graph grammar
replaces a bipartite graph representing the dependency
relation between inputs and outputs of a module with
a graph with the same number of inputs and outputs,
but a possibly different dependency relation. ' On top
of this model, we develop in Section 3 an access con-
trol mechanism that supports provenance-aware security
views. Section 4 presents some initial thoughts on the
problem of efficiently querying data provenance on se-
curity views. We conclude with Section 5.

2 Fine-Grained Workflow Model

In this section, we present the fine-grained workflow
model. The main idea is to define a workflow as a
context-free graph grammar G using graph-based pro-
duction rules, in such a way that the graph language
L(G) corresponds exactly to the set of all possible ex-
ecutions of this workflow (a.k.a. workflow runs). We
start by describing basic workflow components and then
introduce our context-free graph grammar.

2.1 Modules and Simple Workflows

The basic building blocks of a workflow are modules.
Each module has a fixed set of input ports and a fixed set
of output ports, and performs some data transformation
from the inputs to the outputs. The dependency relation
between them is specified by a set of dependency edges.

Definition 1. A module is a directed bipartite graph
M = (IUO, E), where I and O are disjoint sets of input
ports and output ports, respectively,and £ C I x Oisa
set of dependency edges.

d B
= | @c-0 g,
d; “?.‘/"\’Q\ b 4
o S 4 A LI
= |@-0|= & - do [2
= | @] '
= | @530 |=> = LC du
d d
2 4 dg &:X’)o’ d12
30230 | =

(a) Amodule S (b) A simple workflow W,

Figure 2: Basic Workflow Components

I'This differs from the graph grammar in [2], which replaces a vertex
with a two-terminal graph.

Example 1. The module .S in Figure 2(a) has two input
ports and two output ports, which are denoted by solid
and hollow circles, respectively. S takes as input two
data items, d; and dy (one per input port), and produces
two data items, d3 and d4 (one per output port). Depen-
dency edges are denoted by dashed edges.

In principle, a module can be defined as an arbitrary
bipartite graph from the set of input ports to the set of
output ports. However, certain constraints are natural in
practice. For example, every input should be used (i.e.
each input port has at least one outgoing dependency
edge), and no output should be constant (i.e. every output
port must have at least one incoming dependency edge).

A simple workflow is a set of modules which are con-
nected by data edges. Each data edge connects an output
port of one module to an input port of another module,
and carries a unique data item that is produced by the
former and then consumed by the latter. Note that two
restrictions are imposed on the set of data edges in a sim-
ple workflow: (1) they are pairwise non-adjacent, that is,
every input or output port is incident to at most one data
edge; and (2) they do not introduce cycles among the
modules. The restrictions are not necessary, but simplify
the discussion, as shown in Appendix A.

Definition 2. Given a set M of modules and a set D
of data edges connecting the modules in M, the simple
workflow formed by M and D is the directed acyclic
graph W = (IU O, E U D), where I, O and E are the
sets of input ports, output ports and dependency edges,
respectively, of all modules in M.

Example 2. The simple workflow W; in Figure 2(b)
consists of four modules and five data edges. A, B, C
and D are module names (not necessarily unique); dr,
dg, dg, dip and dy; are unique data items flowing on
the data edges. To contrast with dependency edges, data
edges are drawn as solid edges.

In the rest of this paper, we use the following notation.
Given a finite set > of modules, >* denotes the set of
all simple workflows consisting only of modules chosen
from Y. Given a simple workflow W, Iy and Oy de-
note the set of input ports and output ports, respectively,
of W which are not connected by any data edge. Since
each data edge carries a unique data item, we will use
the data item name to refer to both the input port and the
output port for the data edge, e.g., Iz = {ds,d7}. In
addition, we may write a simple workflow as a function
over its component modules, e.g., W1 (A4, B, C, D).

2.2 Context-Free Graph Grammar

A simple workflow can be abstracted as a composite
module that is used to form other (more complex) simple
workflows. It is captured by a graph-based production.

Definition 3. A graph-based production is of form M ER
W where M is a composite module, W is a simple work-
flow, and f : Ip; U Op — Iw U Oy is a one-to-one
mapping from I, to Iy and from Oy to Oyy.

