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Abstract

While there has been a great deal of research on prove-
nance systems, there has been little discussion about
challenges that arise when making different provenance
systems interoperate. In fact, most of the literature
focuses on provenance systems in isolation and does
not discuss interoperability – what it means, its re-
quirements, and how to achieve it. We designed the
Provenance-Aware Storage System to be a general-
purpose substrate on top of which it would be “easy” to
add other provenance-aware systems in a way that would
provide “seamless integration” for the provenance cap-
tured at each level. While the system did exactly what
we wanted on toy problems, when we began integrating
StarFlow, a Python-based workflow/provenance system,
we discovered that integration is far trickier and more
subtle than anyone has suggested in the literature. This
work describes our experience undertaking the integra-
tion of StarFlow and PASS, identifying several impor-
tant additions to existing provenance models necessary
for interoperability among provenance systems.

1 Motivation

We are entering the third generation of provenance re-
search. The first generation defined provenance for-
mally; the second generation produced a number of dif-
ferent kinds of provenance-collection systems at differ-
ent abstraction levels. This third generation addresses in-
teroperability. The Open Provenance Model (OPM) is a
solid basis for this next generation effort [11], but it is not
sufficient. Interoperability between systems requires the
ability to exchange, parse and interpret provenance [3].

The OPM specification addresses the first two of these
requirements by proposing a standard semantic frame-
work so that any system can read the provenance ex-
ported by another system. It defines six provenance re-
lationships: used, wasGeneratedBy, wasControlledBy,

wasTriggeredBy, and wasDerivedFrom, and specifies
rules for performing inference across these edges. While
the OPM makes concrete the notion of multiple prove-
nance accounts, it does not provide any framework for
reconciliation among them. E.g., there is no explicit
mechanism to indicate that entity X in one account is the
same as entity Y in another account.

Through our own attempts at integrating multiple
provenance systems, we have identified several areas
where the OPM falls short of enabling meaningful in-
tegration and interpretation of provenance across multi-
ple accounts. We identify new provenance relationships,
stands-for and version, that extend the expressivity of the
OPM to support such integration.

2 Background

Data systems increasingly collect and use provenance [4,
7, 9, 10, 12, 15, 2, 14]. Even though there has been
substantial effort to standardize provenance representa-
tion [11], there has been little actual integration of prove-
nance systems. Different systems collect provenance at
differing levels of abstraction, storing this provenance in
private repositories with system-specific access methods.
If we could combine the provenance from multiple sys-
tems, we could pose queries and reason about workflows
that span multiple systems. This integration offers func-
tionality that no single system can provide on its own.

We cast the following discussion in the context of the
StarFlow and PASS systems, because we are familiar
with them, and, to the best of our knowledge, PASS is
the only system that explicitly addresses integration [12].
However, provenance integration is a general need; as
long as databases, workflow systems, operating systems,
and document management systems all capture prove-
nance, users will need to integrate provenance.

StarFlow [1] is a provenance-enabled Python environ-
ment for data analysis. It uses a combination of anno-
tations, static analysis, and dynamic analysis to create



data and control flow dependency graphs. It uses this
provenance to support, among other things, automatic as-
needed recomputation of derived data when something
changes upstream. It operates at the level of single data
files and individual Python functions; thus it knows to
re-run an analysis if one of these entities is updated. Up-
dates to Python source files only trigger recomputation of
outputs that depend on the functions that were changed;
outputs depending on other unmodified functions can be
left as is. Since StarFlow tracks only the objects it ex-
plicitly manages, it cannot detect or act on changes in
external Python libraries or to the Python interpreter.

The Provenance-Aware Storage System (PASS) [13]
takes an approach quite different from StarFlow. PASS
collects and manages provenance at the operating sys-
tem level, in terms of the operating system’s processes
and file system objects. To PASS, a Python program in
StarFlow looks like a single invocation of the Python in-
terpreter that read many input files and produced many
output files. The specific Python-level connections be-
tween those input and output files are hidden.