Note that M and W must have the same interface (i.e.,
the same number of input ports and output ports), how-
ever, they may or may not have the same dependency
relation between the input ports and output ports.

Definition 4. A graph-based production M Lo W is said
to be consistent if for any input port ¢ € Ip; and any
output port o € Oy, o is reachable from ¢ in M if and
only if f(0) € Ow is reachable from f (i) € Iy in W;
otherwise, it is said to be inconsistent.

Example 3. Consider a graph-based production

S % wy (A, B, C, D)
where S and W7 are shown in Figure 2, and

fi={(d1,de), (d2, d5), (d3, d13), (da,d12) }
It is easy to check that this production is consistent.

A complex workflow may, in general, involve a nested
hierarchy of simple workflows. We therefore model a
workflow specification as a context-free graph grammar
which contains a finite set of graph-based productions.

Definition 5. A workflow specification is defined as a
context-free graph grammar G = (X, A, P, S), where &
is a finite set of modules, A C ¥ is a set of composite

modules, P = {M L W | M € A, W € £} is a finite
set of productions, and S € X is a start module.

Example 4. Using Figures 2 and 3, we can build the
workflow specification G = (X, A, P, S), where & =
{S,A,B,C,C",D,E,F}, A = {S5,B,C} and P =
{r1,r2,73,74} is defined as follows.

S % wi(A, B, ¢, D) (r1)
f1 ={(d1,ds), (dz2,ds), (d3,d13), (ds, d12)}

B L wy(B, F) (rs)
f2 = {(d67 d17)7 (d7a d14)) (d107 d18)7 (dga d15)}

C L wi(A,B,C, D) (rs)
f3 = {(do,d¢), (ds,ds), (d11,d13), (d12,d12) }

c 15wy (ra)

f4 = {(d97 dlg)a (dSa d20)7 (d117 d21)7 (d127 d22)}

An execution of a workflow is generated from the
specification G = (3, A, P,S) as follows. It begins
with the start module S, and applies a sequence of pro-
ductions in P to replace all composite modules with the

dyy _F §
18
=|®--50|= c
d16 —7.’ d19 d21
E = [@--0|=>
dis FS) = |@30|=>
- d
= .<\\\>Q .:1(;5 dzo dz
(a) W2(E, F) (b) W3(C)

Figure 3: Other simple workflows

corresponding simple workflows. For recursive produc-
tions, multiple instances of one module may be created.
To formally define the execution, we first explain the
graph derivation. Consider a context-free graph gram-
mar G = (X,A,P,S). Given two simple workflows
W1, Wy € ¥, W is said to be directly derived from Wy
with respect to G, denoted by W1 =g W, if there is a

production M L Win ‘P such that W5 can be obtained
from W; by replacing one composite module M with a
simple workflow W. Note that the replacement is unam-
biguous given the one-to-one mapping f. Let =, be the
reflexive and transitive closure of =, then W, is said to
be derived from W, with respect to G if W1 =¢ Wo.

The set of (all possible) workflow runs with respect to
a specification is modeled as the graph language of the
corresponding context-free graph grammar. More pre-
cisely, it consists of all simple workflows that can be
derived from the start module and contain only atomic
(non-composite) modules.

Definition 6. The set of workflow runs with respect to a
workflow specification G = (X, A, P, S) is defined as

LG)={WeE\A)|S=cW}

E X4 9./:»0 X12 b
< F < X16
A T 0l . :,:»o=>
25 | g o
e > iD Xi15
X @< S~
Xa A e _>0
g&:iig %10 C X14 !
\ :x_ﬁo X11
X7 @~ -30 | —=>

Figure 4: A workflow run W € L(G)

Example 5. One possible workflow run W € L(G),
with respect to the specification G' in Example 4, is
shown in Figure 4. It can be derived from the start graph
S by the sequence of productions 1, 79,73, 72, 4. Since
r3 1S recursive, it may be applied any times in a run.

3 Access Control with Security Views

This section presents the access control mechanism
which can be used with our workflow model to support
provenance-aware security views. First, we introduce the
notions of access control policies and security views.