The example Python code below illustrates both the
power and limitations of these two systems.

import stats

def parse(x):
y = stats.load(x)
return (y.info, y.data)

def cluster(x, outfile, param=None):
y = stats.cluster(x, param)
stats.save(y, outfile)

def pca(x, outfile):
(w, v) = stats.pca(x)

def compare(pca_file, clust_file, outfile):
x1 = open(pca_file)
x2 = open(clust_file)
y = compute_error(x1, x2)
save(y, outfile)

def main(depends_on="dat.in", creates="dat.out"):
(info, data) = parse("dat.in")
if info == "pca":

pca(data, "dat.out")
else:

cluster(data, "dat.out")

The program contains four functions, parse, pca,
cluster and compare, plus a wrapper that reads
an input file, dat.in, calls parse, and then condi-
tionally calls one of pca or cluster, but never calls
compare. Both pca and cluster are long-running
functions that produce an output file, dat.out, whose
contents vary depending on which routine writes it. If we
modify compare, even though our Python source file
has changed, StarFlow realizes that the change does not
affect dat.out and does not indicate that the program

needs to be run. If we modify either pca or cluster,
then we would rerun the analysis, even if the function we
modified was not the one that actually produced the cur-
rent output file. In contrast, once we modify the Python
source file, PASS would see only that an input used
to produce dat.out changed, necessitating a re-run.
Suppose that we modified the stats Python package.
StarFlow does not track dependencies on external Python
libraries, so it would not detect this or rebuild dat.out,
but PASS would. Using only StarFlow, we would erro-
neously believe that dat.out was up-to-date.

One might suggest that we simply extend StarFlow to
query the data PASS collects. Unfortunately, this ap-
proach neither scales nor generalizes—it requires that
every provenance system know about every other prove-
nance system, potentially creating an N by N problem.
Instead, we propose that systems use the PASS layer-
ing paradigm to transmit data and its provenance among
provenance-aware components, only one of which needs
to interact directly with a provenance store. We use
PASS as the layer that interacts with the provenance store
and the PASS Disclosed Provenance API (DPAPI) for
provenance transmission, but any system that supports
the PASS layering model would be sufficient. This ap-
proach avoids quadratic growth in interconnections, and
it provides a simple way to issue queries across the com-
bined provenance of all provenance-aware components.

The rest of this paper discusses our experience under-
taking just such an integration, focusing on the unstated
assumptions we and others make in building provenance
systems and the implications thereof. In Section 3 we
discuss the philosophy behind PASS and how we ex-
pected it to integrate with other provenance systems. In
Section 4 we introduce StarFlow and its view of de-
pendencies. In Section 5 and Section 6 we describe
our expectations and experience integrating the two sys-
tems, identifying small but important changes to existing
provenance models that are crucial to enabling prove-
nance interoperability. We conclude in Section 7.

3 PASS, layering, and the DPAPI

PASS is an operating-system based provenance collec-
tion substrate. PASS intercepts system calls, extracts
provenance relationships between files and processes,
and then records this provenance first to a log and then
ultimately into a set of indexed databases. The PASS ar-
chitecture is described in detail in earlier work [12].

While extending PASS to collect and manage prove-
nance in network-attached storage, we realized that we
needed to collect and manage provenance on both clients
and servers. Upon deeper reflection, we realized that
this was a more general problem, that in any real system,
provenance would flow through many layers of software,
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potentially residing on different machines, and that each
layer in that software stack has different, but important
information to report about data provenance. For ex-
ample, the file system may know which system libraries
were used and which ones have changed recently, while a
language interpreter knows exactly how particular inputs
influence particular outputs. Depending on the queries
posed against the resulting provenance store, either or
both of those types of information might prove useful.

The second PASS prototype [12] embodies this notion
in its Disclosed Provenance API (DPAPI), which makes
it possible to stack provenance systems atop one another,
map entities at the different layers to each other, and
transmit provenance through the multiple systems. The
DPAPI is appealingly simple: provenance-aware read
and write calls augment transferred data with collections
of provenance records that describe them; another call
freezes an object, so that any future modification of that
object creates a new version; two other calls write prove-
nance to disk and facilitate later retrieval; and the last
call allows a software layer to enter objects from its local
environment into the provenance database.

The DPAPI is based upon a set of implicit assump-
tions, which we make explicit here. In later sections, we
will revisit these assumptions to examine how well they
hold up in the presence of integration.

Objects at any given layer have obvious mappings
to one object in the layer beneath it. Different levels
in a system manipulate different types of objects.
For example, the operating system manipulates files
and processes; languages manipulate variables and
functions; databases manipulate queries and tuples or
records. PASS and the DPAPI assume that although
different layers manipulate different types of objects,
there are obvious mappings between objects – files
contain database records; processes are executions of
programs or functions; files contain function definitions.

Data evolves and it is important to track versions of
both processes and objects. It seems obvious that data
versioning is important, because data may change over
time. Even if we physically represent different versions
as unique objects, it is important to track the relationship
between these objects and identify them as versions.
More subtly, processes also have versions. Whenever
a process absorbs new input, its provenance changes,
creating a new version of the process. It is important to
capture these changes to accurately describe process and
file dependencies.

Versions are created by explicit operations that act
upon one version and produce a new one. New versions
are created when some process acts upon an old version,

i.e., new information may be added to an object, the
object may be transformed, etc.

We turn to StarFlow and its own set of assumptions.

4 StarFlow

StarFlow is a workflow system embedded in a program-
ming language environment, specifically Python. Its tar-
get audience is script programmers, who are comfortable
performing sophisticated data analysis using Python, but
are not computer scientists and are not interested in
learning programming tools such as make. They have
the same data management needs as other computational
scientists: they want to be able to identify the modules
and externalities on which their tools depend; they would
like to rerun their analyses only when necessary; and
they would like to be able to package up a particular anal-
ysis and all its dependencies to give to a colleague.

StarFlow uses a combination of annotations, static
analysis, and dynamic analysis to create data and con-
trol flow dependency graphs, and then uses these graphs
to answer questions such as “On what code/data does this
output depend?” and “What would I need to execute to
bring this file up to date?”

Users annotate their analysis routines by explicitly
stating the input files that an analysis uses and the out-
put files it produces. Then, the StarFlow static analyzer
constructs the data and control flow dependency graphs.
At runtime, StarFlow’s dynamic analyzer intercepts file
read and write operations to verify that the files being
accessed match those described by the annotations or to
create dependencies not captured by annotations. Python
functions address the queries described above by travers-
ing the dependency graph.

StarFlow also makes some implicit assumptions that
we make explicit here.

Users will use the Python interpreter as their ex-
ecution environment. The anticipated StarFlow user
does not manually execute their functions once they
have written and annotated them. Instead, they rely on
the StarFlow command Update, which re-executes
only what is necessary. When users want to see what
functions need to be run, they use ShowUpdates.

Even before users have run an analysis, they may
want to understand the dependency network. StarFlow’s
annotations combined with static analysis allow users
to explore their dependency networks even before they
have ever executed a workflow.

Dynamic analysis provides error checking capabil-
ities, but it not fundamental to dependency tracking.
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parse() stats

pca()

cluster()
dat.in

main()

dat.out

Figure 1: Dependency graph extracted by StarFlow for the file
dat.out. Arrows are in the direction of information flow. Files are
rectangles; functions or modules are ovals. The function main de-
pends on the file dat.in and creates dat.out. It uses the functions
parse, pca, and cluster, which all depend on the stats library.

StarFlow assumes that annotations and static analysis
capture data and control flow and that the only purpose
of dynamic analysis is to verify that the functions behave
as annotated with respect to their inputs and outputs.

The only items of interest are Python modules, user
code and data files.

Having now made the assumptions of the two systems
explicit, we can dive into a discussion of our plan for in-
tegrating the two systems and the inevitable clashes that
arose from having different sets of assumptions.

5 The Plan

As StarFlow was already creating a dependency graph, it
seemed straightforward to have StarFlow call the DPAPI,
thereby linking Python functions to the files containing
them therebyeusing PASS as the storage substrate for
the StarFlow provenance. Our theory was that each ad-
dition to StarFlow’s dependency network would result
in a provenance-aware write to the file system and that
StarFlow’s recomputation functionality would turn into
simple queries over the PASS data.

Returning to the code example, Figsures 1 and 2 show
the dependency graphs that StarFlow and PASS create,
respectively, for the output file dat.out. We wanted to
create objects to represent the ovals in Fig. 1 and then
transmit to PASS the edge relationships. Rather than
coding complicated graph traversals in StarFlow, it could
issue simple queries via the PASS query engine.

The combined system would provide the functionality
discussed in Section 2. StarFlow’s function-level track-
ing helps us avoid needlessly re-executing when a func-
tion that we do not call gets changed, and PASS’s track-
ing of files outside StarFlow’s purview prevents us from
missing relevant updates. A query for changes in the an-
cestry of an output file can traverse a combined prove-
nance graph produced by StarFlow and PASS.