An access control policy specifies the level of gran-
ularity at which a group of users is authorized to see a
workflow. In terms of the context-free graph grammar,
it is defined as a subset of composite modules that the
group of users is allowed to open.

Definition 7. An access control policy for a workflow
specification G = (X,A,P,S) is a subset U C A of
composite modules.

An access control policy enforces a security view over
the workflow specification (abbr. secure specification)
by restricting the context-free graph grammar to a subset
of composite modules so that only the productions for
replacing these modules are included.

Definition 8. A security view, enforced by an access
control policy U, over a workflow specification G =
(3, A, P,S) is defined as a context-free graph grammar

Gu=UPy={MLWeP|MecU},S)

Example 6. Consider an access control policy U; =
{5, C} for the workflow specification G given in Exam-
ple 4. The secure specification is denoted by

GU1 = (27 {Sa O}a {T17 3, T4}a S)

Similarly, an access control policy enforces a security
view over the workflow run (abbr. secure run) by restrict-
ing the graph derivation to a subset of productions.

Definition 9. Let Gy = (3,U, Py, S) be a security
view, enforced by an access control policy U, over a
workflow specification G = (X,A,P,S5). Let W €
L(G) be a workflow run which is derived from the start
module S by a sequence £ of productions. Then a secu-
rity view, enforced by U, over W is defined as a work-
flow run Wy € L(Gy) which is derived from S by a
subsequence of ¢ restricted to Py 2.

Example 7. The security view Wy, , enforced by the ac-
cess control policy U; (Example 6), over the workflow
run W € L(G) (Example 5), is shown in Figure 5. It is
derived from S by a sequence of productions 71,73, 74.

The overall security model is as follows. Given a
workflow run W € L(G) and an access control policy
U, only the module instances and data items which are

2More precisely, the subsequence of ¢ contains only productions
which are in P and depend only on productions in P.

X B
8
=14 &::,»O X12
D e \ D
X2 i\ X16
A 230 |=
x % *
.:1:> &/’36 , B X1 7
\SQ *E’}%O D X15
WA e b
3 9
‘o<~ Xm(c '
. X14
Q\M:ﬁo o
X7 @<~ 30 | =

Figure 5: A secure run Wy, € L(Gy,)

visible in the secure run Wy; are exposed to the users au-
thorized by U. For example, in Figure 5, the instances of
modules F and F' and the data items x4 and xg are hid-
den from the users authorized by U;. Furthermore, the
secure specification may also be provided to authorized
users to describe the inherent structure of a workflow.

4 Querying Provenance on Security Views

In future work, we will address the question of how to
efficiently query data provenance using security views.
The type of queries we consider are those which ask if
one data item depends on another. The query must be
answered using only the information (i.e., the security
view) that is exposed to the user. As a result, users au-
thorized by different policies may get different answers
for the same query. It captures the information hiding
that one intended when defining the security view.

Example 8. Returning to our example, consider two ac-
cess control policies Uy = {S,C} and Uy = {5, B, C}.
The secure runs Wy, and Wy, are shown in Figures 5
and 4, respectively. The answer to whether x1; depends
on xg is “yes” for U7 because there is a sequence of data
items xg, T5, 10, £11 that are connected by dependency
(dashed) edges in Figure 5, but the answer is “no” for Us.

The fact that the answer to a query depends on the ac-
cess control policy is caused by inconsistent productions
(Def. 4). Given that the composite modules in an access
control policy are transparent to authorized users, we can
rewrite the dependency relations of these modules with-
out changing the answers to any data dependency queries
for this group of users. For some access control policies,
it is possible (and beneficial) to do so to make all produc-
tions in the secure specification consistent. We believe
that rewriting is key to optimize the dependency queries.

Definition 10. An access control policy U is said to be
safe, if one can rewrite the dependency relations of com-
posite modules in U so that all productions in Py (de-
fined in Gyy) are consistent; otherwise, U is unsafe.

Example 9. In the running example, U; = {S,C} is
safe (no rewriting is needed), but Uy = {S, B, C'} is un-
safe. Clearly, an access control policy that enforces a
non-recursive secure specification is always safe. As an
example, Us = {5, B} is safe (by rewriting B and 5).