/usr/local/lib/python/packages/stats/ init .pyc/usr/local/lib/python/packages/stats/__init__.pyc

dat.in

my_program.pyc

/usr/lib/python2.6/

python

dat.out

Figure 2: Dependency graph extracted by PASS during runtime for
the file dat.out.

6 The Reality

This integration was different from what we anticipated.

6.1 Referencing Non-Existent Objects
The first challenge we encountered was in trying to
record dependencies created by StarFlow’s static anal-
ysis phase. During static analysis, StarFlow may try to
create dependencies for files that do not yet exist. That is,
when StarFlow observes that main creates dat.out, it
creates a dependency between the StarFlow objects rep-
resenting the function main and the output, dat.out.
However, dat.out corresponds to a PASS object that
does not yet exist. The DPAPI assumes that layers will
want to create mappings to objects in different layers, but
here, the corresponding object does not yet exist.

StarFlow’s static analysis is doing something other
than collecting provenance. Provenance is a record of
what happened, while static analysis predicts what will
happen; that prediction may be incomplete or context in-
sensitive. It is incomplete if the program uses constructs
that are undecidable, e.g., Python’s eval. It is context
insensitive in that during static analysis, we do not know
whether the pca function or the cluster function will
be called, and records both as dependencies. This ap-
proach captures negative information flow. It does not
produce a precise dependency graph, but rather the su-
perset of graphs that might arise from execution.

Although this case seems potentially problematic, and
in fact, did give us cause to question whether our inter-
faces were sufficient, the DPAPI in both its implemen-
tation and design addresses the issue neatly. StarFlow’s
dat.out and PASS’s dat.out are not the same ob-
ject, but do share a special relationship, not captured
in existing provenance models. StarFlow’s dat.out
is an abstract object corresponding to an intended out-
put; PASS’s dat.out is the output of a specific execu-
tion. The missing piece is a way to associate the abstract
and concrete representations of these objects, and this is
where StarFlow’s dynamic analysis comes to our aid.

When we execute the main program, StarFlow’s sys-
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/usr/local/lib/python/packages/stats/__init__.pyc

dat.inpca()

parse()

l ()

stats

dat.in

my_program.pycmain()

cluster()
/usr/lib/python2.6/

St Fl t ti
python

dat.out

y_p g py()

dat.out

StarFlow static
StarFlow runtime
PASS (all runtime)
stands‐for edge

py

g

Figure 3: Combined dependency graph from StarFlow layered on top
of PASS for the file dat.out. The two different line types distinguish
those edges created during static analysis (connecting shaded shapes)
and those created by PASS’s dynamic analysis (unshaded shapes). The
bold edges are created during StarFlow’s dynamic analysis.

tem call interception detects the creation (or modifica-
tion) of dat.out. It then traverses the current call
stack until it finds a function that has a creates de-
pendency. When it locates the dependency in main, it
creates two new provenance edges: one is a normal out-
put edge between the StarFlow object for main and the
newly created PASS object for dat.out. The second
is an edge between StarFlow’s dat.out and PASS’s
dat.out. Figure 3 shows the graph resulting from the
integration of StarFlow and PASS provenance, highlight-
ing the edges created during this dynamic analysis.

This newly created edge is not a version edge nor is it
an input or output edge. Instead, it is a stands-for edge,
indicating that an object in one account represents an ob-
ject in a different account. This is the provenance equiv-
alent of a symbolic link. These new edges identify rela-
tionships that are not represented in existing provenance
models, yet are crucial to facilitating interoperability and
reconciliation of multiple accounts.

This new edge type solves a second, more subtle prob-
lem. Each successful analysis execution create a new
version of the output file, dat.out. However, static
analysis identifies only a single instance of dat.out
when it determines that main creates dat.out. With-
out this new edge type, there is no obvious way to recon-
cile the single-version view of the world with the multi-
version view of the world.

Some workflow systems distinguish between work-
flow abstractions or templates and concrete workflow in-
stances [5, 8], and in doing so deal with an example of
this problem. A concrete workflow instance is derived
from a workflow template plus a set of concrete data
inputs. A specific object in a workflow template corre-
sponds to an object in each of possibly many workflow
instances. For example, the output of the first step of
a workflow template may correspond to a new file for
each concrete instantiation. These semantics describe a
workflow at multiple layers of abstraction or granularity,

and stands-for edges can be used to explicitly reconcile
across these layers.

6.2 Version Disconnection

Our previous discussion suggests that version edges are
also important in provenance modeling and representa-
tion. PASS assumes that versions result from a process
acting upon a previous version, creating a new version.
The notion of multiple versions is important to many
provenance systems. For example, VisTrails tracks ver-
sions of workflows [4], and some of the vocabularies in-
troduced by the W3C Provenance Incubator Group in-
clude the notion of version [6].

Returning to our example, suppose that someone in-
stalls a newer version of the Python library, stats. The
installation process never reads the existing file; it simply
overwrites it. Similarly, text editors frequently write new
data into temporary files and then move them into place,
replacing the original. While PASS tracks this process
and captures the relationships between the old file, in-
stallation, and the new file, it does not know and cannot
record that the new file is a later version of the original.

To some extent, this is an implementation failure in
PASS that can be addressed. The file system already de-
tects when an operation replaces an existing object be-
cause it needs to delete that replaced object. We could
create provenance records to associate the over-writing
file with the over-written file. Unfortunately, it is not
always the case that this association is correct; it is
application-specific whether the two files are related. In
the examples above, the two objects are obviously re-
lated. However, when a user saves an editor buffer to a
file named tmp, she probably does not want to associate
the new contents of tmp with the old.

This conundrum suggests that we need to allow prove-
nance systems to explicitly create version edges between
two existing nodes. We want to allow the provenance en-
gine at one layer to specify meaningful edges between
objects at lower layers. Put another way, this is a case
where the knowledge of the relationship between objects
is not present at the layer that manages those objects.
The idea that certain meaningful relationships between
objects can only be created by an agent external to a
specific provenance system does not appear in existing
provenance models.

6.3 Provenance of Provenance

Allowing external agents (i.e., provenance systems at
different layers) to add provenance brings into ques-
tion its quality or trustworthiness. When we developed
the DPAPI, we encountered the question of whether to
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record the identity of such an agent. This is the prove-
nance of provenance, which introduces obvious prob-
lems – how do we avoid infinite recursion?

We need to distinguish provenance from different
sources; otherwise we could fall victim to provenance
spam, where processes add meaningless or even decep-
tive provenance. We believe that the right approach is
to rely on the operating system’s definition of identity to
describe the source of provenance records.

Unless otherwise noted, provenance data in PASS was
produced by PASS. The emerging provenance standard,
the OPM, contains the notion of a controlling process,
and while the intended use is to describe a process that
invokes another process, it also accurately describes the
agent contributing provenance. Thus, we can use PASS-
generated provenance to identify external provenance
by creating wasControlledBy edges between the pro-
cess adding provenance and the generated provenance
records. By taking advantage of the operating system’s
existing notion of processes and existing concepts from
OPM, we can identify the source of DPAPI additions
without falling prey to infinite recursion. Other prove-
nance systems will need to make similar decisions – a
system can choose to augment provenance passed to it
with its own notion of identity or it can assume responsi-
bility for the provenance, allowing PASS to attribute the
provenance to the process in which it was created.

7 Conclusions

We have identified two new edges that we believe are
fundamental to provenance and interoperability: stands-
for and version. These edges are absent from the OPM
and are not represented in other provenance systems.

The stands-for edge allows agents to state that two ob-
jects are the same. In addition to addressing the questions
that arose in our experience, this edge also addresses the
issuing of reconciling multiple accounts of an event, stat-
ing that the accounts really do represent the same event.

The version edge is a stronger statement than the
OPM wasDerivedFrom edge. We find versions essential
for representing both objects (OPM artifacts) and pro-
cesses [13]. OPM’s wasDerivedFrom edges capture in-
put relationships, while version edges embody a notion
of object identity that is quite different.

These additional requirements for interoperability are
not overly burdensome. From an implementation per-
spective, the DPAPI is powerful enough to express them.
From a modeling perspective, the new edge types are eas-
ily incorporated into existing provenance models, such as
the OPM. We think that layering is the right way to inte-
grate provenance systems and that small, but important,
modifications to existing models enable integration.
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