Our initial investigation shows that safety is a crucial
property that enables efficient query processing.

5 Conclusions

This paper presents a fine-grained workflow model that
supports provenance-aware security views. Using this
model, a workflow can be exposed at different granu-
larity levels to groups of users, depending on their au-
thorized access control policies. More importantly, our
provenance-aware security model not only protects sen-
sitive data from unauthorized access, but also provides
the flexibility to expose correct or partially correct data
provenance. Our future work is to develop techniques for
efficiently querying data dependency on security views.

A Loop and Fork

To show that both adjacent data edges and cycles (loops)
can be effectively captured by our workflow model (as
claimed in Section 2.1), we describe how to encode by
graph-based productions two simple forms of linear self-
recursion, called loop and fork. They are typical execu-
tions in scientific workflows, creating multiple instances
of a module in series and in parallel, respectively.

Generally, a linear self-recursion can be expressed by
the following two productions

M Wiy and M 2wy

where W1 (M) denotes a simple workflow in which the
module M appears exactly once, and ¥ denotes a sim-
ple workflow that does not contain M.

L C L L
= | OO0 HOT @0 | =D = | @30 | =D
e 0| = N0 | =
= | @-301+—>0 OT—>@--30 | = =) e -30|=

Figure 6: Simple workflows W1 (L', C, L) and Wo(L')
Specifically, a loop is expressed by
LIS w0, L) and AL WL
where Wy and W5 are shown in Figure 6. In general,

L = L’ is a loop module with m input ports and n out-
put ports. Then C' is a connection module with n input

ports and m output ports, which ensures that two consec-
utive iterations are well-connected. Note that although a
simple workflow defined in a specification is required to
be acyclic (Definition 2), using the above rules, the loops
can be effectively captured by our workflow model.

F
—As -~ >\ (o]
| R
N ’7./:»0 = F
= .<::\ 8 <0 = .@\:\—90 =
F 1e-—X|= N0 |[=>
= | @<I_ S P— S = | @--30 |=>
AN 0| =
:T%O//ﬁ.”
Se--30

Figure 7: Simple workflows W1 (I, F', F, O), Wy (F")
Similarly, a fork is expressed by
FLwi(I,F,F,0) and F 22 wy(F)

where W, and Wy are shown in Figure 7. In general,
F = F’ is a fork module with m input ports and n output
ports. I and O are two auxiliary modules that distribute
and collect the input and output data set. They also en-
sure that W, provides the same interface as F' (rather
than having 2m input ports and 2n input ports). Also
note that such auxiliary modules can be used to capture
adjacent data edges (Definition 2). For example, if k£ data
edges are connected to the same input port, we can sim-
ply insert an auxiliary module with % input ports and one
output port to perform certain aggregation on the k data
items before sending them to the next module.

References

[1] BAo, Z., DAVIDSON, S. B., KHANNA, S., AND ROY, S. An
optimal labeling scheme for workflow provenance using skeleton
labels. In SIGMOD Conference (2010), pp. 711-722.

[2] BAO, Z., DAVIDSON, S. B., AND MILO, T. Labeling recursive
workflows on-the-fly. In SIGMOD Conference (2011).

[3] BITON, O., BOULAKIA, S. C., DAVIDSON, S. B., AND HARA,
C. S. Querying and managing provenance through user views in
scientific workflows. In /CDE (2008), pp. 1072-1081.

[4] BITON, O., DAVIDSON, S. B., KHANNA, S., AND ROY, S. Opti-
mizing user views for workflows. In ICDT (2009), pp. 310-323.

[5] FAN, W., CHAN, C. Y., AND GAROFALAKIS, M. N. Secure xml
querying with security views. In SIGMOD Conference (2004),
pp. 587-598.

[6] SuN, P., Liu, Z., DAVIDSON, S. B., AND CHEN, Y. Detect-
ing and resolving unsound workflow views for correct provenance
analysis. In SIGMOD Conference (2009), pp. 549-562.

[7]1 Yu, T., SRIVASTAVA, D., LAKSHMANAN, L. V. S., AND JA-
GADISH, H. V. Compressed accessibility map: Efficient access
control for xml. In VLDB (2002), pp. 478-489.

